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24 Evanescent waves and tunneling

e In this lecture we will explore the tunneling phenomenon associated
with evanescent waves established within finite-width regions. IEJJ

The multi-slab tunneling result to be derived in this lecture will:

1. Enhance our qualitative understanding of the frustrated-TIR ex-
ample shown back in Lecture 19,

2. Illustrate a methodology based on transmaission line analo- E,
gies to be used in forthcoming lectures on waveguides.

Region 1

e Consider the three-slab geometry depicted in the margin where a TEM

wave field

E; = #E,e /*, accompanied by H; = §— Lomik1z

m
is incident from the left in the region z < —d (region 1). As a response
a reflected wave

)

_ | _ E,
E, = #E,¢'"7  accompanied by H, = —j—e/M*,
m
is set up in the same region, as well as
E, = #E. e 7" accompanied by H, = §—e /*2*,
Up
and
I A koz . N E— ko z
E_=2FE ¢€"%*, accompanied by H_ = —y—e/"%",
T2
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in the region —d < z < 0 (region 2). Finally, in region z > 0, we will
have

- A . . - AEt .
E; = 2 E,e /%% accompanied by H; = y—e Jksz

3
— Our aim is to determine the amplitudes F;, £, E_, E, in terms
of E; using tangential boundary conditions at z = —d and z = 0.

— We are in particular interested in the ratio of the transmitted
power in region 3 to the incident power in region 1 as a function of
slab width d as well as the refractive indices nq, ns, and ngz, includ-
ing the case when ns is purely imaginary, the case corresponding
to region 2 being in evanescent mode.

e Starting with the boundary at z = 0, the continuity of tangential E
and H across the boundary requires that

EF,.—FE_ E
EF,+FE_ =FE, and +—:—t.
)2 3

These equations can be solved for F; and E_ in terms of F, to obtain

2 _
E, — Z?’ E, and E_ = . g
113 T 71)2 13 T 7)2
732 I'3o

Note that we have defined a pair of coeflicients representing the in-
teraction at z = 0 interface: a transmission coefficient 735 and a
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reflection coefficient '35 in terms of intrinsic impedances n3 and 7

in a manner analogous to similar relations seen in our studies of trans-
mission line (TL) systems (in ECE 329).

At the boundary on z = —d plane the continuity of tangential E and
H requires that

Eiejkld_‘_ Ere_jkld _ Ev+€j/{:2d_|_E_€—j/€2d

and . . . .
Ez'ejkld _ Ere_jkld E+6jk2d _ E_e—jkgd

m 2
respectively. To utilize these relations in a close analogy to TL problems

we next define an effective field impedance Z(—d) for the z = —d

plane as
; i E_ —j2ked s
Z( d) . E’+€jk2d + F_e Jhad 1+ E_+€ J<h2 1+ 1—‘326 72kod
o E+ejk2d—E_e_jk2d o 7721 . %e_ijQd o 7721 _ F326—j2/€2d'
72 +

But, by the boundary condition equations above it is also true that

Eelhd 4 B e=ikid 1+1'9 b . E.e—ikd
= . — =T where 19 = —/———.
E;edk14—pe—ik1d 1 — Ty E,eikd
m

Z(—d)

Solving the above expression for the reflection coefficient 'y, at z =
—d plane in terms of impedance Z(—d) we find that

Z(—d) —m

[ = :
2 Z(—d) +m

3

Region 1 Region 2

_ Tar =
Z(=d)+m 2

_ 1+ F32€_j2k2d
N ?721 — F3267j2k2d

Region 3

M=




e The parameters '3y, Z(—d), and I'y; introduced above, bearing a strong z

analogy to an equivalent TL problem suggested in the margin, are suf-
ficient to calculate the reflected and transmitted powers in our multiple E}—T
slab problem as follows:

m ns F
1. We first note that g
n t
E,e ik S E,|*/2m —
‘F21‘2:‘7’—M’2 — < 7’> _ ‘ 7"2/ Ui :‘F21‘2
Eierh (Si)  |Eil?/2m
gives the reflectance, the fraction of the time-averaged incident power fegtont festonz o Resion 7
density reflected by the slab discontinuity back into region 1. i)
Ty = ! 13— 12
A=y ) Ty = :
2. Assuming that the slab in region 2 is lossless, the transmittance, the —EH_UL T2
time-averaged power density transmitted into the region 3 has to be M 2 13
S = (S)—(S,) = (SH(1—[Tmft) = 3 _ = 1—|T'y|* .
(S = (S)={8) = (S)0-IrP) = gy =jpppt=1-ital L b

N 7721 — F32€_j2k2d

The upshot is

(Sr) ) (Sh) )
<Sz> \ 21\ all <Sz> | 21|
where
[y — Z(—d) —m 14 Dype /2 M3

—d) = : oo =
Z(—=d)+m’ (=d) 7721—1326_92]‘62617 7 N3 + 12

in analogy with an equivalent TL problem. An extension of these rela-
tions to an n-slab configuration is straightforward.
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Example 1: Assume that regions 1 and 3 are free space whereas region 2 is a plasma
slab of some width d and a plasma frequency f,. Determine and plot the trans-
mittance

(St)

(53)
as a function of d if (a) f =2f,, and (b) f = 2,

=1— [Ty

Solution: (a) In this case the plasma refractive index in the slab is

f2 4 16 3
N = 1—72:\/1—(5)2:\/1—%:5.

Hence, with m1 = n3 = 1, and 1y = 1,/n2 = 51,/3, we have

770_2770_3_5_ 2

Ty = - — S = 025
2 e +in 3+5 8
also, with real ky = %\—Z, we have
14 Dype922d 5 1 0.25¢94%
Z(—d) = 2T o 2ked gl jan L
— 132€ 14 0.25e 7™
thus o
51—0.256734’? 1
Ty — Z(—=d) —m _ 3 110.250 "

o d :

Z(—d) +m 51-0.25¢ " 1
—
3 110950 13

Transmittance curve for part
(a) when region 2 is in prop-
agation mode:

Transmittance

10

08 \/\/
0.6

04f

02

. . . . .
0.0 02 04 0.6 08 10



A plot of the transmittance 1 — |T'y1|? versus d/\g is shown in the margin. The
transmittance shows a \y/2 periodicity in slab width d in consistency with the

periodicity expected for lossless TL systems.

Solution: (b) In this case the plasma refractive index in the slab is

£ 5 25 9 3
-2 = 122 = /1-2 = /-2 =44
72 7 16 16 74

Hence, with 1, = n3 =1, and 17, = n,/ne = j%no, we have

o —Jgle _3—4j
Mo+ J3m  3+4j

with unity magnitude, a consequence of evanescence in region 2; also, ko = kny =
—j3k/4, and we have

Aty = B B
thus 4 (344))+(3—45)e 3>
Ty = Z(—d) —m _ ]§(3+4j)—(3—4j)6:ziz/;\ _ 1_
2 S

A plot of transmittance 1 — |y | versus d/) is shown in the margin. Note the

strong tunneling effect at small d/\.

Transmittance curve for part
(b) when region 2 is in
evanescence mode:

Transmittance
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Note that adjusting d/\ to
about 0.2 sets the transmit-
tance as /2, creating in effect
a “beam splitter” in reference
to our discussions of prisms

and tunneling in Lecture 24.



e A fascinating aspect of tunneling is:

— even though the time-averaged Poynting vectors — i.e., the avg
power densities — associated with the evanescent wave fields E.
and E_ in region 2 are individually zero because of the 90° phase
shift between

~

E, and H, aswellas E_ and H_,

the time-averaged Poynting vector associated with E. +E_, i.e.,

%Re{(iﬁ)+ L E ) x (H, + H))

pertinent for region 2, is (as shown in HW) non-zero (and inde-
pendent of position within region 2) because of the non-zero cross
term contributions between

E, and H. aswellas E_ and H,.

o By contrast, in propagating regions (i.e., non-evanescent), the
cross product terms cancel while “self product” terms deter-
mine the net average Poynting vector.

There are many practical implications and applications of tunneling:

— Beam splitters, attenuators, (undesired) interference effect due to
coupling of nearby systems ...
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Quantum mechanical
tunneling:

In quantum physics one talks
about probabilities of encounter-
ing particles in a given physi-
cal system rather than the par-
ticle trajectories; furthermore,
the probabilities are calculated
as magnitude squares (like the
average power) of “wave func-
tions” obeying a wave equation
(e.g., Schroedinger’s equation in
case of non-relativistic particles).
Since waves in general (includ-
ing Schrodinger waves) can ex-
hibit tunneling properties across
evanescent regions (as shown in
this section), finite probabilities
can be calculated in quantum me-
chanics for particles in regions
separated from their source re-
gions by classically impenetrable
barriers (in which the wave func-
tion is evanescent).

Phenomena such as radioactive
decay or Ohmic contacts (in
metal semi-conductor junctions)
can be explained in terms of
quantum mechanical tunneling,
a counterpart of electromagnetic
tunneling studied in this section.
Also, quantum mechanical tun-
neling is fundamental to the op-
eration of “scanning tunneling mi-
croscopes” used to image atoms
and crystals.



e The transmission line analogy to solve a four-slab problem:

Fw_ A —d—l)—no
Z(=d—=1)+m
F21 — M Ty — N3 — N2
Z=d)+m P+,
L
To m 2 "3

H H
1+ Ty e 72M! ‘ 1 + Type—72k2d (0

Z(—d—1) = ~
( ) 7711 _ F216—]2k11 Z(_d) = 1721 - F326—j2]{32d

— The relations shown on the diagram can be used to calculate the
transmittance 1 — |I'jp|? from region 0 to region 3 assuming that
regions 1 and 2 are lossless.

Example 2: If in the above diagram region 3 is evanescent what would be the trans-
mittance 1 — |['yo|??

Answer: In that case the transmittance should be zero (and reflectance unity)!




Tunneling at oblique incidence

e Our analysis of tunneling and frustrated-TIR at oblique incidence will
amount to analyzing the three-slab geometry shown in the margin with
interfaces at * = —d and x = 0 surfaces separating media with refrac-
tive indeces nq, no, and ng, respectively.

e Assume that medium 1 has TE-polarized incident and reflecting electric
fields superposing as

@E (6—jk1(sin91z+cos 017) + Re—jkl(sin01z—cos 9195))-
0

)

the field in medium 2 is

:I)E (Pe—jk2(sin 09 z+cos Oox) + Qe—jkg(sin 092 —cos 92x)>,
0

)

and in medium 3 we have

QE Te—jkg(sin 03z+4cos O3x)
0 .

e In medium 1 the Z component of total H is

L,

COS 91(6—jk1(sm91z+c0s9137) _ Re—jkl(smﬁlz—cosﬁlx)),
m

)

in medium 2 we have

b o o
% cos 05( Pe Jhka(sin foz+cos box) Qe ko (sin foz—cos 92::7)),

T2 ’
9

Medium 2




and in medium 3

L,

13

COS 93T6—jk53(sm 03z+cos O3x) '

BC’s applied at x = —d and x = 0 require a “phase matching”, that is
k1sin @) = kg sin 6y = kssin 63,
leading to Snell’s law relations
nosinfy = nysinf; and nssinf; = ng sin b;.

Matching the tangential E and H at z = 0 boundary vields

P—-Q T
P =T with =
T o ne/ cosby M3/ cos b3

implies
P-Q  P+Q N Q_ng/cosﬁg—ng/coseng
1o/ cosBy 13/ cos O P m3/cosfs+my/cosbs 52

defining an effective “load reflection” coefficient for this problem.

Transverse field matching at = = —d requires for E and H

ejk100891d+ Re—jkl costhd __ Pejkgcos@gd+ Qe—jk‘gcos@gd

and

1 jk1 costid —jkqy cosO1d 1 jko cos bad —jko cos Ood
— cos by (e —Re ) = — cosby(Pe —Qe ),
m 12
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respectively. Now define transverse field impedance

Z(—d) B Ey B Peikacostad | Qe—j/@ cos tad o 1+ F32e—j2/{32 cos Ood
HZ Pe-]k2 COSG2d/_Q69—jk2 C0802d COS 92 1 _ F326_']2k2 COS@Qd
12/ cos b
and
ik 01d —jk 01d
Z(—d) = Ly, MR ReT /Mty 141y
HZ eJk1 cos@;d/_iﬁs,—ejkl cosf1d COS 91 1 — F21
1 1
where

Re—jkl cos 61d
Fgl =

ejk:l cos 01d

o Clearly |I'y;]? is the reflectance (fraction of incident power density in
the reflected wave) and 1 — |T'y1]? is the transmittance, wherein

Z(—d) — 1/ cos by

[’y = :
2! Z(—d) — ny/ cos b,

These results suggest the use of transmission line analogy in
terms of characteristic impedances 7,/ cosf; and k,; = k;cos6; in
phase terms. Note that in evanescent regions cos6; are purely
imaginary. Also quarter-wave transformations can be used when
dcos By = \o/4 and half-wave transformations when dcosfy = Xy /2.
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e For the TM case, the use of n; cosf; in place of n;/ cos#; in reflection
coeflicient and impedance calculations leads to the correct reflectance
and transmittance values (same trick would also work in TE and TM
Fresnel reflection coefficients in oblique reflections from a single inter-
face as well as in guide impedance formulae where cos 8 is replaced by

V1I=211?).

Here are the details:

— Matching the tangential H and E at z = 0 boundary yields
P+Q =T with —nycosby(P—Q) = —n3cos 3T = —n3 cos O3( P+Q)

implying

6y — 0
ng cos Oo( P—Q) = n3 cos O3( P+Q) = @ _ mcosty m iy cosbs —1I'39

P nycosby+mzcosly

defining an effective “load reflection” coefficient for this problem.
— Transverse field matching at x = —d requires, for H and E,

e]k100801d+ Re—jklcosﬁld _ Pe]kQCOSHQd_I_Qe—ijcongd

and
—1]1 COS 91(691{;1 oS Hld—Re_]kl COS@ld) = —1)y COS 92<P€j]€2 cos 92d_Q6—jk2 cos Hgd)7

respectively. Now define transverse field impedance

—E.  mcos Oy Pelt2eosted _ ()eikzcosbad) | 4 Dype 2k cosbad
= : : = 19 cOs 0 :
Hy Peikacostad + Qe—]kQ cos Ood "2 21 _ 1“326—]%‘2 cos od

12

Z(—d) =



Z(—d) = —FE,  micos 0, (/"1 costrd _ Re=ik1 Coseld) _ 0 Ll
(—d) = H, B eikicosthd 4 Re—jkicostrd = oS - o1
where :
Re—jkl cosO1d
[o1 = — ejk1cos01d
— The upshot is,
. Z(—d) — m cos 0y
21 =

Z(—d) + ny cos b

wherein we see the replacement of all 7;/ cos§; in TE-mode rela-
tions by n; cos 6; to become the corresponding TM-mode relations.
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