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Abstract—This work overcomes a key limitation in Shannon
theory by quantifying electromagnetic (EM) information param-
eters in complex scattering environments for integrated sensing
and communication (ISAC). Moving beyond classical additive
white Gaussian noise (AWGN) models, we establish that dynamic
scatterer-induced uncertainty (not receiver noise) constrains EM
information transfer. Our framework models non-stationary scat-
tering with randomized scatterer positions, eliminating reliance
on ideal channel coherence and also on the channel state tracking.
We derive mutual information metrics through non-parametric
conditional probability distributions and jointly quantify source-
to-receiver communication performance and environment sensing
capability (via scatterer density). The framework models dynamic
scattering environments as ensembles of randomly distributed
spherical dielectric scatterers positioned between static dipoles.
Using Monte Carlo electromagnetic simulations, we rigorously
compute scatterer contributions to received fields via Foldy-
Lax multiple scattering theory, capturing environment-induced
uncertainty beyond conventional AWGN and static-channel as-
sumptions. Source symbols are encoded using M-level amplitude
shift keying (M-ASK), and conditional probabilities are estimated
non-parametrically from simulated electric field data using kernel
density estimation (KDE). The joint mutual information frame-
work demonstrates robust performance in dynamic scattering
regimes, establishing a foundation for real-time environment-
aware communication systems.

Index Terms—Electromagnetic (EM) information, non-
Gaussian, scatterers, SISO, communication, environment sensing,
multiple scattering, Foldy-Lax.

I. INTRODUCTION

In classical Shannon information theory, the mutual infor-
mation characterization between transmitter and receiver in
wireless systems primarily models two factors: (1) the scatter-
ing environment and (2) additive noise at the receiver [1]. This
framework assumes Gaussian-distributed noise at the receiver
to derive likelihood probabilities for mutual information, even
in scenarios where no scattering environment exists. When
scattering is considered, it is typically modeled as a statistical
channel impulse response (e.g., Rayleigh or Rician fading),
which accounts for line-of-sight (LOS) and non-line-of-sight
(NLOS) propagation paths. Critically, these models impose
Gaussian assumptions on the real and imaginary components
of the complex channel response, treating them as independent
and identically distributed (iid) processes. Mutual information
is then calculated under the idealized assumption that the
channel remains static during a coherence period, requiring

periodic channel estimation (e.g., via pilot symbols) to update
the deterministic channel response.

The classical Shannon framework has following limitations
that are likely to impact its general applicability. First, its
reliance on additive white Gaussian noise (AWGN) as a
foundational assumption restricts its use; mutual information
may not be meaningfully defined if noise deviates from
Gaussian statistics. For instance, impulsive electromagnetic
interference—a common non-Gaussian noise source in prac-
tical systems—cannot be accommodated. Second, the station-
arity assumption for scattering environments is often invalid
because the rapidly varying scatterer configurations render
periodic channel estimation (via pilots or similar methods)
ineffective, as the estimated channel becomes obsolete before
coherence times expire. Third, the Gaussian (iid) channel
model might not always represent the true statistical behavior
of scattering environments, where non-Gaussian field distribu-
tions are prevalent due to dynamic scatterer variations.

This work introduces a scattering-centric framework to
characterize mutual information, explicitly addressing the lim-
itations of classical Shannon theory. We abandon the Gaussian
noise, assuming that noise is not the dominant factor in
information transfer for scattering-rich environments. Instead,
we model the continuous spatial variations of scatterers and
their corresponding scattered fields at the receiver as the
primary drivers of mutual information. The joint EM scattering
and information analysis quantifies wave-scatterer interactions
(reflections, diffractions, etc.) and bridges the gap between
idealized approximations of channel behavior and the true
potential of information transfer capabilities in cluttered en-
vironments. By employing the Foldy-Lax multiple scattering
theory, an effective approach for multiple scattering analysis,
we achieve high-fidelity approximations of scattered fields [3]
[4]. The likelihood or conditional probabilities are derived
from the fields using kernel density estimation (KDE) [2], a
non-parametric method that is useful when the distribution
of continuous scattered fields does not meet Gaussian cri-
teria. Crucially, our framework unifies communications and
environment sensing, as the source symbols and scatterer
density are inferred from the same received fields. This ap-
proach provides a robust, physics-driven alternative to classical
methods, particularly in dynamic environments where scatterer
configurations are continuously evolving.
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Fig. 1. System configuration with Tx/Rx dipoles and spherical scatterers

II. EM INFORMATION ANALYSIS FOR JOINT
COMMUNICATION AND SENSING

The proposed single-input single-output (SISO) system
comprises a transmitting dipole antenna and a co-polarized
receiving dipole positioned in the far-field regime, separated
by 30 wavelengths (A = 12.5 cm, at frequency 2.4 GHz) as
illustrated in Fig. 1. The scattering environment between the
antennas contains multiple spherical scatterers (radius r = 25
mm), each with the same relative permittivity £, = 5.0. The
density of scatterers is chosen from the Total scatterers density
(TSD) set {10, 30, 50,90,110, 150,170,190}. The scatterers
are retained at a fixed number across N realizations, while
their positions are randomized within a cuboid volume of
dimensions 16\ x 4\ x 24\ along the x, y, and z axes,
respectively. Each configuration realization generates complex
total electric fields at the receiver, computed via Foldy-Lax
multiple scattering theory (MST) without additive noise [3]
[4]. The total electric field y” = i + Z?:l 7 at the
receiver, combines the incident field winc from the transmitting
dipole and scattered fields %; from d scatterers, computed
through Foldy-Lax multiple scattering theory (MST) [3] [4].
Each scattered field 1§ = G, T3 ¥ arises from the interaction
of the ¢-th scatterer’s exciting field (wZE) with the Green’s
function (G,) and a transition operator (7;) that captures both
near-field and far-field scattering effects. These interdependent
field relationships form a coupled system resolved through
iterative MST calculations, as described in [3], [4]. Achieving
reasonable saturation results at NV = 10000 realizations.

For digital communication, the source in this work employs
M-ary amplitude shift keying (M-ASK) with M € {2,4,8}
[5]. The discrete symbol set S = {s1,...,spr} corresponds
to dipole moments I; € [1, M] x 1073 A-m. Environmental
sensing utilizes either a subset or the complete Total Scat-
terers Density (TSD), where the selected scatterer densities
D = {di,....,dn,} are drawn from the TSD. Both S and
D follow equiprobable distributions with entropies: H(.S) =
logy, M, H(D) = logy, Np, where Np denotes the number
of distinct scatterer densities in D.

The receiver observes complex-valued fields R €
which comprise the incident and scattered wave compo-
nents from N independent realizations. Statistical analysis
via Anderson-Darling and Jarque-Bera tests applied to these
realizations rejected the null hypothesis of normality at o =

Nx1
C B

0.05(p < 0.05), where p quantifies the probability of observ-
ing the test statistics under Gaussianity [7]. This confirmed
the non-Gaussian nature of both the real ®(R) and imaginary
$(R), necessitating non-parametric density estimation.

To model the joint distribution of R(R) and J(R), we
employ a multivariate kernel density estimator (KDE) with
Gaussian kernels. The estimated conditional probability den-

sity function is given by:
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The 2D vector © = (x1,23) corresponds to R(R) and I(R),
where z;; is the j-th (Re/Im) component of the i-th realization.
Optimized Bandwidths hq, he are cross-validated over 100
grid points per dimension.

Mutual information metrics [6] quantify both communi-
cation capacity and environmental sensing capability, while
known statistical independence between S and D:
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where marginal probability P(r) = ZkM:1 P(S = s)P(r|sk)
for I(S,R), and P(r) = SN2 P(D = dy)P(r|d;) for
I(D, R). This joint analysis demonstrates simultaneous infor-
mation extraction from a single receiver output stream.

I(S,R) = dreedrim ()

edrim  (3)

III. SIMULATION RESULTS
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Fig. 2. a)Mutual information : a) I(S, R) vs varying M-levels and individual
scattering densities. P(R|S) distributions for M = 2 source symbols and 190
scatterers b) § = s1 (Il1 = 1 x 1073 Am), ¢) S = sp (Jl1 =2 x 1073
A.m).

Figure 2a demonstrates that mutual information I(S, R)
generally remains robust or closer to the theoretical upper
bounds H(.S) across individual scattering densities, retaining
the higher system’s communication capability. This aligns with
the KDE-derived conditional probabilities P(R|S) (see Fig.
2b,c) where distinct clusters emerge for s; and ss source
symbols for M = 2, despite scattering effects at d = 190.



However, the increase in the individual scatterers density
causing moderate information reduction at higher M-levels.
For example, I(S, R) is 2.60 bits for M = 8, at maximum
density (d = 190) due to partial overlap in the complex
field distributions. The mutual information I(S, R), previously
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Fig. 3. Mutual Information I(S, R) influenced by varying M -levels and the
composite scatterer density sets, like LSD, HSD and TSD.

analyzed for individual scatterer densities, follows a similar
trend in Fig. 3 when evaluated for composite scatterer density
sets (groupings of multiple densities from the TSD set).
The I(S, R) decreases as the composite set transitions from
lower to higher scatterer densities. Specifically, I(S, R) =
2.93 bits for the low-scatterer-density composite set (LSD:
10-90 scatterers) and 2.47 bits for the high-scatterer-density
set (HSD: 110-190 scatterers). Notably, the complete TSD
composite set (10—-190 scatterers) exhibits a slight increase to
2.68 bits, outperforming the HSD subset. This suggests that
diverse scattering configurations—spanning both low and high
densities—enhance symbol distinguishability by leveraging
environmental multipath diversity.
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Fig. 4. a) Mutual Information (D, R) for three composite scatterer density
sets and varying M - levels. P(R|D) sample distributions for scatterer
densities b) di = 10, ¢) do = 30, d) d3 = 50, e) dqg = 90.

Findings for the mutual information I(D, R) demonstrate
the potential to estimate environmental parameters (e.g., scat-
terer density) directly from received fields without signal pro-
cessing overhead at the receiver (see Fig. 4a). The scattering
characteristics (defined by the TSD set) moderately influence
the received signal, achieving a maximum of 1.64 bits for the
complete TSD set. However, I(D, R) can be further enhanced
using machine learning techniques, etc, to refine the distin-
guishability of conditional probability distributions P(R|D).
For-example, adjacent densities in the Low-Scatterer-Density

(LSD: 10-90) subset in Fig. 4b-e exhibit significant overlap
in P(R|D), making it challenging to resolve small density
differences.

IV. CONCLUSION

This study demonstrates a novel scattering-centric frame-
work in which electromagnetic (EM) information metrics
are characterized without relying on deterministic channel
assumptions, even in continuously varying scattering envi-
ronments. The proposed integrated EM scattering and in-
formation analysis quantified wave-scatterer interactions and
established practical upper bounds for information transfer in
communication and environment sensing within dense scatter-
ing environments. The derived mutual information parameters
I(S, R) for source-receiver communication and I(D, R) for
density-receiver environmental sensing—quantify dual-aspect
information extraction from non-Gaussian received fields.

The results demonstrated significant potential for decod-
ing source symbols and estimating scatterers density solely
through observed received fields in rapidly varying environ-
ments. The mutual information I(S,R) asymptotically ap-
proaches theoretical upper bounds (e.g., entropy H(S)) in
sparse scattering regimes (e.g., low scatterer density, LSD:
10-90), indicating robust communication performance. Mean-
while, I(D, R) exhibits moderate sensitivity to coarse den-
sity variations, reflecting its utility for environmental sensing
despite dynamic channel conditions. To resolve finer density
variations, machine learning architectures could augment fea-
ture extraction from non-Gaussian field distributions. Future
work could jointly optimize M-ASK constellations and scat-
tering configurations, while adopting multi-antenna (MIMO)
transceivers to exploit spatial diversity for enhanced dual-
functional capabilities.
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