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Microwave Remote Sensing of Environment Helps 
Address Key Challenges of Our Society
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Ongoing Environmental Remote Sensing Satellite Missions

Name of the 
mission

Brief Description Country, Region, 
Organization

LandSat 1to 8 The world's longest continuously acquired collection of space-based moderate-resolution land remote sensing data USGS, NASA

Sentinel-1 to 6 Constellation of ~12 Satellites, the Copernicus Program, radar and multi-spectral imaging for land, ocean, and atmospheric 
monitoring 

ESA

SMAP L-band Active and Passive Mission for Global Soil Moisture Observation NASA

CYGNSS L-band, Signal of Opportunity, Cyclone Global Navigation Satellite System, for hurricane forecasting NASA

NISAR L- (US) and S- (Indian) band, InSAR, optimized for studying hazards and global environmental change NASA/ ISRO

GCOM Global Change Observation System Mission, for long-term observation of Earth environmental changes. GCOM-W1 carries 
AMSR-2 Radiometer, GCOM-C1 carries SGLI Imager. 

JAXA

ALOS The Advanced Land Observing Satellite for cartography, regional observation, disaster monitoring, and resource surveying. 
Instruments include PRISM, AVNIR-2 and PALSAR.

JAXA

CryoSat ESA’s Earth Explorer Mission dedicated to measuring the thickness of polar sea ice and monitoring changes in the ice 
sheets that blanket Greenland and Antarctica. Main payload is a Synthetic Aperture Interferometric Radar Altimeter 

(SIRAL).

ESA
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Ongoing Environmental Remote Sensing Satellite Missions

Name of the 

mission

Brief Description Country, Region, 

Organization

TerraSAR-X and 

TanDEM-X

X-band, TerraSAR-X and TanDEM-X are German radar satellites from DLR (the German Aerospace Center). TerraSAR-X 

launched in 2007 and was joined by TanDEM-X in 2010. Both satellites remain operational. The twin satellites feature a 
unique geometric accuracy that is unmatched by any other spaceborne sensor.

German, ESA

RADARSAT-
Constellation

C-band, The RADARSAT Constellation Mission (RCM) is a three-satellite constellation, developed and operated by CSA 
(Canadian Space Agency). Launched on the 12th of June 2019 with an expected lifespan of 7 years.

Canada, CSA

TSMM dual frequency (13.5/17.25 GHz) Ku-band, The Terrestrial Snow Mass Mission (‘TSMM’) will provide moderate resolution 
(500m) SAR measurements across all northern hemisphere snow covered areas every 7 days. 

Canada, CSA, ECCC

CIMR The CIMR mission would carry a wide-swath conically-scanning multi-frequency microwave radiometer to provide 
observations of sea-surface temperature, sea-ice concentration and sea-surface salinity. Uniquely, it would also observe a 

wide range of other sea-ice parameters. 

ESA

Biomass P-band synthetic aperture radar (SAR) launched in 2025. It will provide crucial data for monitoring the carbon cycle and 
climate change by delivering detailed 3D maps of the world's forests.

ESA

CryoRad The mission would comprise a 0.4-2 GHz nadir-looking radiometer installed on a polar-orbit satellite, with a focus on sea 
ice, snow, and ice sheet properties, contributing to better understanding of cryosphere changes.

ESA Earth Explorer 
candidate
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China Ongoing Environmental Remote Sensing Satellites

Name of the 
mission

Brief Description Launch Time

高分5号02星 Equipped with hyperspectral equipment to dynamically monitor the air pollution situation in China 2021.9

陆探1号 L-band fully polarized InSAR; The total area of the SAR antenna carried on this satellite exceeds 33 square meters, 
making it the largest SAR satellite in orbit in China.

2022.1

海洋盐度探测卫
星

Loading synthetic aperture radiometers (L-,C-,K- band) and L-band scatterometer to obtain physical parameters 
such as sea surface roughness, and sea surface temperature of the ocean surface

2024

陆地水资源探测
卫星

L-band active and passive microwave imager; Used for water resource monitoring and management, drought 
monitoring, and soil and water conservation monitoring

/
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Two Fundamental Problems in Microwave Remote Sensing

Forward 
Modeling

Inverse 
Retrieval

Physical Models

Data

Ground Truths

Microwave Observables

AI



Covered in today’s discussion
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Fundamentals for Microwave Remote Sensing: 
Electromagnetic Wave Scattering of Random Media

Dense Random VolumesRandom Rough Surfaces Sparse Random Volumes

SnowpackBare Soil Vegetation
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Image courtesy TPDC

Scattering from Rough Surface 
& Bare Soil Remote Sensing: 

Vertical Heterogeneity 
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Rough surface representation
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EM modeling of rough surface scattering

Numerical 
Solutions

Analytical 
Approximations

Based on Differential Form:

• FEM: HFSS, Comsol

• FDTD: CST

Based on Integral Equation (IE)

• SIE: NMM3D-SIE, Feko

• VIE: Discrete Dipole

Approximation (DDA)

Kirchhoff approximation (KA)

Small Perturbation 

Method(SPM)

Advanced IEM (AIEM)

……

……

Maxwell’s Eqn

∇ ⋅ ഥ𝐷 = 𝜌

∇ ⋅ ത𝐵 = 0

∇ × ത𝐸 = 𝑖𝜔 ത𝐵

∇ × ഥ𝐻 = ҧ𝐽 − 𝑖𝜔ഥ𝐷

ഥ𝐷 = 𝜀 ҧ𝑟 ത𝐸
ത𝐵 = 𝜇 ഥ𝐻

Constitutive Relations

Geometry and material complexities are 

expressed in 𝜀 ҧ𝑟 .
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Tapered incident wave in 

the wave vector domain

NMM3D-SIE NMM3D-DDA

Periodic Boundary Conditions

Plane wave excitation with 

periodic boundary conditions to 

truncate the computing domain

Only surface segmentation is required Volume segmentation is required

Only applicable for 

homogenenous rough soil.
Applicable to inhomogeneous soils with 

arbitrary texture distributions and layering.

Truncation
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NMM3D-SIE on a homogeneous soil/air interface

The operators:

SIE in PMCHW form

SMCG; UV; PBTG

Acceleration Algorithms

• Surface size: 16𝜆×16𝜆 ; 
64𝜆×64𝜆; or larger

• Shorter wavelength in the 

soil region

Large number 
of unknowns
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NMM3D-VIE-DDA Approach for Layered Rough 
Surface Scattering Characterization

… …
… …

Single-layer Multi-layer

VIE-DDA:

Half-space G

▪ horizontal: truncated by periodic boundary condition, ~ 10𝜆×10𝜆
▪ bottom layer: represented by the half-space Green’s function

▪ need to discretize the inhomogeneous soil volume 



Wet

DryCase 1-1 Wet soil

Case 1-2 Dry soil

• Overall consistent.

• For backscattering, higher 

consistency is observed for dry soils.

• The proposed VIE-DDA method 

agrees well with SIE under various 
angles, polarizations, and soil 

moisture levels.

Single-Layer Validation – Backscattering Coefficient and Emissivity

Backscattering 
coefficient

Emissivity 

• Soil parameters ：

Three Methods:

Full-wave – NMM3D-VIE; 

NMM3D-SIE

Approximate – AIEM



Case 1-1 

Wet soil

Case 1-2 

Dry soil

•SIE requires larger surface truncation 

to ensure convergence in the specular 

direction.

•The VIE-DDA method is shown to be 

accurate and effective.

Single-Layer Validation – Bistatic Scattering Coefficient for Cross-
Polarization in the Incidence Plane

Incident angle=40 °
Wet
Dry



Wet

Single-Layer Validation – Bistatic Scattering Coefficient in the Upper Half-Space

• Good overall consistency: 

Co-pol strong in the 

specular direction within 

the incidence plane; Cross-

pol stronger in the specular 

direction inclined out of the 

incidence plane.

• Due to the infinite-surface 

treatment, the VIE method 

yields relatively smaller 

incoherent bistatic 

scattering coefficients near 

the specular direction.

VV HH HV VH

VIE

SIE

AIEM

Incident angle=40 °



Single layer verification - a rougher soil

Comparison of scattering coefficients 

between two incident surfaces:

Cross-pol

• The overall consistency among the three methods remains good.

• SIE shows reduced convergence, increased computation time, and requires more Monte 

Carlo simulations.

• AIEM, especially under HH polarization, exhibits noticeable differences compared to the other 

two methods.

• The VIE-DDA method maintains stable computational efficiency and matches well with the 

SIE results.

Parameters



Four scenarios：

Single layer Flat discrete

Rough discrete Continuous profile

Five mv configurations：

L1-1 Single layer -- 5cm

L1-2 Single layer 

assumed between 1cm 
and 3cm

----------------------------------

L2 Flat discrete layer

L3 Rough discrete layer

L4 Continuous profile

Ground truth ref：Xinyuan Pasture 

The multi-layer cases



Conclusions：
• Single v.s. Multi：Single-layer 

equivalent moisture can match 

microwave observations of rough 

layered surfaces to a certain 
extent.

• Compare between Multi： little 

difference between internally 

rough and internally flat layering, 
while continuous profile layering 

is associated with relatively lower 

backscattering and higher 

emissivity.

Scattering from layered soil

辐射率

Bistatic scattering coefficient
VV HH

hv



L1-1 L1-2 L2 L3 L4 Biscattered coefficient in the incidence plane –40 ° incidence

Conclusion：
• Single v.s. Multi：Single-layer equivalent moisture matches microwave 

observations of rough layered surfaces (L1-2 matchesL3/L4/L5).

• Compare between Multi：little difference between internally rough and 

flat layering; continuous profile layering features lower backscattering.

Scattering from layered soil



• For HH HV VH，L1-2 matches the layered cases

• For VV, in the direction perpendicular to the incidence plane, they are different；
• Layering enhances the VV scattering component toward that direction.

V
V

H
H

H
V

Scattering from layered soil
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Summary of Soil Scattering

• The VIE-DDA approach effectively handles scattering from soil with 
vertical heterogeneity, illustrating sensitivities of microwave 
observables to certain soil profile configurations. 

• The VIE-DDA approach in general agrees with the SIE approach for 
homogeneous soil scattering while with advantages in convergence 
for large rms or large permittivity contrast. 



Scattering from Vegetated Land Surfaces:
Scattering from Structured Sparse Random Media & 
Coupling Vegetation / Soil Scattering Interactions

26

Image courtesy of iSWGR



Remote Sensing of Vegetated Land Surface is Critical 

to Food Security, Carbon Cycle, and Water Cycle

27

• Retrieve vegetation parameters 

(e.g. biomass) 

• Retrieve vegetated surface physical 

parameters (e.g. soil moisture)

-> Assess crop yields

->Understand the global carbon cycle, 

water cycle and climate change



Geometry of trees Single tree T-matrix Foldy-Lax multiple 

scattering equations

[1] Huang H, Tsang L, Colliander A, et al. Propagation of waves in randomly 

distributed cylinders using three-dimensional vector cylindrical wave expansions 

in Foldy–Lax equations[J]. IEEE Journal on Multiscale and Multiphysics 

Computational Techniques, 2019, 4: 214-226.

ധ𝑇

Radiative Transfer (RT) theory

• Characterization of realistic vegetation structure

• Considering coherent wave interactions

• Computing intensive

• Assuming uniform distribution of 

scatterers: homogenization

• Considering multiple incoherent wave 

interactions through numerical iterative 

approach

• Relatively higher computational efficiency

Hybrid wave approach and Radiative Transfer theory overview

Hybrid wave approach



Comparative style:

- Hybrid: structure -> T-matrix

- RT: structure -> scattering parameters

(Next slide) 
How to obtain realistic vegetation structure

(Next slide)

RT driven by realistic vegetation structure: 

How to combine scattering characteristics 
of each scatterer into RT equation?

Solving RT with iterative approach 

RT model driven by realistic vegetation structure

ധ𝑇

Hybrid approach Radiative Transfer (RT) theory

𝑧 = 0
Scattering parameters(𝐒𝐏): 𝜅𝑒(𝜃), 𝜅𝑎(𝜃), 𝑝(𝜃, 𝜃′)

𝐒𝐏(𝒛)

At each height 𝑧 , the total SP is acquired by independent 

scattering assumption and incoherent summation over all scatterers.

The vertical structure of vegetation is reflected in SP(z).

𝑧 = Tree Height

The Passive Radiative Transfer Equation (RTE) Considering Vertical Heterogeneity:

cosθ
𝑑𝐼 𝑧, 𝜃

𝑑𝑧
= −𝜅𝑒 𝜃, 𝑧 𝐼 𝑧, 𝜃 + 𝜅𝑎 𝜃, 𝑧

𝐾𝐵𝑇

𝜆2

+න
0

𝜋

𝑝 𝜃; 𝜃′, 𝑧 𝐼 𝑧, 𝜃′ sin𝜃′𝑑𝜃′

Geometric 

structures of 

vegetation 

reflected in 

the T-matrix

Chen K, Tan S. A multiple-scattering microwave radiative transfer model for land emission with vertically 

heterogeneous vegetation coverage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024.



Microwave scattering model driven by vegetation fine structure

Lidar Point cloud 
data of a forest

Single tree 
point cloud

PolSARproSIM

(software developed by ESA)

Virtual  tree 
structures

Extract RT model 
inputs from the tree 

structure

Single tree

Segmentation

The spatial locations, dimensions, orientation angles, 

moisture content of tree trunks, branches, and leaves. 
Canopy structure parameters

Tree species,

Tree height,
Tree distribution

Forest 
parameters

Structure 
approximated 
by cylinders 

AdQSM

(quantitative structure model)

Scheme1:

• High quality 

requirements on 

point clouds

• Lack of moisture 

content information

Lidar360 software



Microwave scattering model driven by vegetation fine structure

𝑧0
(𝑖)

z

i-th cylinder

𝐿(𝑖)

For trunks, primary branches and secondary branches:

For tertiary branches and leaves:

. represents orientation average, . tree species represents average for different tree species.

𝑁𝑠 is the number of scatterer species and 𝑁(𝑠) is the number of the s-th specie per tree.

𝑆(𝑧) is the height-dependent canopy sectional area and 𝑉crown is the total canopy volume.

𝑛0
𝑠 (𝑧) is the number density per unit volume of the s-th specie (tertiary branch and leaf).

𝑁𝑖 is total number of cylinders on a tree. 
. tree species represents average for different tree species.

𝑧0
(𝑖)

is the starting height of the i-th cylinder.

𝑛0
𝑖 (𝑧) is the number density of i-th cylinder per unit volume;

𝑁𝐴
tree is the number density of the tree per area

𝑃 𝜃, 𝜙; 𝜃′, 𝜙′; 𝑧 = ෍
𝑖=1

𝑁𝑖

𝑛0
𝑖

𝑧 𝑓 𝑖 𝜃, 𝜙; 𝜃′, 𝜙′ 2

tree species

𝑃 𝜃, 𝜙; 𝜃′, 𝜙′; 𝑧 = ෍
𝑠=1

𝑁𝑠

𝑛0
𝑠

𝑧 𝑓 𝑠 𝜃, 𝜙; 𝜃′, 𝜙′ 2

tree species

𝑛0
𝑠

𝑧 = 𝑁 𝑠 𝑁𝐴
tree𝑆(𝑧)

𝑉crown



Boundary conditions for RT model:

𝑧 = −𝑑

𝑧 = 0

Features:

• Use total reflectivity to suppress the upward emission 

from the soil

• Fully consider rough surface/vegetation interactions

Passive RT model incorporating volume-surface coupling by 
introducing incoherent bistatic scattering coefficients into 
boundary conditions

Numerical iterative approach is applied to solve the RT equation with boundary 

conditions.



Coniferous tree with a 

truncated ellipsoidal 
canopy

Coniferous tree with a 

conical canopy

Broadleaf tree with a 

truncated ellipsoidal 
canopy

The vertical structure of 

vegetation is reflected in 

the scattering parameters 

that vary with height.

Tree Height ~ N(8.45m,0.45m)

Virtual tree structure generated by PolSARproSIM

18.7                       13.3                      119.7                  Water Content (kg/tree) 

(averaged over tree species)

Case1 Case2 Case3



Simulation settings:

Frequency:1.41GHz
Vegetation temperature=300K

Soil temperature=300K
rms height=1cm

Correlation length=10cm

Considered volume/surface 
scattering coupling.

Influence of vegetation vertical structure on brightness 
temperatures and transmissivities: same VWC =5kg/m2

• Vegetation structure has a 

significant impact on TB, 

particularly at large observation 

angles. 

• The transmissivity varies 

notably with different vegetation 

structures, and the difference 

tends to diminish as the 

observation angle increases.



Active RT Model Incorporating Volume-Surface Coupling
     

          

    

          

          

        

          

         

         

         

   

 

Active vector RT equation 

Boundary conditions

coherent incoherent

Surface scattering 

characterization:
KA NMM3D/AIEM

𝑧 = 0

𝑧 = −𝑑



ҧ𝐼𝑢 = ҧ𝐼𝑢
0

+෍

𝑖=1

𝑛

ҧ𝐼𝑢
𝑖

Output

ҧ𝐼𝑢
𝑖
,

ҧ𝐼𝑑
𝑖

ഥ𝑊 𝑖+1 ,
ҧ𝑆 𝑖+1

Numerical Iteration

ҧ𝐼𝑢
0
,

ҧ𝐼𝑑
0

ഥ𝑊 1 ,
ҧ𝑆 1

Initialization

Y

N

i=i+1

With δ function Analytical 

angular integral

RT equation

Boundary conditions
(KA+AIEM)

0th-order backscatter is replaced by NMM3D

RT Equation Solved by Numerical Iterative Method

Numerical 

z integral

converge?

Numerical 

angular integral



First-order Scattering Paths

dual path single path

Cyclical correction:

Backscattering Enhancement Through Cyclical Correction

𝐼 = 𝐼dual + 𝐼single



Cumulative contributions to backscattering before and after incorporating

incoherent bistatic surface scattering

Effects of Multiple Scattering and Incoherent Surface Scattering

• Significant multiple scattering and 

bistatic surface/volume scattering 

coupling effects.

• High order scattering contributions 

double or triple due to bistatic 
surface/volume scattering coupling.



VV HHVH HV

Bare soil

Sparsely 

vegetated soil

Moderately 

vegetated soil

The Bistatic Coefficients of Different Scenes 

The bistatic coefficients of bare soil and very sparsely vegetated soil are similar. 

Moderate vegetation coverage redistributes the bistatic coefficients in the upper hemi-sphere.



SMAPVEX12 

Forest site F5

High VWC: 14.1kg/m2

Low soil roughness:

0.78cm (RMS height)

Active

Passive

In this site with high VWC and low soil roughness, 

- The effect of surface bistatic scattering is relatively weak especially when the veg vertical 
structure heterogeneity is accounted. 

- Meanwhile the vertical vegetation structure heterogeneity affects Tb more than backscatter.

RMSE Comparison Between Simulated and Measured Data

Simultaneous Active and Passive RT Model Validation



Passive

SMAPVEX12 

Forest site F3

Low VWC: 7.3kg/m2

High soil roughness:

1.93cm(RMS height)

Simultaneous Active and Passive RT Model Validation

Active

In this site with low VWC and high soil roughness, 

- The effect of surface bistatic scattering is significant in both active and passive models; 
- Meanwhile, the vertical vegetation structure heterogeneity weakly affects the results other 

than Tbv especially when the surface bistatic scattering is accounted.

RMSE Comparison Between Simulated and Measured Data



[1] Huang H, Tsang L, Colliander A, et al.

Propagation of Waves in Randomly
Distributed Cylinders Using Three-

Dimensional Vector Cylindrical Wave

Expansions in Foldy–Lax Equations[J].
IEEE Journal on Multiscale and

Multiphysics Computational Techniques,
2019, 4: 214-226.

Driving Questions: RT Approach vs. Hybrid Approach

Transmissivity of a layer of vertical cylinders: 
RT (0-order) vs. Hybrid

Exploring the applicability of the RT theory in realistic vegetated land scenarios :

1) Transmissivity of a layer of uniformly distributed vertical cylinders:
RT (multiple scattering) vs. Hybrid?

2) Transmissivity of a layer of uniformly distributed trees: 
RT (multiple scattering + vertical structure) vs. Hybrid?

3) Transmission through a layer of non-uniformly distributed trees: 
RT (multiple scattering + vertical structure) vs. Hybrid?



Transmissivity calculation through RT approach 

𝑻𝒈𝒏𝒅

𝑻 = 𝟎𝑲

Air

Ground(Air)

Receiver

Vegetation

𝑻𝑩,𝒕𝒐𝒕𝒂𝒍𝟏

Derive 𝝉eff

𝑇𝐵,total1 𝜃 = 0׬

𝜋

2 𝛾𝑡 𝜃, 𝜃′ 𝑇gndsin 𝜃′ 𝑑𝜃′

= 𝑇gnd𝑡 𝜃 = 𝑇gnd exp −𝜏eff sec 𝜃

Thus

t 𝜃 =
𝑇𝐵 𝜃

𝑇gnd
= exp −𝜏eff sec 𝜃

The transmissivity is related to 𝛾𝑡 𝜃, 𝜃′ by
definition

t 𝜃 = න
0

𝜋
2
𝛾𝑡 𝜃, 𝜃′ sin 𝜃′ 𝑑𝜃′



Transmissivity calculation through RT approach in heterogeneous 
scenarios 

Scattering parameters(𝐒𝐏): 𝜅𝑒(𝜃, 𝑧), 𝜅𝑎(𝜃, 𝑧), 𝑝(𝜃, 𝜃′, 𝑧)

The vertical structure of vegetation and horizontal distribution 

of vegetation are reflected in SP.

① By averaging scattering parameters (SP)

② By averaging transmissivity (t)

𝑡 = ෍
𝑖=1

𝑁

𝑤𝑖𝑡𝑖

𝑆𝑃 = ෍
𝑖=1

𝑁

𝑤𝑖𝑆𝑃𝑖 t =
𝑇𝐵(𝑆𝑃)

𝑇gnd

𝑤𝑖 and 𝑆𝑃𝑖 are proportion and SP of i-th region, respectively.

𝑡𝑖 is the transmissivity of i-th region

𝑆𝑃1、𝑡1

𝑆𝑃2、𝑡2



ധ𝑇

𝑥
𝑦

𝑧

𝑂

ҧ𝐽

ҧ𝑟

ҧ𝑟′
ҧ𝑟𝑙

ҧ𝑟𝑗
𝑟𝑙𝑟𝑗

𝑟𝑟𝑙

ത𝐸inc ത𝐸𝑗
s(𝑗

≠ 𝑙)

Calculate scattering field:
①Calculate the T-matrix coefficients in 3-D 
vector cylindrical wave expansions

(capture multiple scattering within a realistic 

single plant)

②Calculate the scattering field using the 
Foldy-Lax multiple scattering theory 

(incorporate multiple scattering among plants)

Calculate transmissivity:
①Compute the transmissivity from the 
Poynting vector on the bottom plane.

②Perform Monte Carlo simulations 
involving averaging the transmissivities.

Hybrid approach and transmissivity calculation



The transmissivities derived from the RT theory are similar to those 
derived from the hybrid method for a layer of uniformly distributed 
trees

Orientation:   0~5° 30°~80° 30°~80°

Tree Polarization

Transmissivity
(𝜽 = 𝟒𝟎°)

RT Model
Hybrid 

Method[1]

8m 
tree

V-pol 0.710 0.686

H-pol 0.696 0.660

8m 
and 
13m 
tree 

mixed 
(1:1)

V-pol
0.617 (SP)
0.636  (t)

0.624

H-pol
0.605 (SP) 
0.626 (t)

0.598

13m 
tree

V-pol 0.563 0.559

H-pol 0.556 0.536

[1] Jeong, Jongwoo, et al. "Full-wave electromagnetic simulations of forests at L-band by using Fast Hybrid Method." Progress In 

Electromagnetics Research 178 (2023): 111-127.

geometric configurations 

for uniformly distributed 

trees 

Number and dimensions of a trunk and 

branches setting in hybrid approach[1]

≈

≈

≈



The RT model produces comparable transmissivity estimates for both 
uniformly and non-uniformly distributed trees, while the hybrid 
approach reveals a markedly higher transmissivity under non-uniform 
vegetation distribution.

Region I Region II Total Region

Tree 
densities

0.0224 
trees/m2

0.127 
trees/m2

0.1 
trees/m2

Proportio
n of area

1/4 3/4 1

𝑡non−uniform =
1

4
𝑡region𝐼 +

3

4
𝑡region𝐼𝐼

Transmissivity calculation in RT model:

Tree 
height = 

8m
Polarization

Transmissivity(𝜽 = 𝟒𝟎°)

RT Model Hybrid Method

Non-Uniform 
(t)

V-pol 0.793
0.875

H-pol 0.791

Uniform 
(SP)

V-pol 0.785
0.755

H-pol 0.783

Jeong, Jongwoo, et al. "Full-wave electromagnetic simulations 

of forests at L-band by using Fast Hybrid Method." Progress In 
Electromagnetics Research 178 (2023): 111-127.

𝑡uniform = 𝑡total region

≈

<

<

≈

(Adjust tree density)



Summary of Vegetated Land Surface Scattering

• Hybrid full wave approach and RT model inter-comparison: In scenarios where vegetation is 

uniformly distributed, the transmissivity predicted by the radiative transfer model closely matches that 

obtained from full-wave simulations. However, discrepancies arise between the two approaches when 

vegetation distribution is non-uniform. 

• Realistic vegetation structure modeling and its effects: Realistic vegetation structures are accounted 

in both models, demonstrating effects on transmissivity and active/ passive microwave observables of 

vegetated land surfaces.

• RT framework and validation: Active and passive models for vegetated land surfaces considering 

multiple scattering effects, bistatic surface volume scattering coupling, and backscattering 

enhancement are proposed and compares well with experimental data from SMAPVEX12. 



Scattering of Dense Random Media and 
Snow Remote Sensing: Wet Snow 49

Image courtesy of iSWGR



50

Snow is ice grains embedded in air background

Volume fraction: 10% ~ 50%

Grain size: 0.2~3 mm

These ice grains interact with microwave

Volume Scattering from Snowpack
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The Partially Coherent Approach: Dense Media 
Radiative Transfer (DMRT)

Solve Maxwell’s Eq. 
over a block of 

computer snow (3~5𝜆) 
to homogenize the 

snowpack

Substitute the effective 
parameters into & 

Solve Radiative Transfer 
Eq.

Backscatter: 𝜎

Bistatic scatter: 𝛾

Brightness 
temperature: 𝑇𝑏

𝑑𝐼 Ƹ𝑠

𝑑𝑠
= −𝜅𝑒𝐼 Ƹ𝑠 + න 𝑑 Ƹ𝑠′𝑃 Ƹ𝑠, Ƹ𝑠′ 𝐼 Ƹ𝑠′

- Homogenization 

- Efficient and stable

- Losing phase information 

Coherent near / 
intermediate field 

interaction, exact

Incoherent far field, 
volume / surface interact, 

intensity, approximation

homogenization

Phase info lost 



Simulated particles fv = 40%

Sticky Hard Spheres:

- non-penetrable, no 

overlap 

- Sticky, tend to form 

clusters

Parameters:
- Grain diameter

- Stickiness 𝜏
- Volume  fraction 𝑓𝑣

Quasi-Crystalline Approximation (QCA): Densely 

Packed Sticky Hard Spheres

52
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Bicontinuous Media: Computer Generation

𝑆( ǉ𝑟) =
1

𝑁
෍

𝑛=1

𝑁

cos( ሜ𝜁𝑛 ⋅ ǉ𝑟 + 𝛿𝑛)

Θ𝛼 𝑆 𝑟 = ൝
1 (ice), if 𝑆 𝑟 ≥ 𝛼

0 (air), if 𝑆 𝑟 < 𝛼

𝑓𝑉 = 30%
𝜁 = 4500 𝑚−1

𝑏 = 1.5

Depth Hoar (30%)
3 cm * 3 cm picture

X

Z

Vertical Plane

5mm

10mm

15mm

20mm

X

Y
Horizontal Plane

5mm

10mm

15mm

20mm

Bicontinuous media

A. Wiesmann, C. Mätzler, and T. Weise, 
"Radiometric and structural measurements  of snow 

samples," Radio Sci., vol. 33, pp. 273-289, 1998.

real snow 
o Controllable irregular 

microstructure 

o Volume fraction: 0~100%

o Visually resembles snow

o Quantitatively compared in 

correlation function

Parameters:
- Size parameter 𝜁
- Shape parameter 𝑏
- Volume fraction 𝑓𝑣Ding, et al. (2010). TGRS 48(8): 3139-

3151. Electromagnetic Scattering by 

Bicontinuous Random Microstructures 

with Discrete Permittivities.

𝑝𝐺(𝜁) =
𝑏 + 1

Γ(𝑏+ 1) 𝜁 
 (𝑏 + 1)

𝜁

 𝜁 
 
𝑏

exp  −(𝑏 + 1)
𝜁

 𝜁 
  



𝑝𝑖 = 𝛼𝑖
ሜ𝐸𝑖𝑛𝑐 −𝛼𝑖 ෍

𝑗=1,𝑗≠𝑖

𝑁

−
𝑘2

𝜀
ሜሜ𝐺( ǉ𝑟, ǉ𝑟′) ⋅ ǉ𝑝𝑗
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Numerical Maxwell Solutions (NMM3D) over Spherical 
Samples of Bicontinuous Media

Discrete Dipole Approximation (DDA) with FFT

Coherent wave Incoherent wave

𝐸𝑠(𝜃𝑠, 𝜑𝑠) =
1

𝑁𝑟
෍

𝑖=1

𝑁𝑟

𝐸𝑠
𝑖(𝜃𝑠, 𝜑𝑠) ෨𝐸𝑠

𝑖(𝜃𝑠, 𝜙𝑠) = 𝐸𝑠

𝑖
(𝜃𝑠, 𝜙𝑠) − 𝐸𝑠(𝜃𝑠, 𝜙𝑠)

• Incoherent scattering power -> phase matrix and scattering coefficient

• Coherent scattering field -> effective permittivity 

• Internal field -> absorption coefficient

3~5 𝜆



ZJUIWet snow remote sensing

Climate change and 
hydrological processes  

• Spatial-temporal distribution of SWE
• Snow melting process

Great impact

Snow remote sensing mechanism

Key scientific challenge
Quantifying and describing their changing 
patterns 

need

Snow parameter retrieval (SWE/SD)

Support/ improve 
the ability 

Wet snow microwave scattering models



ZJUIMethodology

൞

𝑖𝑐𝑒 𝑆 ҧ𝑟 > 𝛼
𝑤𝑎𝑡𝑒𝑟 𝑓𝑖𝑙𝑚 𝛽 < 𝑆 ҧ𝑟 < 𝛼

𝑤𝑎𝑡𝑒𝑟 𝑑𝑟𝑜𝑝 𝑆 ҧ𝑟 < 𝛾

4

1. Geometric characterization of the tri-continuous media 

Accurately representing intricate 
internal composition of wet snow
• Generate three-phase tri-

continuous media (air, ice, water)
• Microstructure of ice
• Water morphology (water film & 

droplets)

2. Electromagnetic scattering modelling of wet snow 

Accurately calculating electromagnetic 
scattering properties
• The great difference of permittivity 

among air, ice and water, so that need 
increase the discretization density

DDA: Discrete Dipole Approximation 



ZJUIKey results

1. The effect of  microstructure parameter 𝑏
(control the grain distribution) and 𝜉  (inverse 
with grain size) on scattering properties

2. The effect of  wetness and water morphology 
on scattering properties

• Small grain size, less 𝜅𝑎 , 𝜅𝑠 and 𝜀𝑓
• More uniform distribute, less 𝜅𝑠, less affect 𝜅𝑎

• Increase wetness, increase 𝜅𝑎 and 𝜀𝑓
• Different water morphology affect the 𝜅𝑠, but MEMLS 

not 



ZJUIValidation using tri-continuous model

Vertical profiles of the original measured snow wetness and density for 

a stratified snow pit. Depth increases downward from the snow surface.

(i) the tri-continuous media results; 
(ii) the scattering coefficients and phase matrix equal 0; 
(iii) the scattering coefficients and phase matrix to be that of dry 

snow; 
(iv) assume dry snow

Data from 2011.4.16 NoSREx

16.7GHz

37GHz

b=1.2, water morphology: water drop



ZJUIAltay campaign: Field area, devices and tools

Snow area

Soil temperature 
and moisture meter

Radiometer 

hydrogen balloon is used to 
collect meteorological data

Grain size. Density, depth, 
snow temperature 

Ice cube
SSA

WISE 
permittivity and 
wetness



ZJUI

Dry snow Wet snow

Pattern of SSA and density variation from dry to wet snow

• In dry snow period, SSA 
(Specific Surface Area) 
of each snow layer 
decrease, a rise on Mar 
14 due to the snowfall, 
surface layer has 
largest SSA.

• In wet snow period, 

overestimated grain 
size, surface SSA 
dropped sharply.

• During the dry snow 
period, the density of 
all layers showed an 
overall increasing trend.

• In the wet snow period, 
the surface layer 
density increased 
significantly over time, 
while the other layers 
showed little change.



ZJUITb variation during the whole observed period

• During the dry snow period, the Tb remains stable throughout the day. 
• During the wet snow period, melt-freeze cycles occur, and after refreezing, the minimum Tb at high frequencies is lower 

than that during the dry snow period.

Feb 22 Mar 14-
21



ZJUIDaily Tb variation during the wet snow period 

• Tb are relatively sensitive during the transition from dry 
snow to the initial occurrence of wet snow (yellow circle).

• When the wetness continues to increase, Tb exhibit large 

fluctuations or even a decrease (red circle): 

• Soil temperature began to rise from 13:30, with the 

temperature at 10 cm depth increasing the most. Soil 
moisture at 10 cm showed a significant increase after 

15:00.

soil
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Summary of Microwave Scattering in Snowpack

• Partially Coherent Approach of QCA/DMRT, Bic/DMRT, Tri-cont./ 
DMRT: Homogenization

• Calculate Phase Matrix, Extinction, Effective Permittivity for a 
Block of Snow, Substitute into RT equations

• Wet snow modeled with tri-continuous random media

• Compares well with NoSREx data at Ku (𝜎) and Ka (Tb) bands

• Altay experiments show Tb sensitivity to snow wetness at earlier 
stages of snow melting with small wetness. 

• Signatures distinct for different frequencies.
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Scattering of Polar Ice Sheet and Its 
Ultra Wide-Band Microwave Emission

Image courtesy NASA
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UWBRAD to Probe Ice Sheet Temperature Profile

⚫ 0.5 - 2 GHz radiometry: 

lower frequency 

penetrates deeper

⚫ Density fluctuation 

cause layering 

⚫ Kilometer thickness

⚫ Negligible volume 

scattering

⚫ Densely packed weak 

reflective layers

⚫ Expect coherent layer 

effects
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Temperature / density profile of Antarctica ice sheet

Smooth 

temperature profile

Centimeter density 

fluctuations cause 

reflections



Region 0

Region 1

Region 2

R01

R12
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❑ Coherent model

• 𝑟 = 𝑅01 +𝑅12𝑒
𝑖2𝑘1𝑧𝑑

2
= 𝑅01

2+ 𝑅12
2+ 

2Re(𝑅01
∗ 𝑅12𝑒

𝑖2𝑘1𝑧𝑑)

• correlation term with phase

• Solution of Maxwell’s Equation
• Fluctuation dissipation theorem

• Layered Medium dyadic Green’s function

• Model applied to thousands of layers

Incoherent & Coherent Models

❑ Incoherent model

• 𝑟 = 𝑅01
2+ 𝑅12

2

• Addition of intensities 

• Solution of radiative transfer equation

• Model applied to  thousands of layers
Apply to ice sheet with thousands of interfaces

z = 0

z = -H

T(z)

ρ(z)

εeff(z)

Reflective 

cap layers

Ice bulk 

with 

smooth 

varying 

temp. and 

density 

profile

Basal media T2
ε2

air ε0
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Coherent Model Compared with Incoherent Models: 
Frequency Dependence
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a) Cloud Model: grey dashed curve;

b) DMRT-ML: grey dotted; 
c) MEMLS: black-dashed with red 
markers;

d) Coherent: black solid.
Δ = 0.040g/cm3; 𝛼 = 30m
𝑀 = 0.01m/yr; 𝑇𝑠 = 216K
𝐻 = 3700m; water base

- Incoherent models: monotonic 

- (Black) Coherent: resonance 

scattering for short correlation 

length
- 𝑙~𝜆/4: maximum reflection

- 𝑙~𝜆/2: minimum reflection

Tan et al., 2015. Physical models of layered polar firn brightness temperatures from 0.5-2 GHz. IEEE J. Sel. Topics Applied Earth Observ. Remote Sens., vol. 8, pp. 3681-3691.
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The Partially Coherent Model

One block

Td=0

Tu=0 εu=Re[εeff(zu)]

εd=Re[εeff(zd)]

z = zu

z = zd

T(z), ρ(z), εeff(z)

Td=0

Tu=0 εu=Re[εeff(zu)]

εd=Re[εeff(zd)]

Tb
(u)

Tb
(d)

R(u), r(u)

T(u), t(u)
R(d), r(d)

T(d), t(d)

(a) excitation / observation from top (b) excitation / observation from bottom

Tb1
(u), Tb1

(d), r1
(u), r1

(d), t1Block 1

Tu=0

Block 2

Td=0

Tb
(u), Tb

(d), r(u), r(d), t

Tb2
(u), Tb2

(d), r2
(u), r2

(d), t2

Combined 
Block 1+2

A B

Tb
(u) R(u), r(u)

T(u), t(u) Tb
(d)

R(d), r(d)

T(d), t(d)

• Stable
• Efficient 

• Coherent 

interactions within 

a block: Maxwell 

Equations

• Incoherent 

interactions 

between blocks: 

Radiative Transfer 
Equation
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Results and CPU 6 times Speedup

- Partially coherent: Results agree with fully coherent approach.

𝒍 = 𝟑𝒄𝒎 # real. CPU per Freq.

Partially 100 10.4 sec

cap + bot. 600 44.8 sec

Fully 1000 60.3 sec

In partially coherent 
model, block size = 

max 10𝜆, 10𝑙

𝒍 = 𝟑𝒄𝒎 𝒍 = 𝟗𝒄𝒎

𝒍 = 𝟗𝒄𝒎 # real. CPU per Freq.

Partially 100 5.8 sec

cap + bot. 600 18.2 sec

Fully 1000 31.0 sec
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Partially Coherent Model Applied to Greenland Summit 
Emission

- Model driven by in-situ temperature & density profiles

- Results agree with L band SMOS data

- Coherent layer effects cause strong frequency dependent Tb spectrum

Tan, 2016. Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and

Wave Functional Materials, Ph. D. dissertation, University of Michigan, Dec. 2016.
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Multi-layer Roughness  (hundreds of rough interfaces 
with weak permittivity contrasts) 

- Density fluctuation introduces layers as well as rough interfaces
- Roughness introduces polarization and angular coupling

- Tb and emissivity prediction requires energy conservation
- 2nd order Small Perturbation Method (SPM2) conserves energy 

independent of roughness and layers

Coherent

scattering

Incoherent

scattering

Coherent 

transmission

Incoherent 

transmission

…
.

2m Snowpit @ Summit
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Partially Coherent Approach Extended to Incorporate 
Multi-layer Roughness 

❑ Energy conservation critical to brightness temperature predictions

One block

Td=0

Tu=0 εu=Re[εeff(zu)]

εd=Re[εeff(zd)]

Tbβ
(u)(θ) ϒ r,αβ

(u)(θ,θ )

ϒt,αβ (u)(θ,θ )

z = zu

z = zd

T(z), ρ(z), εeff(z)

Td=0

Tu=0 εu=Re[εeff(zu)]

εd=Re[εeff(zd)]

Tbβ
(d)(θ)

ϒt,αβ (d)(θ,θ )

ϒr,αβ  
(d)(θ,θ )

(a) excitation / observation from top (b) excitation / observation from bottom

❑ Partially coherent approach extended to include roughness
▪ Coherent interactions within a block: SPM2 for Maxwell equations
▪ Incoherent interactions between block: Radiative Transfer Equation



Roughness: Model Compared with SMOS Data, 
Antarctica, Dome C

Δ = 0.18gm/cc, 𝑙 = 9cm, 𝛼 = 3m
400 realizations 

Without roughness

• Roughness increases H-pol emissivity at large angles

• TE and TM emissivities agree at nadir. 

20 rough interfaces, Gaussian correlation
ℎ𝑟𝑚𝑠 = 1.5cm, 𝑙 = 25cm, 
constant 𝑇0 = 228 𝐾

Δ = 0.04gm/cc, 𝑙 = 9cm, 𝛼 = 70m
1000 Monte Carlo simulations 

With  roughness

Use physical temperature profile, and 
thousands of interfaces

Sanamzadeh et al., 2017, Scatter ing of Electromagnetic Waves from 3D Multi-layer Random Rough Surfaces Based on the Second Order Small Perturbation Method (SPM2): Energy Conservation, Reflectivity and 
Emissivity. JOSA A, vol. 34, pp395-409. 73



UWBRAD Greenland 
flight line (blue) of 
September 15, 2016 and 
ice sheet and sea ice 
flight of September 13-
14, 2017 

74



Greenland Sep 2016 Campaign Data Analysis

• Data collected over 3 

different media of interest:

• Ice free ocean

• Snow covered land

• Melt zones 

characteristic of the 

Greenland Ice Sheet

Mid Summer MODIS

UWBRAD data

75

• Tb decreases rapidly as the 

flight proceeds onto the ice 

sheet before increasing as 

Camp Century is approached



Spectra of Facies (2016 vs 2017)

• Rock and ablation facies spectra appear flat across the band

• 20 K-40K changes

for percolation facies

and also at the site

near Camp Century

• Wet snow facies

have a range of

about 10 K

• Some systematic

calibration effects

apparent but

signatures seem

reasonable

(2016 - thin vs 2017 - heavy)

76



UWBRAB Data Spatial Variation & Correlation with L-
band PALSAR Backscatter 

Aug. 2016, ALOS-2 
PALSAR-2 L-band 
radar image

L-band PALSAR 𝜎

- Good correlation in 𝑇𝑏, 𝜎
& ice facies.

- Ice-lenses, ~10cm in 
diameter, cause 
backscatter

UWBRAD 𝑇𝑏

Photo indicating ice-lenses

rock

ablatio
n

wet

percolatio
n

dryUWBRAD Flight Path

Jezek et al., 2017. 500-2000 MHz brightness temperature spectra of the Northwestern Greenland ice sheet, submitted to IEEE TGRS. 77



Brightness Temperatures Incorporating Volume 
Scattering From Ice Lens (Disks)

z = 0

z = -H

T(z)

ρ(z)

εeff(z)

Reflective 

cap layers

Ice bulk 

with 

smooth 

varying 

temp. and 

density 

profile

Basal media T2
ε2

air ε0

diameter

- Calculate Tb without ice lens (disks)
- Apply ice lens scattering corrections

𝑻𝒃 ≈ 𝑻𝒃
𝐜𝐥𝐨𝐮𝐝 𝟏 − 𝒓 𝐞𝐱𝐩 −𝝉𝒔

78



Tb Spectra in Various Facies: Model vs. Data

rock

ablation

wet

percolation

dry

dry

percolation

ablation

rock

wet

Δ = 0.080gm/cm3

𝑙 = 15cm
𝛼 = 75m
𝑛0 = 6/m3

Δ = 0.13gm/cm3

𝑙 = 12cm
𝛼 = 50m
𝑛0 = 9/m3

UWBRAD Tb

UWBRAD Flight Path
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Tb Spatial and Spectral Patterns: Model vs. Data

Δ affect mean Tb
𝑛0 affect spectral differences

𝑛0 estimated from 𝑇𝑏
cloud/𝑇𝑏

Left: UWBRAD 
measurements

Right: Model 
Predictions

• Good agreement in Tb spatial and 
spectral patterns

• Interplay of density fluctuation and ice-
lenses explains the shift in Tb minimum

Jezek et al., 2018. 500-2000 MHz brightness temperature spectra of the Northwestern Greenland ice sheet,  IEEE TGRS. 56(3), 1485-1496. 80
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Analysis of Ice Sheet Flight  2017

(a) Section of the flight path for Sept 14 flight starting at CC to NEEM, ending at NGRIP. (b) Ice 

thickness variation along CC-NEEM-NGRIP path. (c) Borehole data available at the 3 sites. (d) 
Measured brightness temperature vs. best fit after inversion at the 3 sites.

• Two-scale density 

fluctuation model assumed

• Coherent model captures 

the spectral difference

(a) (b)

(c)(d)
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Greenland Ice Sheet Temperature Retrieval From 
UWBRAD 2017 Data 

T(z)
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CC - UWBRAD inversion
NEEM
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Other Possible 
Applications of UWBRAD

• Sea Ice thickness and salinity

• Ocean salinity

• Firn aquifer 

• Permafrost

• Terrestrial Snow 

Courtesy: https://www.nasa.gov/mission_pages/icebridge/science/sea-

ice.htmlCourtesy: https://io9.gizmodo.com/a-huge-reservoir-of-meltwater-has-

been-discovered-benea-1488508774

Courtesy: Nick Bonzey from Juneau, AK - The best part of 

the class, CC BY-SA 2.0, 
https://commons.wikimedia.org/w/index.php?curid=27720

14

83
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Scattering of Dense 

Random Media: 

Snow Covered Land
- Wet snow

Scattering from 
Structured Sparse 
Random Media: 
Vegetated Land 

- Vegetation structure

- Volume surface coupling

Scattering from 
Rough Surfaces: 
Bare Soil

- NMM3D-VIE: vertical soil 
inhomogeneity



Towards AI enabled efficient 
microwave modeling



ZJUIPhysics-Informed Neural Networks: DDA-NN

Θ( ҧ𝑟𝑖):
Random Media 

Geometry

ҧ𝑝:
Dipole 

Moment

Physical 
Equations

Neural 
Network

Efficient Residual Estimation 
from Physical Equation

Training & 
Evaluation

Online 
Learning

ത𝑏m : Relate to 

Snow structure 

and incident field 

ത𝑞m: Related to 

dipole

Hidden layers

Input layer Output layer
.

.

.

.

.

.

LossDDA−NN =
ҧҧ𝐴ത𝑞m − ത𝑏m

Update weight and 

bias of the network

0

Jiayi Du, Yuanhao Cao, Chunzeng Luo, Gaoang Wang, and Shurun Tan, "Acceleration of Solving Volume Integral Equations through a Physics Driven Neural Network 
and Its Applications to Random Media Scattering," Progress In Electromagnetics Research, Vol. 183, 45-57, 2025. doi:10.2528/PIER25012103



ZJUIVisualization of the predicted dipole and near field

Figure 1. Results of ത𝑞 derived from DDA-NN compared with GMRES 
method. Each subplot represents a 5x5 data grid (the third layer of the 
voxel) for different scenarios. 

Figure 2. Results of near field derived from DDA-NN compared with 
GMRES method. Each subplot represents a 5x5 data grid (the third layer of 
the voxel) for different scenarios. 

• The model trained based on the samples with parameter of scenario 1, and then validated on samples with different 
structural parameter (scenario 2), and with different frequency (scenario 3)



ZJUIPrediction precision and efficiency 

Scenarios RMSE 

(Data-NN)

RMSE 

(DDA-NN)

37GHz b=1.2, 𝜁 =9000𝑚−1

D=2.5mm, d=0.5mm

0.0675 0.0691

37GHz b=0.5 , 𝜁 =13000𝑚−1

D=2.5mm, d=0.5mm

0.0662 0.0675

18GHz b=0.5 , 𝜁 =13000𝑚−1

D=2.5mm, d=0.5mm

0.2219 0.2158

Table 1. RMSE comparison between ത𝑞′ ​ and predicted ത𝑞 ​ from 
two NNs for three scenarios.

Problem Method 1
sample

100
samples

1000
samples

Training
times

Deterministic GMRES 0.036s 0.51s 4.95s

DDA-NN 9.87s 178.53s not
measured

Stochastic DDA-NN 0.00154
s

0.00205s 0.01278s 101091s

Data-NN 0.00148
s

0.00223s 0.01319s 9895s

Table 2. CPU time record for solving deterministic and stochastic 
problems: GMRES vs. DDA-NN and Data-NN

• The RMSE is calculated by the NNs predicted dipole 
and the GMRES derived dipole of different 
scenarios (1000 samples for each scenario)

• Both DDA-NN and Data-NN perform well on 
different scenarios

• DDA-NN and Data-NN exhibited around two orders of 
magnitudes efficiency improvement compared to GMRES 
in the inference stage (for stochastic problems) over 1000 
random media samples



ZJUIDDA-NN advantages

• Compared to traditional data driven 
NN, DDA-NN do not require prepared 
data pairs as model input and output

• Generate random media on demand, 
further enhancing its flexibility

• Loss function is the function of 
frequency and random media 
structure

✓ eliminates the need for extensive pre-
computed datasets;

✓ reduces memory usage  and self-check 
its prediction accuracy;

✓ Generalization across a wide range of 
scattering scenarios.



ZJUIFurther improvements 

✓ Combining DDA-NN and iterative algorithm ✓ Using advanced NN architectures, such 
convolutional neural networks  (CNN) and 
complex-valued network:

• Handle larger data dimension
• Incorporate spatial features: trained on 

2D images
• …

DDA-NN framework

GMRES

LossGMRES+DDA−NN =
LossDDA−NN +MSE(ത𝑞DDA−NN − ത𝑞′)

More accurate 
ത𝑞′

Initial 
input

GMRES+DDA-NN 
framework

An example of CNN model
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Backscatter 
(HH-HV-VH-VV) 

or 

Brightness 
temperature

(H-V)

OutputInput

Snow 
microstate 
parameters 

(depth, density, 
grain size, 

snow 
temperature) 

&
Numerical 

parameters in 
DDA

Greens 
function 

calculation

The Bicontinuous Media / DDA Model

Monte Carlo Simulation

Radom 
media 

generation

Solve DDA 
by GMRES

Statistical 
average

Scattering 
coefficient 

&
Absorption 
coefficient

&
Snow 

Permittivity
&

Phase Matrix

Neural Network

Key advantages：
• Requires less computing than building a fully sampled LUT
• High computational efficiency that interpolating a large LUT
• Low memory usage compared to storing a LUT

A Surrogate Neural Network for The Bicontinuous Media Model 
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• Traditional MLPs face gradient vanishing & performance 
bottlenecks with high-dimensional outputs.

• Residual blocks (He et al., 2016) introduced to:
• Improve gradient flow
• Enhance feature learning
• Boost accuracy and generalization

Proposed ResMLP model

Reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

A ResMLP Neural Network for Improved Learning Performance

Preliminary

𝜅𝑠 results 

at C band



A few attempts towards combing 
physical modeling and AI for 
intelligent microwave data 

interpretation
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Combining The Representative Power of 
Physical Scattering Models and Artificial 

Intelligence for Multi-channel Observation 
Driven Multi-variable Retrieval 



Abundant remote 
sensing observations

Calibrated 
remote sensing 

observations

Retrieved ground 
variables

Rare and limited in situ 
ground observations 

Physical models

Artificial Intelligence

Forward physical models make it possible to:
• Analyze and make use of the inherent connections among multi-channel observations; 

• Provide dataset and constraints on neural network training and effectively reduce the 
dimensionality of in situ observations;

• Support multi-channel observation driven multi-variable retrieval;

Limited independent 
ground observations

How could the versatility of forward modeling fully 
support retrieval algorithm?  

Noisy, biased, inconsistent 

calibration clean, well calibrated
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Physics embedded NN for inversion problem:
Layered soil remote sensing  

The layered-soil inversion problem

Physical 
Model

Multi-polarization, multi-

angle, multi-frequency

Inversion 
algorithm

Local optimization: local trapping

Global optimization: slow

Normal Neural network: Rely on 

experimental data, and hard to obtain 

consistent multi-channel observations.

Physics-Embedded Artificial Intelligence Framework (P-ANN) 

with Multichannel Passive Microwave Observations

X. Bai, S. Tan, “Layered Soil Remote Sensing with Multi-Channel Passive Microwave Observations Using A 

Physics Embedded Artificial Intelligence Framework: A Theoretical Study,” IEEE TGRS, 2023
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The PANN framework
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The PANN framework

Input layer: Multi-channel Tb

Output: soil parameters 

Hidden layer: 80 ×80

Activation function: relu

Normalization when training:
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The soil structure and scattering model 

Coherent model
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Training and testing results

Training data: 5000 groups of soil parameters with their 

corresponding simulated Tb.

Testing Data:

21 points are evenly sampled for each 

parameter, and all the possible 

combinations are investigated (N=𝟐𝟏𝟓) 

as the Testing Data.

11 points are evenly sampled for each parameter, and all 

the possible combinations are investigated (N=𝟏𝟏𝟓).

The validation set is evaluated every 200 iterations.

Validation Data:

Training process
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Training and testing results
mv1 mv2 d

Ta Tt P-ANN exhibited superior 

inversion outcomes 

compared to ANN, 

particularly with regards to 

the retrieval of subsoil 

moisture and soil depth.
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Testing for different soil ranges

RMSE

Good results in small-range soil and relatively low soil moisture.

A divide-and-conquer technique can be used to effectively combine the 

prediction from multiple small scale neural networks to consider a large-

scale soil inversion.
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The divide-and-conquer technique for 

large-scope soil 

P-ANN1 for 

Ran1

P-ANN2 for 

Ran2

P-ANN3 for 

Ran3

Observed 

𝑇𝑏 with a 

unknown 

soil range

Retrieval Soil 1

Retrieval Soil 2

Retrieval Soil 3

𝑇𝑏 error 1

𝑇𝑏 error 2

𝑇𝑏 error 3

The 
smallest 
𝑇𝑏 error

Retri
eval 
soil

An inversion test for the 

example soil with P-

ANN for different ranges.
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Local optimization algorithm with 

initialization from P-ANN

Model structure

X. Bai, S. Tan, “Layered Soil Remote Sensing with Multi-Channel Passive Microwave Observations Using A 

Physics Embedded Artificial Intelligence Framework: A Theoretical Study,” IEEE TGRS, 2023
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Testing results

Local optimization algorithm with 

initialization from P-ANN

Average retrieval time & 

RMSE:

P-ANN: 0.0015s

RMSE: 0.0126

Local opt + P-ANN: 

0.1020s

RMSE: 0.0000

The P-ANN driven localized optimization algorithm further enhances 

the inversion accuracy but introduces additional inversion time.
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Reliability Analysis for P-ANN

𝑆𝑝𝑑𝑓 = 𝑓(𝑒𝑇𝑏)

Measured Tb

P-ANN

Retrieval soil 
parameters

Calculate 
corresponding 

Tb

Error of Soil 
parameters

R
e
tr

ie
v
a
l 
p
ro

c
e
s
s
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Obtained relations of the soil error and Tb error for P-ANN

mv1
mv2

Ta
Tt

d

Total

𝑆𝑝𝑑𝑓 = 𝑓(𝑒𝑇𝑏)

As the increases of Tb error, the distribution of soil error tends to align more 

closely with larger values.
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The maximum error with 95% confidence

Estimated Maximum Error of each soil parameters with 95% 

confidence level under different Tb error ranges
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Robustness to noisy observations

P-ANN
Local optimization 

algorithm with P-ANN

Too large The proposed local optimization algorithm with 

P-ANN has a certain level of anti-noise capability.

Add noise to the testing Tb
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Summary of the Physics Driven Retrieval Net 

• Physical model driven retrieval net with improved training efficiency, 

retrieval performance, and reliability analysis

• Performance gain and improved anti-noise capability when 

cascading the retrieval net with a local optimization algorithm

• Potential to develop an adaptive calibration net to deal with noisy 

and uncalibrated microwave observation data making use of 

limited in situ ground observations and the sparsity embedded in 

high dimension observation data  

X. Bai, S. Tan, “Layered Soil Remote Sensing with Multichannel Passive Microwave Observations Using A 

Physics-Embedded Artificial Intelligence Framework: A Theoretical Study,” IEEE TGRS, 2023



LLM heuristic logic and domain-specific-knowledge driven human 

out-of-loop intelligent microwave data analysis

Why LLMs for Microwave data analysis?

• Automates setup and analysis    • Suggests parameters  • Natural language interaction

Chatbot

Please calibrate/ 
parameterize the 
DMRT-QMS 

model so that the 
absolute error of 

TB is less than 5 K. Snow.txt

Reasoning from the 
document…
The client wants to 

choose reasonable 
parameters of DMRT-

QMS for the given 
snowpack. Continue 
choose parameters until 

absolute error of  
modeled TB is less 5 K.

Model Bank

Tasks

• Interpret inputs

• Choose the tool to fulfil the 

request

• Verify the results that it 

meets physical constraints 

and clients’ needs

• Return outputs to the clients

Tools • Physical models and rules

• Optimization algorithms

• Generative guesses
COZE
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▪ Empirical model and 

simple physics driven 

retrieval algorithm 

dominate.

▪ Observable 
parameters are quite 

limited.

Trends in Remote Sensing Research

Limited Observation 
& Limited Modeling

Rich Observation & 
Limited Modeling

Rich Data & 
Enhanced Physical 

Modeling + 
Explosive AI Power

▪ Data driven retrieval 

algorithms gain 

attention.

▪ Observable 

parameters are still 
limited due to sparsity 

of ground truth 

observations.

▪ AI, data and physical 

models join forces for 

improved performance 

and efficiency in retrieval.

▪ Retrievable parameters 

are significantly enriched.

▪ Multi-channel 

observations are 

seamlessly fused 

together. 
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Forward modeling and AI 

acceleration for 

microwave interactions 

with various scenarios

Combing power from physical 

modeling and artificial 

intelligence for efficient and 

effective microwave data 

interpretation

Computing 
platform

Forward 
modeling

Retrieval & 
Analysis

A shared cloud based 

computing platform for 

remote sensing 

community 
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Remote Sensing Hub (RSHub): A Shared Computing Platform for Remote Sensing Community

Fang, … & Tan, 2025. RSHub: A Remote Sensing Hub for geophysical microwave scattering modeling. Accepted by Geoscience and Remote Sensing Magazine. 
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Rationale for Such Shared Computing Platform

Advanced scattering models and retrieval algorithms are rarely available 

to researchers and practioners in remote sensing.

Difficult to 
reimplement a 
published work

Difficult to configure a 
working computing 

environment

Lack of expertise to optimize 
parameters and to tune the code 

I have no code.

I cannot run the code.

I don’t know how to use the code.



…

116

Soil

NMM3D-VIE-DDA

DMRT-BIC

DMRT-QMS VRT

…

Snow Vegetation

AIEM DMRT-TRI

NMM3D-SIE

…

Key Features and Supporting Scenarios  

• A python based coding interface 

through jupyter notebook

• Enriched profiling capability and 

multi-functionality to facilitate 

interpretation of results

• Unified user interface supporting 

multi-purpose simulation on 

scalable Cloud 

• Continued model development and 

update 
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A demo to compute brightness temperature using the RSHub

0. Register on RSHub to get a token

1. Define types of scenarios

2. Define observation configurations
• Observation Angle

• Frequency

• Active or Passive Sensor

3. Choose your algorithms

4. Describe your scenario

5. Submit a job
result1=submit_jobs.run(data)

6. Retrieve and analyze results

(a) Uniform (b) Layeredsoil

Leaves

Trunk

T
re

e
 H

e
ig

h
t

Radiometer

Primary branch

Secondary branch



  M
         

Modulization
• Output useful variables at 

intermedia step
• Enable flexible 

combination of algorithms 
for each scenario

Expansion
• Embed additional 

scenarios including ice 
scenario

• Add new models to each 
scenario

ML-powered model
• Upgrade traditional look 

up tables by machine 
learning models

LLM-assisted tool
• Enable LLM-based Chatbot 

to generate script, run, and 
analyze results

118

Features and Continued Development of RSHub

In Development

High-fidelity physics-based models: RSHub is mostly consisted of full-wave based 
microwave models and radiative transfer models that could resemble physical experiments
Towards an intelligent computing system: LLM-assisted tools are being added to 
streamline the process of parameters optimization, model running, and results analysis. 

Features
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Thank you & Welcome
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