
26 Parallel-plate waveguides — TMm modes
• Last lecture we discussed the TEm modes of propagation in parallel-

plate waveguides.
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• These guided modes have y-polarized electric fields transverse to the
propagation direction z and exhibit a standing wave pattern in x-
direction with m half-wavelengths of variation between the guide plates
at x = 0 and x = a.

– More specifically, the TEm modes have transverse electric field
phasors

Ẽ = 2jŷEoe
−jkzzsin(kxx)

where
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a
, m = 1, 2, · · ·

and
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with cutoff frequencies
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Alternatively (and equivalently),
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with cutoff wavelengths

λc =
2a

m
.

Above, the operation frequency f and operation wavelength λsatisfy
λf = c, and furthermore

k =
2π

λ
=

ω

c

is the operation wavenumber. The propagation characteristics of
the guided mode, on the other hand, depends on kz, with

vp =
ω

kz
and λg =

2π

kz

denoting the phase velocity and the wavelength of the guided mode
when

f > fc and, equivalently, λ < λc,

corresponding to propagation condition for a given mode. When

f < fc and, equivalently, λ > λc,

the mode is evanescent.
– Since
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√
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is effectively the dispersion relation of the guided modes having
the same form as the plasma dispersion relation, it follows that
the group velocity is

vg =
∂ω

∂kz
= c

√

1 − f 2
c

f 2
and vgvp = c2

just like in plasmas.
– Finally TEm mode fields have a guide impedance

ηTE = −Ey

Hx
=

ηo√
1 − f2

c
f2

relating the transverse field components of the wave.

• Next we turn our attention on TMm mode fields which share most of
the dispersion characteristics of the TEm mode fields. However, they
are essentially orthogonal to TEm mode fields and furthermore support
the m = 0 case which is absent for TEm modes.
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• TMm mode guided waves propagating in z direction correspond to su-
perpositions of incident and reflected TEM plane waves with

z

x

a

σ = ∞

σ = ∞

H̃i = ŷHoe
−j(−kxx+kzz)

and
H̃r = ŷHoΓe−j(kxx+kzz)

where Γ = R = 1 is the TM-mode reflection coefficient at an air-PEC
interface.

For permissible TMm modes H̃r gets reflected (once more) at x = a to
become H̃i at the same location, and thus it is necessary that

(ŷHoΓe−j(kxa+kzz))Γ = ŷHoe
−j(−kxa+kzz)e−j2πm

for any integer m, i.e.,

|Γ|2ej2∠Γe−jkxa = ejkxae−j2πm.

This is possible, since |Γ| = |R| = 1 and ∠Γ = ∠R=0, with

−kxa = kxa − 2πm ⇒ kxa = mπ,

leading to
kx =

mπ

a
, m = 0, 1, 2, · · ·

as the guiding condition for TMm modes.
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• Since for TMm modes the transverse field

H̃ = H̃i + H̃r = 2ŷHoe
−jkzzcos(kxx)

does not vanish with vanishing kx, the m = 0 mode is permitted. In
fact, TM0 mode corresponding to m = 0 is the TEM mode studied in
EEC 329 in transmission line (TL) theory.

– TM0=TEM consists of wave fields

Ẽ = x̂Eoe
−jkz and H̃ = ŷ

Eo

ηo
e−jkz

which naturally satisfy the boundary conditions at x = 0 and
x = a planes of having zero tangential electric field.

– Also, for this mode

kx = 0 and kz = k,

which follows when m = 0 is permitted in dispersion equations
when applied for the case of TMm modes.
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Example 1: TMm mode fields have transverse magnetic intensity phasors

H̃ = 2ŷHoe
−jkzz cos(kxx).

(a) Determine the electric field phasor Ẽ for TMm mode waves. (b) Also deter-
mine ηTM ≡ Ex

Hy
, the effective guide impedance for TMm mode.

Solution: (a) Using Ampere’s law, we have

Ẽ =
∇× H̃

jωεo
=

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 Hy 0

∣∣∣∣∣∣

jωεo
=

−x̂∂Hy

∂z + ẑ ∂Hy

∂x

jωεo

=
2Ho

jωεo
(x̂(jkz cos(kxx) − ẑkx sin(kxx))e−jkzz.

(b) Using the result of part (a), we have

ηTM =
Ex

Hy
=

2Ho

jωεo
jkz cos(kxx)e−jkzz

2Hoe−jkzz cos(kxx)

=
kz

ωεo
=

ω
c

√
1 − f2

c

f2

ωεo
= ηo

√

1 − f 2
c

f 2 .

• Note that the results obtained in Example 1 give non-trivial results for
m = 0 case with kx = 0 and kz = k.

• TM0=TEM mode has no cutoff frequency and it is non-dispersive. It
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has all the properties of the unguided TEM waves we are familiar with.

• Finally, regarding dispersive TEm and TMm modes with m ≥ 1, all the
equations derived above can also be used when the guiding plates are
embedded in dielectric media (instead of air) by simply replacing

c =
1

√
µoεo

with vp =
1

√
µε

in the dispersion equations.

• There is a straightforward geometrical interpretation of vg obtained for
guided TE and TM modes.

– Clearly the component TEM waves which constitute the guided
modes (TE and TM) propagate at angles ±θ with a velocity c
in air-filled waveguides. The projection along z of the velocity
vectors pointing in ±θ directions are

c sin θ = c
√

1 − cos2 θ = c

√
1 − k2

x

k2
= c

√

1 − f 2
c

f 2
,

which is of course the group velocity of the guided modes as we
have seen before.

This makes sense: in the component TEM waves — which are non-
dispersive — of the guided modes, the phase fronts as well as any
imposed modulations move with the same velocity, namely c.
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– While the progress of modulation on the component waves along
±θ occurs at a velocity c, the modulation covers a shorter distance
along z than the corresponding slant distance along ±θ, and thus
vg measuring the progress of the modulation along z is smaller
than c measuring the same progress along ±θ.
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