
24 Evanescent waves and tunneling

• In this lecture we will explore the tunneling phenomenon associated
with evanescent waves established within finite-width regions.

The multi-slab tunneling result to be derived in this lecture will:

1. Enhance our qualitative understanding of the frustrated-TIR ex-
ample shown back in Lecture 19,

2. Illustrate a methodology based on transmission line analo-

gies to be used in forthcoming lectures on waveguides.
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Ẽi

Ẽr
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• Consider the three-slab geometry depicted in the margin where a TEM
wave field

Ẽi = x̂Eie
−jk1z, accompanied by H̃i = ŷ

Ei

η1
e−jk1z,

is incident from the left in the region z < −d (region 1). As a response
a reflected wave

Ẽr = x̂Ere
jk1z, accompanied by H̃r = −ŷ

Er

η1
ejk1z,

is set up in the same region, as well as

Ẽ+ = x̂E+e
−jk2z, accompanied by H̃+ = ŷ

E+

η2
e−jk2z,

and

Ẽ− = x̂E−e
jk2z, accompanied by H̃− = −ŷ

E−

η2
ejk2z,
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in the region −d < z < 0 (region 2). Finally, in region z > 0, we will
have

Ẽt = x̂Ete
−jk3z, accompanied by H̃t = ŷ

Et

η3
e−jk3z.

– Our aim is to determine the amplitudes Et, E+, E−, Er in terms
of Ei using tangential boundary conditions at z = −d and z = 0.

– We are in particular interested in the ratio of the transmitted
power in region 3 to the incident power in region 1 as a function of
slab width d as well as the refractive indices n1, n2, and n3, includ-
ing the case when n2 is purely imaginary, the case corresponding
to region 2 being in evanescent mode.

• Starting with the boundary at z = 0, the continuity of tangential Ẽ
and H̃ across the boundary requires that
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−
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E+ + E− = Et and
E+ − E−

η2
=

Et

η3
.

These equations can be solved for Et and E− in terms of E+ to obtain

Et =
2η3

η3 + η2
︸ ︷︷ ︸

E+ and E− =
η3 − η2
η3 + η2
︸ ︷︷ ︸

E+.

τ32 Γ32

Note that we have defined a pair of coefficients representing the in-
teraction at z = 0 interface: a transmission coefficient τ32 and a
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reflection coefficient Γ32 in terms of intrinsic impedances η3 and η2
in a manner analogous to similar relations seen in our studies of trans-

mission line (TL) systems (in ECE 329).

• At the boundary on z = −d plane the continuity of tangential Ẽ and
H̃ requires that

Eie
jk1d + Ere

−jk1d = E+e
jk2d + E−e

−jk2d

and
Eiejk1d − Ere−jk1d

η1
=

E+ejk2d − E−e−jk2d

η2
respectively. To utilize these relations in a close analogy to TL problems
we next define an effective field impedance Z(−d) for the z = −d
plane as

Region 1 Region 2 Region 3
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Z(0) = η3

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d

Γ32 =
η3 − η2

η3 + η2

Γ21 =
Z(−d) − η1

Z(−d) + η1

η1 η2 η3

Z(−d) ≡
E+ejk2d + E−e−jk2d

E+ejk2d−E−e−jk2d

η2

= η2
1 + E−

E+
e−j2k2d

1− E−
E+

e−j2k2d
= η2

1 + Γ32e−j2k2d

1− Γ32e−j2k2d
.

But, by the boundary condition equations above it is also true that

Z(−d) =
Eiejk1d + Ere−jk1d

Eie
jk1d−Ere−jk1d

η1

= η1
1 + Γ21

1− Γ21
where Γ21 ≡

Ere−jk1d

Eiejk1d
.

Solving the above expression for the reflection coefficient Γ21 at z =
−d plane in terms of impedance Z(−d) we find that

Γ21 =
Z(−d)− η1
Z(−d) + η1

.
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• The parameters Γ32, Z(−d), and Γ21 introduced above, bearing a strong
analogy to an equivalent TL problem suggested in the margin, are suf-
ficient to calculate the reflected and transmitted powers in our multiple
slab problem as follows:

Region 1 Region 2 Region 3
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Ẽi

Ẽr

Ẽ+ Ẽt
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Z(0) = η3

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d

Γ32 =
η3 − η2

η3 + η2

Γ21 =
Z(−d) − η1

Z(−d) + η1

η1 η2 η3

1. We first note that

|Γ21|
2 = |

Ere−jk1d

Eiejk1d
|2 ⇒

⟨Sr⟩

⟨Si⟩
=

|Er|2/2η1
|Ei|2/2η1

= |Γ21|
2

gives the reflectance, the fraction of the time-averaged incident power
density reflected by the slab discontinuity back into region 1.

2. Assuming that the slab in region 2 is lossless, the transmittance, the
time-averaged power density transmitted into the region 3 has to be

⟨St⟩ = ⟨Si⟩−⟨Sr⟩ = ⟨Si⟩(1−|Γ21|
2) ⇒

⟨St⟩

⟨Si⟩
=

|Et|2/2η3
|Ei|2/2η1

= 1−|Γ21|
2.

The upshot is

⟨Sr⟩

⟨Si⟩
= |Γ21|

2 and
⟨St⟩

⟨Si⟩
= 1− |Γ21|

2

where

Γ21 =
Z(−d)− η1
Z(−d) + η1

, Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d
, Γ32 =

η3 − η2
η3 + η2

in analogy with an equivalent TL problem. An extension of these rela-
tions to an n-slab configuration is straightforward.
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Example 1: Assume that regions 1 and 3 are free space whereas region 2 is a plasma
slab of some width d and a plasma frequency fp. Determine and plot the trans-
mittance

⟨St⟩

⟨Si⟩
= 1− |Γ21|

2

as a function of d if (a) f = 5
4fp, and (b) f = 4

5fp.

Transmittance curve for part
(a) when region 2 is in prop-
agation mode:
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d!Λ2
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TransmittanceSolution: (a) In this case the plasma refractive index in the slab is

n2 =

√

1−
f 2
p

f 2
=

√

1− (
4

5
)2 =

√

1−
16

25
=

3

5
.

Hence, with η1 = η3 = ηo and η2 = ηo/n2 = 5ηo/3, we have

Γ32 =
ηo −

5
3ηo

ηo +
5
3ηo

=
3− 5

3 + 5
= −

2

8
= −0.25

also, with real k2 =
2π
λ2

, we have

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d
=

5

3
ηo
1− 0.25e−j4π d

λ2

1 + 0.25e−j4π d
λ2

;

thus

Γ21 =
Z(−d)− η1
Z(−d) + η1

=

5
3
1−0.25e

−j4π d
λ2

1+0.25e
−j4π d

λ2

− 1

5
3
1−0.25e

−j4π d
λ2

1+0.25e
−j4π d

λ2

+ 1
.
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A plot of the transmittance 1 − |Γ21|2 versus d/λ2 is shown in the margin. The

transmittance shows a λ2/2 periodicity in slab width d in consistency with the

periodicity expected for lossless TL systems.

Transmittance curve for part
(b) when region 2 is in
evanescence mode:

0.2 0.4 0.6 0.8 1.0
d!Λ

0.2

0.4

0.6

0.8

1.0
Transmittance

Note that adjusting d/λ to

about 0.2 sets the transmit-

tance as 1/2, creating in effect

a “beam splitter” in reference

to our discussions of prisms

and tunneling in Lecture 24.

Solution: (b) In this case the plasma refractive index in the slab is

n2 =

√

1−
f 2
p

f 2
=

√

1− (
5

4
)2 =

√

1−
25

16
=

√

−
9

16
= ±j

3

4

Hence, with η1 = η3 = ηo and η2 = ηo/n2 = j 43ηo, we have

Γ32 =
ηo − j 43ηo
ηo + j 43ηo

=
3− 4j

3 + 4j

with unity magnitude, a consequence of evanescence in region 2; also, k2 = kn2 =
−j3k/4, and we have

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d
= j

4

3
ηo
(3 + 4j) + (3− 4j)e−3πd/λ

(3 + 4j)− (3− 4j)e−3πd/λ
;

thus

Γ21 =
Z(−d)− η1
Z(−d) + η1

=
j 43

(3+4j)+(3−4j)e−3πd/λ

(3+4j)−(3−4j)e−3πd/λ − 1

j 43
(3+4j)+(3−4j)e−3πd/λ

(3+4j)−(3−4j)e−3πd/λ + 1
.

A plot of transmittance 1 − |Γ21|2 versus d/λ is shown in the margin. Note the

strong tunneling effect at small d/λ.
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• A fascinating aspect of tunneling is: Quantum mechanical
tunneling:

In quantum physics one talks
about probabilities of encounter-
ing particles in a given physi-
cal system rather than the par-
ticle trajectories; furthermore,
the probabilities are calculated
as magnitude squares (like the
average power) of “wave func-
tions” obeying a wave equation
(e.g., Schroedinger’s equation in
case of non-relativistic particles).
Since waves in general (includ-
ing Schrodinger waves) can ex-
hibit tunneling properties across
evanescent regions (as shown in
this section), finite probabilities
can be calculated in quantum me-
chanics for particles in regions
separated from their source re-
gions by classically impenetrable
barriers (in which the wave func-
tion is evanescent).

Phenomena such as radioactive
decay or Ohmic contacts (in
metal semi-conductor junctions)
can be explained in terms of
quantum mechanical tunneling,
a counterpart of electromagnetic
tunneling studied in this section.
Also, quantum mechanical tun-
neling is fundamental to the op-
eration of “scanning tunneling mi-
croscopes” used to image atoms
and crystals.

– even though the time-averaged Poynting vectors — i.e., the avg
power densities — associated with the evanescent wave fields Ẽ+

and Ẽ− in region 2 are individually zero because of the 90◦ phase
shift between

Ẽ+ and H̃+ as well as Ẽ− and H̃−,

the time-averaged Poynting vector associated with Ẽ+ + Ẽ−, i.e.,

1

2
Re{ ˜(E+ + Ẽ−)× ˜(H+ + H̃−)

∗}

pertinent for region 2, is (as shown in HW) non-zero (and inde-
pendent of position within region 2) because of the non-zero cross

term contributions between

Ẽ+ and H̃− as well as Ẽ− and H̃+.

◦ By contrast, in propagating regions (i.e., non-evanescent), the
cross product terms cancel while “self product” terms deter-
mine the net average Poynting vector.

There are many practical implications and applications of tunneling:

– Beam splitters, attenuators, (undesired) interference effect due to
coupling of nearby systems ...
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• The transmission line analogy to solve a four-slab problem:

η1 η2 η3

Z(0) = η3Z(−d) = η2

1 + Γ32e
−j2k2d

1 − Γ32e−j2k2d

Γ32 =
η3 − η2

η3 + η2

Γ21 =
Z(−d) − η1

Z(−d) + η1

η0

Γ10 =
Z(−d − l) − η0

Z(−d − l) + η0

Z(−d − l) = η1

1 + Γ21e
−j2k1l

1 − Γ21e−j2k1l

d
l

– The relations shown on the diagram can be used to calculate the
transmittance 1 − |Γ10|2 from region 0 to region 3 assuming that
regions 1 and 2 are lossless.

Example 2: If in the above diagram region 3 is evanescent what would be the trans-
mittance 1− |Γ10|2?

Answer: In that case the transmittance should be zero (and reflectance unity)!
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Tunneling at oblique incidence

• Our analysis of tunneling and frustrated-TIR at oblique incidence will
amount to analyzing the three-slab geometry shown in the margin with
interfaces at x = −d and x = 0 surfaces separating media with refrac-
tive indeces n1, n2, and n3, respectively.

ki

kr

Medium 1 Medium 2 Medium 3

x

z

• Assume that medium 1 has TE-polarized incident and reflecting electric
fields superposing as

ŷEo(e
−jk1(sin θ1z+cos θ1x) +Re−jk1(sin θ1z−cos θ1x));

the field in medium 2 is

ŷEo(Pe−jk2(sin θ2z+cos θ2x) +Qe−jk2(sin θ2z−cos θ2x));

and in medium 3 we have

ŷEoTe
−jk3(sin θ3z+cos θ3x).

• In medium 1 the ẑ component of total H̃ is

Eo

η1
cos θ1(e

−jk1(sin θ1z+cos θ1x) −Re−jk1(sin θ1z−cos θ1x));

in medium 2 we have

Eo

η2
cos θ2(Pe−jk2(sin θ2z+cos θ2x) −Qe−jk2(sin θ2z−cos θ2x));
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and in medium 3

Eo

η3
cos θ3Te

−jk3(sin θ3z+cos θ3x).

• BC’s applied at x = −d and x = 0 require a “phase matching”, that is

ki

kr

Medium 1 Medium 2 Medium 3

x

z

k1 sin θ1 = k2 sin θ2 = k3 sin θ3,

leading to Snell’s law relations

n2 sin θ2 = n1 sin θ1 and n3 sin θ3 = n1 sin θ1.

• Matching the tangential Ẽ and H̃ at x = 0 boundary yields

P +Q = T with
P −Q

η2/ cos θ2
=

T

η3/ cos θ3

implies

P −Q

η2/ cos θ2
=

P +Q

η3/ cos θ3
⇒

Q

P
=

η3/ cos θ3 − η2/ cos θ2
η3/ cos θ3 + η2/ cos θ3

≡ Γ32

defining an effective “load reflection” coefficient for this problem.

• Transverse field matching at x = −d requires for Ẽ and H̃

ejk1 cos θ1d +Re−jk1 cos θ1d = Pejk2 cos θ2d +Qe−jk2 cos θ2d

and

1

η1
cos θ1(e

jk1 cos θ1d−Re−jk1 cos θ1d) =
1

η2
cos θ2(Pejk2 cos θ2d−Qe−jk2 cos θ2d),
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respectively. Now define transverse field impedance

Z(−d) =
Ey

Hz
=

Pejk2 cos θ2d +Qe−jk2 cos θ2d

Pejk2 cos θ2d−Qe−jk2 cos θ2d

η2/ cos θ2

=
η2

cos θ2

1 + Γ32e−j2k2 cos θ2d

1− Γ32e−j2k2 cos θ2d

and

Z(−d) =
Ey

Hz
=

ejk1 cos θ1d +Re−jk1 cos θ1d

ejk1 cos θ1d−Re−jk1 cos θ1d

η1/ cos θ1

=
η1

cos θ1

1 + Γ21

1− Γ21

where

Γ21 ≡
Re−jk1 cos θ1d

ejk1 cos θ1d
.

• Clearly |Γ21|2 is the reflectance (fraction of incident power density in
the reflected wave) and 1− |Γ21|2 is the transmittance, wherein

Γ21 =
Z(−d)− η1/ cos θ1
Z(−d)− η1/ cos θ1

.

These results suggest the use of transmission line analogy in

terms of characteristic impedances ηi/ cos θi and kxi ≡ ki cos θi in

phase terms. Note that in evanescent regions cos θi are purely

imaginary. Also quarter-wave transformations can be used when

d cos θ2 = λ2/4 and half-wave transformations when d cos θ2 = λ2/2.
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• For the TM case, the use of ηi cos θi in place of ηi/ cos θi in reflection
coefficient and impedance calculations leads to the correct reflectance
and transmittance values (same trick would also work in TE and TM
Fresnel reflection coefficients in oblique reflections from a single inter-
face as well as in guide impedance formulae where cos θ is replaced by
√

1− f 2
c /f

2).

Here are the details:

– Matching the tangential H̃ and Ẽ at x = 0 boundary yields

P+Q = T with −η2 cos θ2(P−Q) = −η3 cos θ3T = −η3 cos θ3(P+Q)

implying

η2 cos θ2(P−Q) = η3 cos θ3(P+Q) ⇒
Q

P
=

η2 cos θ2 − η3 cos θ3
η2 cos θ2 + η3 cos θ3

≡ −Γ32

defining an effective “load reflection” coefficient for this problem.

– Transverse field matching at x = −d requires, for H̃ and Ẽ,

ejk1 cos θ1d + Re−jk1 cos θ1d = Pejk2 cos θ2d +Qe−jk2 cos θ2d

and

−η1 cos θ1(e
jk1 cos θ1d−Re−jk1 cos θ1d) = −η2 cos θ2(Pejk2 cos θ2d−Qe−jk2 cos θ2d),

respectively. Now define transverse field impedance

Z(−d) =
−Ez

Hy
=

η2 cos θ2(Pejk2 cos θ2d −Qe−jk2 cos θ2d)

Pejk2 cos θ2d +Qe−jk2 cos θ2d
= η2 cos θ2

1 + Γ32e−j2k2 cos θ2d

1− Γ32e−j2k2 cos θ2d
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and

Z(−d) =
−Ez

Hy
=

η1 cos θ1(ejk1 cos θ1d −Re−jk1 cos θ1d)

ejk1 cos θ1d +Re−jk1 cos θ1d
= η1 cos θ1

1 + Γ21

1− Γ21

where

Γ21 ≡ −
Re−jk1 cos θ1d

ejk1 cos θ1d
.

– The upshot is,

Γ21 =
Z(−d)− η1 cos θ1
Z(−d) + η1 cos θ1

wherein we see the replacement of all ηi/ cos θi in TE-mode rela-
tions by ηi cos θi to become the corresponding TM-mode relations.
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