
23 Phase and group veloities and delays

• Propagation veloity

vp =
ω

kof a o-sinusoid �eld omponent

cos(ωt− kz) ⇔ e−jkzis also known as phase veloity, beause vp as de�ned above, or-responds to the speed with whih onstant phase points (e.g., zero-rossings of the �eld) move.

• If the phase veloity is ω dependent � as in dispersive media � then�eld omponents (e.g., Ex, Hy, et.), whih are the superpositions ofo-sinusoids with di�erent frequenies (two, three, several, ountless),an in general be desribed in terms of an envelope funtion and aarrier funtion (reall AM modulation from ECE 210), eah havingits own and distint veloity.� The propagation veloity of the envelope is known as group ve-loity and it an be alulated as
vg =

∂ω

∂kone the dispersion relation relating k to ω is available.1



� The propagation veloity of the arrier is simply a phase veloity

vp =
ω

k
,where we use the arrier frequeny ωo for frequeny ω, and thearrier wavenumber ko for wavenumber k as illustrated below.A simple example: Consider the superposition

f(z, t) = cos(ω1t− k1z) + cos(ω2t− k2z)where wavenumbers k1 and k2 depend on frequenies ω1and ω2 as de-sribed by some dispersion relation (e.g., the plasma dispersion rela-tion). Using some trig identities we an re-write f(z, t) as
f(z, t) = 2 cos(

∆ω

2
t− ∆k

2
z) cos(ωot− koz)where

ωo ≡
ω1 + ω2

2
, ko ≡

k1 + k2
2

, ∆ω = ω2 − ω1, ∆k = k2 − k1.� Veri�ation: Given the above de�nitions,
ω1,2 = ωo ∓

∆ω

2

and k1,2 = ko ∓
∆k

2
,and so

f(z, t) = cos(ω1t− k1z) + cos(ω2t− k2z)2



= cos(ωot− koz +
∆ωt−∆kz

2
) + cos(ωot− koz −

∆ωt−∆kz

2
)

= cos(ωot− koz) cos(
∆ωt−∆kz

2
)− sin(ωot− koz) sin(

∆ωt−∆kz

2
)

+ cos(ωot− koz) cos(
∆ωt−∆kz

2
) + sin(ωot− koz) sin(

∆ωt−∆kz

2
)

= 2 cos(
∆ω

2
t− ∆k

2
z)

︸ ︷︷ ︸

cos(ωot− koz)
︸ ︷︷ ︸

.envelope arrierIn this simplest possible example of superpositioned o-sinusoids (sim-plest beause we only used two omponents instead of many), both theenvelope funtion and the arrier funtion are o-sinusoids.Assuming that ∆ω ≪ ω1, ω2, the arrier funtion cos(ωot − koz) isa o-sinusoid within the same �frequeny band� as the superposed o-sinusoids, while the envelope funtion 2 cos(∆ωt−∆kz
2 ) is a low-frequenyo-sinusoid residing (in frequeny spae) outside the signal band.With that distintion in mind, we identify the propagation veloities ofthe arrier and envelope funtions as the phase and group veloities ofomposite waveform f(z, t)� the phase veloity (desribing the arriermotion) is

vp =
ωo

ko
,whereas the group veloity (desribing the envelope motion) is

vg =
∆ω

∆k
=

ω2 − ω1

k2 − k1
.3



Example 1: Consider the ase

∆ω =
ωo

10

and ∆k =
ko
5
.In that ase

vg =
∆ω

∆k
=

ωo/10

ko/5
=

1

2

ωo

ko
=

1

2
vp,a waveform with half as large a group veloity as the phase veloity � in suha waveform, the zero-rossings of the arrier will marh through the envelope asdemonstrated by an animation on the web site.

Example 2: Determine the group veloity
vg =

∆ω

∆kof the sum of two o-sinusoidal waves propagating in z diretion if ω1 = 99 rad/s,

ω2 = 101 rad/s and the dispersion relation is
ω = k2.Solution: We an solve this problem by �rst obtaining k1,2 = √

ω1,2, and then dividing

∆ω = ω2 − ω14



by

∆k =
√
ω2 −

√
ω1.Alternatively, we an approximate ∆ω/∆k by thepartial derivative ∂ω/∂k evaluated at ωo = 100 rad/swhih is at the enter of the frequeny band �anked by ω1 and ω2.Both approahes will give about the same result sine ∆ω ≪ ωo and the slope ∂ω/∂kof the ω versus k urve at ω = ωo is nearly the same as the ratio ∆ω/∆k.Using the seond method, we note

ω = k2 ⇒ ∂ω

∂k
= 2k = 2

√
ω.Therefore, the group veloity of the sum is

vg =
∆ω

∆k
≈ ∂ω

∂k
= 2

√
ω = 20

msafter evaluating at ω = ωo = 100 rad/s. You should ompare our result abovewith the exat value

∆ω

∆k
=

ω2 − ω1√
ω2 −

√
ω1to onvine yourself that both approahes give approximately the same result.
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Example 3: What is the phase veloity of the sum signal in Example 2.Solution: The phase veloity of the sum signal is

vp =
ωo

kowhere

ωo ≡
ω1 + ω2

2
, ko ≡

k1 + k2
2

, k =
√
ω.This is well approximated by

vp =
ωo√
ωo

=
100

10
= 10

ms .The exat value an be obtained as

vp =
ωo

ko
=

ω1 + ω2

k1 + k2
=

ω1 + ω2√
ω1 +

√
ω2

.

• Pratial signals used in ommuniation appliations are more ompli-ated than just the sum of two-o-sinusoids. In general, we are on-erned with the superposition of a ontinuum of o-sinusoids over �nitefrequeny bands ∆ω. How do we then de�ne the wave envelope andthe arrier in suh ases and extend the notion of phase and groupveloities introdued above? This question is addressed next:6



• Consider a sum of many monohromati waves of frequenies ωm in aband ∆ω entered about a frequeny ωo � suh a sum an be repre-sented as ∑

m

Re{Fme
j(ωmt−kmz)}where Fm are the individual wave amplitudes. Introduing

ωm = ωo +∆ωm and km = ko +∆km,we an re-write the same sum asRe{ej(ωot−koz)
∑

m

Fme
j∆ωm(t− z

∆ωm/∆km
)}.Suppose that the band of frequenies ∆ω ontaining all the omponents

ωm is su�iently small so that the ratio
∆ωm

∆km
≈ ∂ω

∂k |ω=ωois independent of index m. k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

(ωm, km)

In that ase the sum above redues toRe{ej(ωot−koz)f(t− z

vg
)}with

f(t) =
∑

m

Fme
j∆ωmt Envelope funtion7



and

vg =
∂ω

∂k |ω=ωo

Group veloity.

• The above result indiates that a wave signal

s(0, t) = Re{ejωotf(t)} = |f(t)| cos(ωot + ∠f(t))observed at a loation z = 0 will be observed at an arbitrary z > 0 as
s(z, t) = Re{ej(ωot−koz)f(t− z

vg
)} = |f(t− z

vg
)| cos(ωot−koz+∠f(t−

z

vg
)).Suh a signal1 would be alled an1. AM signal for the ase ∠f(t) = 0 � purely real f(t), requiring

F−m = F ∗
m for ∆ωm = mδω, with m = 0,±1,±2, · · ·,2. Phase modulated (PM) signal for |f(t)| = onst.� f(t) ∝

ejφ(t), with |Fm| ≪ F0 and F−m = −F ∗
m for m = ±1,±2, · · ·.The important point is, the modulation |f(t)| and/or ∠f(t) of the AMand/or PM signal will travel with the group veloity k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

(ωm, km)

vg =
∂ω

∂k |ω=ωo
.1Also, the same results apply in the ontinuum limit of δω → 0 in whih ase the sum de�ning f(t) interms of Fourier oe�ients Fm redue to an integral de�ning f(t) in terms its Fourier transform F (ω).8



• The propagation of narrowband signals for whih the above deriva-tion of vg is well justi�ed � bandwidth ∆ω ≪ ωo � is therefore welldesribed by the phase veloity (for the arrier) and the group veloity(for the modulation envelope and/or phase) onepts.� However, for broadband signals where ∆ω ∼ ωo the onstanyof

∆ωm

∆kmover the entire frequeny band ∆ω will not hold, and it may beneessary to de�ne a set of frequeny dependent group veloitiesassoiated with sub-bands of ∆ω (see HW).
• In general, the omputation of the phase and group veloities of narrow-band signals requires the knowledge of pertinent dispersion relation, thealgebrai relationship between the wave frequeny ω and wavenumber
k. k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

Slope=vp

Slope=vg

Note that:Phase veloity vp is the slopeof the line from the origin tothe dispersion urve at theband enter.Group veloity vg is the slopeof the dispersion urve itselfat the band enter.

• When the dispersion relation is known, it is useful to display it in theform of a ω versus k plot as shown in the margin.� If the plot is a straight line then the waves are dispersionless and

vg = vp.� However, if the plot is urved (like shown in the margin), then thewaves are dispersive and the phase and group veloities vp and vgneed to be omputed separately.9



• The dispersion relation

k =
ω

c

√

1−
ω2
p

ω2
⇒ c2k2 = ω2 − ω2

p ⇒ ω =
√

c2k2 + ω2
pfor the ollisionless plasma has a dispersion urve resembling the oneshown in the margin � waves in a plasma are learly dispersive.To obtain the plasma group veloity we take the partial derivative ofthe plasma dispersion formula

c2k2 = ω2 − ω2
pon both sides with respet to variable k, whih leads to k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

Slope=vp

Slope=vg

Note that:Phase veloity vp is the slopeof the line from the origin tothe dispersion urve at theband enter.Group veloity vg is the slopeof the dispersion urve itselfat the band enter.

∂

∂k
(c2k2 = ω2 − ω2

p) ⇒ c22k = 2ω
∂ω

∂k
⇒ ω

k

∂ω

∂k
= c2.Sine

vg =
∂ω

∂k

and vp ≡
ω

k
,this result indiates that in a plasma

vgvp = c2with the expliit formulas of
vp =

ω

k
=

c
√

1− ω2
p

ω2

and vg = c

√

1−
ω2
p

ω2
.
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Note that the phase veloity in the plasma exeeds c at all ω > ωp,whereas the group veloity is bounded by c.Einstein's speed limit of c for motions in the universe is only meantto apply to energy, mass, and information transport � that list does notinlude the phase veloity, sine the phase veloity of an unmodulatedarrier is not pertinent for the transfer of energy or mass or informationaross spae.� A distant light bulb an be lit by sending an eletri �eld pulsewith an envelope whih will travel the intervening distane at thegroup veloity of the propagation medium. The light bulb getsturned on only after the pulse envelope arrives at its loation,independent of how fast (or slow) the pulse arrier moves. Energymoves with the group veloity2.
• In general, depending on the dispersion relation, it is possible to have

vg < vp as well as vg > vp.
• Also, as just mentioned, it is possible to have vp < c as well as vp > c(as ditated by the relevant dispersion relation).
• However, vg > c is never possible for any wave motion � if a groupveloity alulation indiates vg > c in some setting, you an be surethat the dispersion relation used for vg alulation is invalid in that2A rigorous proof that energy is transported with veloity vg in linear and dispersive media an befound in Bers, Am. J. Phys., 68, 482 (2000). 11



setting and/or the dispersion urve has a shape that preludes theappliability of the narrowband signal model developed in this leture.
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