
23 Phase and group velo
ities and delays

• Propagation velo
ity

vp =
ω

kof a 
o-sinusoid �eld 
omponent

cos(ωt− kz) ⇔ e−jkzis also known as phase velo
ity, be
ause vp as de�ned above, 
or-responds to the speed with whi
h 
onstant phase points (e.g., zero-
rossings of the �eld) move.

• If the phase velo
ity is ω dependent � as in dispersive media � then�eld 
omponents (e.g., Ex, Hy, et
.), whi
h are the superpositions of
o-sinusoids with di�erent frequen
ies (two, three, several, 
ountless),
an in general be des
ribed in terms of an envelope fun
tion and a
arrier fun
tion (re
all AM modulation from ECE 210), ea
h havingits own and distin
t velo
ity.� The propagation velo
ity of the envelope is known as group ve-lo
ity and it 
an be 
al
ulated as
vg =

∂ω

∂kon
e the dispersion relation relating k to ω is available.1



� The propagation velo
ity of the 
arrier is simply a phase velo
ity

vp =
ω

k
,where we use the 
arrier frequen
y ωo for frequen
y ω, and the
arrier wavenumber ko for wavenumber k as illustrated below.A simple example: Consider the superposition

f(z, t) = cos(ω1t− k1z) + cos(ω2t− k2z)where wavenumbers k1 and k2 depend on frequen
ies ω1and ω2 as de-s
ribed by some dispersion relation (e.g., the plasma dispersion rela-tion). Using some trig identities we 
an re-write f(z, t) as
f(z, t) = 2 cos(

∆ω

2
t− ∆k

2
z) cos(ωot− koz)where

ωo ≡
ω1 + ω2

2
, ko ≡

k1 + k2
2

, ∆ω = ω2 − ω1, ∆k = k2 − k1.� Veri�
ation: Given the above de�nitions,
ω1,2 = ωo ∓

∆ω

2

and k1,2 = ko ∓
∆k

2
,and so

f(z, t) = cos(ω1t− k1z) + cos(ω2t− k2z)2



= cos(ωot− koz +
∆ωt−∆kz

2
) + cos(ωot− koz −

∆ωt−∆kz

2
)

= cos(ωot− koz) cos(
∆ωt−∆kz

2
)− sin(ωot− koz) sin(

∆ωt−∆kz

2
)

+ cos(ωot− koz) cos(
∆ωt−∆kz

2
) + sin(ωot− koz) sin(

∆ωt−∆kz

2
)

= 2 cos(
∆ω

2
t− ∆k

2
z)

︸ ︷︷ ︸

cos(ωot− koz)
︸ ︷︷ ︸

.envelope 
arrierIn this simplest possible example of superpositioned 
o-sinusoids (sim-plest be
ause we only used two 
omponents instead of many), both theenvelope fun
tion and the 
arrier fun
tion are 
o-sinusoids.Assuming that ∆ω ≪ ω1, ω2, the 
arrier fun
tion cos(ωot − koz) isa 
o-sinusoid within the same �frequen
y band� as the superposed 
o-sinusoids, while the envelope fun
tion 2 cos(∆ωt−∆kz
2 ) is a low-frequen
y
o-sinusoid residing (in frequen
y spa
e) outside the signal band.With that distin
tion in mind, we identify the propagation velo
ities ofthe 
arrier and envelope fun
tions as the phase and group velo
ities of
omposite waveform f(z, t)� the phase velo
ity (des
ribing the 
arriermotion) is

vp =
ωo

ko
,whereas the group velo
ity (des
ribing the envelope motion) is

vg =
∆ω

∆k
=

ω2 − ω1

k2 − k1
.3



Example 1: Consider the 
ase

∆ω =
ωo

10

and ∆k =
ko
5
.In that 
ase

vg =
∆ω

∆k
=

ωo/10

ko/5
=

1

2

ωo

ko
=

1

2
vp,a waveform with half as large a group velo
ity as the phase velo
ity � in su
ha waveform, the zero-
rossings of the 
arrier will mar
h through the envelope asdemonstrated by an animation on the web site.

Example 2: Determine the group velo
ity
vg =

∆ω

∆kof the sum of two 
o-sinusoidal waves propagating in z dire
tion if ω1 = 99 rad/s,

ω2 = 101 rad/s and the dispersion relation is
ω = k2.Solution: We 
an solve this problem by �rst obtaining k1,2 = √

ω1,2, and then dividing

∆ω = ω2 − ω14



by

∆k =
√
ω2 −

√
ω1.Alternatively, we 
an approximate ∆ω/∆k by thepartial derivative ∂ω/∂k evaluated at ωo = 100 rad/swhi
h is at the 
enter of the frequen
y band �anked by ω1 and ω2.Both approa
hes will give about the same result sin
e ∆ω ≪ ωo and the slope ∂ω/∂kof the ω versus k 
urve at ω = ωo is nearly the same as the ratio ∆ω/∆k.Using the se
ond method, we note

ω = k2 ⇒ ∂ω

∂k
= 2k = 2

√
ω.Therefore, the group velo
ity of the sum is

vg =
∆ω

∆k
≈ ∂ω

∂k
= 2

√
ω = 20

msafter evaluating at ω = ωo = 100 rad/s. You should 
ompare our result abovewith the exa
t value

∆ω

∆k
=

ω2 − ω1√
ω2 −

√
ω1to 
onvin
e yourself that both approa
hes give approximately the same result.
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Example 3: What is the phase velo
ity of the sum signal in Example 2.Solution: The phase velo
ity of the sum signal is

vp =
ωo

kowhere

ωo ≡
ω1 + ω2

2
, ko ≡

k1 + k2
2

, k =
√
ω.This is well approximated by

vp =
ωo√
ωo

=
100

10
= 10

ms .The exa
t value 
an be obtained as

vp =
ωo

ko
=

ω1 + ω2

k1 + k2
=

ω1 + ω2√
ω1 +

√
ω2

.

• Pra
ti
al signals used in 
ommuni
ation appli
ations are more 
ompli-
ated than just the sum of two-
o-sinusoids. In general, we are 
on-
erned with the superposition of a 
ontinuum of 
o-sinusoids over �nitefrequen
y bands ∆ω. How do we then de�ne the wave envelope andthe 
arrier in su
h 
ases and extend the notion of phase and groupvelo
ities introdu
ed above? This question is addressed next:6



• Consider a sum of many mono
hromati
 waves of frequen
ies ωm in aband ∆ω 
entered about a frequen
y ωo � su
h a sum 
an be repre-sented as ∑

m

Re{Fme
j(ωmt−kmz)}where Fm are the individual wave amplitudes. Introdu
ing

ωm = ωo +∆ωm and km = ko +∆km,we 
an re-write the same sum asRe{ej(ωot−koz)
∑

m

Fme
j∆ωm(t− z

∆ωm/∆km
)}.Suppose that the band of frequen
ies ∆ω 
ontaining all the 
omponents

ωm is su�
iently small so that the ratio
∆ωm

∆km
≈ ∂ω

∂k |ω=ωois independent of index m. k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

(ωm, km)

In that 
ase the sum above redu
es toRe{ej(ωot−koz)f(t− z

vg
)}with

f(t) =
∑

m

Fme
j∆ωmt Envelope fun
tion7



and

vg =
∂ω

∂k |ω=ωo

Group velo
ity.

• The above result indi
ates that a wave signal

s(0, t) = Re{ejωotf(t)} = |f(t)| cos(ωot + ∠f(t))observed at a lo
ation z = 0 will be observed at an arbitrary z > 0 as
s(z, t) = Re{ej(ωot−koz)f(t− z

vg
)} = |f(t− z

vg
)| cos(ωot−koz+∠f(t−

z

vg
)).Su
h a signal1 would be 
alled an1. AM signal for the 
ase ∠f(t) = 0 � purely real f(t), requiring

F−m = F ∗
m for ∆ωm = mδω, with m = 0,±1,±2, · · ·,2. Phase modulated (PM) signal for |f(t)| = 
onst.� f(t) ∝

ejφ(t), with |Fm| ≪ F0 and F−m = −F ∗
m for m = ±1,±2, · · ·.The important point is, the modulation |f(t)| and/or ∠f(t) of the AMand/or PM signal will travel with the group velo
ity k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

(ωm, km)

vg =
∂ω

∂k |ω=ωo
.1Also, the same results apply in the 
ontinuum limit of δω → 0 in whi
h 
ase the sum de�ning f(t) interms of Fourier 
oe�
ients Fm redu
e to an integral de�ning f(t) in terms its Fourier transform F (ω).8



• The propagation of narrowband signals for whi
h the above deriva-tion of vg is well justi�ed � bandwidth ∆ω ≪ ωo � is therefore welldes
ribed by the phase velo
ity (for the 
arrier) and the group velo
ity(for the modulation envelope and/or phase) 
on
epts.� However, for broadband signals where ∆ω ∼ ωo the 
onstan
yof

∆ωm

∆kmover the entire frequen
y band ∆ω will not hold, and it may bene
essary to de�ne a set of frequen
y dependent group velo
itiesasso
iated with sub-bands of ∆ω (see HW).
• In general, the 
omputation of the phase and group velo
ities of narrow-band signals requires the knowledge of pertinent dispersion relation, thealgebrai
 relationship between the wave frequen
y ω and wavenumber
k. k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

Slope=vp

Slope=vg

Note that:Phase velo
ity vp is the slopeof the line from the origin tothe dispersion 
urve at theband 
enter.Group velo
ity vg is the slopeof the dispersion 
urve itselfat the band 
enter.

• When the dispersion relation is known, it is useful to display it in theform of a ω versus k plot as shown in the margin.� If the plot is a straight line then the waves are dispersionless and

vg = vp.� However, if the plot is 
urved (like shown in the margin), then thewaves are dispersive and the phase and group velo
ities vp and vgneed to be 
omputed separately.9



• The dispersion relation

k =
ω

c

√

1−
ω2
p

ω2
⇒ c2k2 = ω2 − ω2

p ⇒ ω =
√

c2k2 + ω2
pfor the 
ollisionless plasma has a dispersion 
urve resembling the oneshown in the margin � waves in a plasma are 
learly dispersive.To obtain the plasma group velo
ity we take the partial derivative ofthe plasma dispersion formula

c2k2 = ω2 − ω2
pon both sides with respe
t to variable k, whi
h leads to k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

Slope=vp

Slope=vg

Note that:Phase velo
ity vp is the slopeof the line from the origin tothe dispersion 
urve at theband 
enter.Group velo
ity vg is the slopeof the dispersion 
urve itselfat the band 
enter.

∂

∂k
(c2k2 = ω2 − ω2

p) ⇒ c22k = 2ω
∂ω

∂k
⇒ ω

k

∂ω

∂k
= c2.Sin
e

vg =
∂ω

∂k

and vp ≡
ω

k
,this result indi
ates that in a plasma

vgvp = c2with the expli
it formulas of
vp =

ω

k
=

c
√

1− ω2
p

ω2

and vg = c

√

1−
ω2
p

ω2
.
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Note that the phase velo
ity in the plasma ex
eeds c at all ω > ωp,whereas the group velo
ity is bounded by c.Einstein's speed limit of c for motions in the universe is only meantto apply to energy, mass, and information transport � that list does notin
lude the phase velo
ity, sin
e the phase velo
ity of an unmodulated
arrier is not pertinent for the transfer of energy or mass or informationa
ross spa
e.� A distant light bulb 
an be lit by sending an ele
tri
 �eld pulsewith an envelope whi
h will travel the intervening distan
e at thegroup velo
ity of the propagation medium. The light bulb getsturned on only after the pulse envelope arrives at its lo
ation,independent of how fast (or slow) the pulse 
arrier moves. Energymoves with the group velo
ity2.
• In general, depending on the dispersion relation, it is possible to have

vg < vp as well as vg > vp.
• Also, as just mentioned, it is possible to have vp < c as well as vp > c(as di
tated by the relevant dispersion relation).
• However, vg > c is never possible for any wave motion � if a groupvelo
ity 
al
ulation indi
ates vg > c in some setting, you 
an be surethat the dispersion relation used for vg 
al
ulation is invalid in that2A rigorous proof that energy is transported with velo
ity vg in linear and dispersive media 
an befound in Bers, Am. J. Phys., 68, 482 (2000). 11



setting and/or the dispersion 
urve has a shape that pre
ludes theappli
ability of the narrowband signal model developed in this le
ture.
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