
30 Guide impedance and TL analogies
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TE mode fields:

Hx =
−jkz

∂Hz
∂x

k2 − k2z
,

Hy =
−jkz

∂Hz
∂y

k2 − k2z
,

Ey =
jωµo

∂Hz
∂x

k2 − k2z
,

Ex =
−jωµo

∂Hz
∂y

k2 − k2z
.
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TM mode fields:

Hx =
jωεo

∂Ez
∂y

k2 − k2z
,

Hy =
−jωεo

∂Ez
∂x

k2 − k2z
,

Ey =
−jkz

∂Ez
∂y

k2 − k2z
,

Ex =
−jkz

∂Ez
∂x

k2 − k2z
.

The above relations between the transverse components of TE and TM
mode fields imply that
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TE case:
Ex

Hy
=

Ey

−Hx
=

ωµo

kz

=
ωµo/k√
1− f2c

f2

=
ηo√
1− f2c

f2

≡ ηTE.
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TM case:
Ex

Hy
=

Ey

−Hx
=

kz
ωεo

=
k
√

1− f2c
f2

ωεo
= ηo

√

1− f 2
c

f 2
≡ ηTM.
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The guide impedances defined above can be used to set up transmission
line models for waveguide circuits in which the parameters ηTE and ηTM
for each mode play the same role as the characteristic impedance Zo in TL
theory.

• For example, two waveguides in cascade with different values of ηTE can
be quarter-wave matched by inserting a quarter-wave section having a
guide impedance equal to the geometric means of the two guides.

• For dielectric-field guides replace ηo by the appropriate η, and also in
calculating the length of the quarter-wave section use λg = 2π

kz
appro-

priate for that section (see HW).

Note that, using the cutoff wavelength, we have
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TE case:

ηTE =
ηo√
1− f2c

f2

=
ηo√
1− λ2

λ2c

!

"

#

$

TM case:

ηTM = ηo

√

1− f 2
c

f 2
= ηo

√

1− λ2

λ2
c

.
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Example 2: Consider an air-filled rectangular waveguide with a = 3 cm and b = 1
cm. Determine the TE10 mode fields for the guide from the results of Example
1 of Lect 29 assuming that at the operation frequency the free-space wavelength
is λ = 3 cm.

Solution: By setting ky = 0, kx = mπ
a = 2π

λc
, and kz = k

√
1− ( λ

λc
)2 = 2π

λz
in the results

of Example 1 (in Lect 29) we find for TEm0 mode

H̃(x, y, z) = Ho[x̂
jkz
kx

sin(kxx) + ẑ cos(kxx)]e
−jkzz

= Ho[x̂
jλc

√
1− ( λ

λc
)2

λ
sin(

2π

λc
x) + ẑ cos(

2π

λc
x)]e−jk

√
1−( λ

λc
)2z

and

Ẽ(x, y, z) = −Hoŷ
jωµo

kx
sin(kxx)e

−jkzz

= −HoŷηTE
jλc

√
1− ( λ

λc
)2

λ
sin(

2π

λc
x)e−jk

√
1−( λ

λc
)2z

= −Hoŷηo
jλc

λ
sin(

2π

λc
x)e−jk

√
1−( λ

λc
)2z.

With a = 3 cm and b = 1 cm, the cutoff wavelength for TE10 mode is

λc =
2a

m
= 6 cm.

Thus, with λ = 3 cm
√
1− (

λ

λc
)2 =

√
1− 1

4
=

√
3

2
,
λc

λ
= 2,

λz

λ
=

2√
3
.
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Then, for TE10 mode we have

H̃(x, y, z) = Ho[x̂j
√
3 sin(

π

3
x) + ẑ cos(

π

3
x)]e−jπz/

√
3

and
Ẽ(x, y, z) = −Hoŷηoj2 sin(

π

3
x)e−jπz/

√
3.

The real part of these phasors would yield the field vectors inside the waveguide
at time t = 0, as depicted below.
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• In the 3D plots shown above we depict E(x, y, z, 0) vectors from Example 2 on the
left, and H(x, y, z, 0) on the right; the horizontal axis is x, vertical is z, and y axis
is into the page (all labelled in cm units) —note that

– there is no field variation in y-direction because this is the TE10 mode,
– E×H is predominantly in ẑ direction.
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Example 3: Repeat Example 2 for the case of TE20 mode and λ = 2 cm.

Solution: For the TEm0 mode we have

H̃(x, y, z) = Ho[x̂
jλc

√
1− ( λ

λc
)2

λ
sin(

2π

λc
x) + ẑ cos(

2π

λc
x)]e−jk

√
1−( λ

λc
)2z

and

Ẽ(x, y, z) = −Hoŷηo
jλc

λ
sin(

2π

λc
x)e−jk

√
1−( λ

λc
)2z.

With a = 3 cm and b = 1 cm, the cutoff wavelength for TE20 mode is

λc =
2a

m
= 3 cm.

Thus, with λ = 2 cm
√

1− (
λ

λc
)2 =

√
1− 4

9
=

√
5

3
,
λc

λ
= 1.5,

λz

λ
=

3√
5
.

Then, for TE10 mode we have

H̃(x, y, z) = Ho[x̂j

√
5

2
sin(

2π

3
x) + ẑ cos(

2π

3
x)]e−jπz

√
5/3

and
Ẽ(x, y, z) = −Hoŷηoj

3

2
sin(

2π

3
x)e−jπz

√
5/3.

The real part of these phasors would yield the field vectors inside the waveguide
at time t = 0, as depicted below.
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• In the 3D plots shown above we depict E(x, y, z, 0) vectors from Ex-
ample 3 on the left, and H(x, y, z, 0) on the right; the horizontal axis
is x, vertical is z, and y axis is into the page (all labelled in cm units).

• Imagine the vector patterns depicted above sliding upwards in the z-
axis direction at the speed vpz = ω

kz
, with each feature of the pattern

passing by a stationary observer who experiences a monochromatic os-
cillation.

– that would be the proper way of visualizing the propagation of an
unmodulated TE20 mode.
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Example 4: For the TEm0 mode we have the wave fields

H̃(x, y, z) = Ho[x̂
jλc

√
1− ( λ

λc
)2

λ
sin(

2π

λc
x) + ẑ cos(

2π

λc
x)]e−jk

√
1−( λ

λc
)2z

and

Ẽ(x, y, z) = −Hoŷηo
jλc

λ
sin(

2π

λc
x)e−jk

√
1−( λ

λc
)2z.

Express the time-averaged power transmitted by the mode in ẑ direction in terms
of

Eo ≡ Hoηo
λc

λ
representing the amplitude of the electric field wave.

Solution: We start with the time-averaged Poynting vector

〈E×H〉 =
1

2
Re{Ẽ× H̃∗}

=
|Ho|2ηo

2
(
λc

λ
)2
√

1− (
λ

λc
)2 sin2(

2π

λc
x)ẑ

=
|Eo|2

2ηo

√
1− (

λ

λc
)2 sin2(

2π

λc
x)ẑ =

|Eo|2

2ηTE
sin2(

2π

λc
x)ẑ.

Now, integrating 〈E×H〉·ẑ across the guide cross section we get the time-average
power

P =

∫ a

x=0

∫ b

y=0
〈E×H〉 · ẑ dx dy

=
|Eo|2

2ηTE
b

∫ a

0
sin2(

2π

λc
x)dx =

|Eo|2

2ηTE

ab

2

7



since the integral of

sin2(
2π

λc
x) =

1

2
(1− cos(

4π

2a/m
x)) =

1

2
(1− cos(2πmx/a))

yields 1/2. It can be shown that in the case of TEmn modes with non-zero n, the
above result for P is still valid provided ab/2 is replaced by ab/4 (see HW).
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Example 5: A rectangular waveguide with a = 2 cm and b = 1 cm is air filled for
z < 0, but is is filled with a dielectric in z > 0 region with a refractive index
n = 1.5 and µr = 1. For f = 12.5 GHz and TE10 mode operation design a λ/4
transformer to match the two sections of the waveguide. Use transmission-line
analogy to solve this problem (as in Lecture 24).

Solution: To solve this problem using a transmission-line analogy we first need the
impedances ηTE for the two sections of the guide. Since

ηTE =
η√

1− f2
c

f2

we need to find fc and η in the two sections of the guide.
The cutoff frequency is

fc =
mc

2a
=

3× 1010 cm/s
2× 2 cm

= 7.5GHz in air,

and
fc =

mc/n

2a
=

7.5GHz
n

=
7.5GHz

1.5
= 5GHz in dielectric.

Hence
ηTE =

η√
1− f2

c

f2

=
120π√

1− ( 7.5
12.5)

2
= 150πΩ in air,

and
ηTE =

η√
1− f2

c

f2

=
120π/1.5√
1− ( 5

12.5)
2
=

400π√
21

Ω in dielectric.

Since ηTE,air (= ηTE,diel, we will certainly have reflections at the interface at z = 0
unless a matching section is inserted.
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Consider a λ/4 long section of a waveguide with identical dimensions as above but
filled with some dielectric having a refractive index nx. Then, transmission-line
analogy would indicate that an impedance match can be achieved if

ηTE,airηTE,diel = η2TE,x

where ηTE,xis the impedance of the matching segment. In view of the above
relations, this can be written as

(150π)(
400π√
21

) =




120π/nx√
1−

(
7.5/nx

12.5

)2





2

,

which yields

n2
x −

(
7.5

12.5

)2

=
1202

√
21

150× 400
⇒ n2

x = 1.459.

To determine the actual length of the λ/4 long section we need to find out λ, which
is really the guide wavelength λg for the TE10 mode, i.e.,

λg =
2π

kz
=

2π/k√
1− f2

c

f2

=
c/nx

12.5× 109
√

1−
(
7.5/nx

12.5

)2
=

30

12.5nx

√
1−

(
7.5/nx

12.5

)2

=
30√

(12.5nx)2 − 7.52
= 2.28 cm.

Thus, the matching section has a physical length of

d =
λg

4
= 0.572 cm.

10


