
20 Doppler shift and Doppler radars

• Doppler radars make a use of the Doppler shift phenomenon todete
t the motion of EM wave re�e
tors of interest � e.g., a poli
eDoppler radar aims to identify the speed of a vehi
le in relative motion.� In this le
ture we will des
ribe the general prin
iple of how aDoppler radar works and also learn about the Doppler shift phe-nomenon in non-relativisti
 and relativisti
 limits.Doppler radar:

• Consider a stationary dipole lo
ated at the origin ex
ited by a 
o-sinusoidal input 
urrent

i(t) = Io cos(ωt) ∝ ejωt + e−jωt ≡ ejωt + 

where �

� refers to the 
omplex 
onjugate of the term pre
eding it.

• The dipole will radiate a spheri
al wave �eld
E(r, t) ∝ cos(ωt− kr) ∝ ej(ωt−kr) + 

where

ω

k
= cassuming propagation in va
uum or air.1



• Consider now a 
ar speeding away with velo
ity v from the dipole alongthe x-axis having an instantaneous lo
ation

x(t) = xo + vtat time t. The �eld at the lo
ation of the 
ar at time t will then be

Eiz = Eo cos(ωt − kx)

x

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

PEC

xo + vt

∝ cos(ωt− k(xo + vt)) = cos((ω − kv)t− kxo) ∝ ej((ω−kv)t−kxo) + 

.
• An indu
ed surfa
e 
urrent ∝ cos(ω′t− kxo) on the 
ar's body os
illat-ing at a frequen
y

ω′ = ω − kvwill then radiate like a 
olle
tion of dipoles, produ
ing a �re�e
ted �eld�
∝ cos(ω′t−kxo−k(xo+vt)) = cos((ω−2kv)t−2kxo) ∝ ej((ω−2kv)t−2kxo)+

dete
ted ba
k at the lo
ation of the original dipole � in this waveformwe have in
luded an additional phase delay of k(xo + vt) to a

ountfor the return trip of the re�e
ted wave. Clearly, the re�e
ted �eldos
illates with the frequen
y

ω′′ = ω′ − kv = ω − 2kvin the referen
e frame of the stationary dipole.� If the dipole is arranged to dete
t the re�e
ted wave �eld (us-ing a T/R swit
h � a radar jargon implying that the antenna is2



swit
hed to 
onne
t to the input port of a re
eiving devi
e shortlyafter the transmission of a burst of EM wave), then the velo
-ity of the 
ar, v, 
an be obtained from �two-way� Doppler shiftedfrequen
y ω′′. That's how poli
e radars work.Note that ω′ = ω − kv

ω′′ = ω − 2kv

� positive v (motion away from the radar antenna) 
auses ω′′ < ωand is referred to as redshift, whereas� negative v (motion toward the radar antenna) 
auses ω′′ > ω andis referred to as blueshift.Doppler shift in relativisti
 and non-relativisti
 limits:
• The �one-way� and �two-way� Doppler shift formulae

ω′ = ω − kv and ω′′ = ω − 2kvobtained above, where v is the relative1 radial re
ession velo
ity of theradiator and the observer, are valid only when |v| ≪ c.The reason for this is, our analysis above, leading to these formulae,negle
ted an important detail that a

ording to Maxwell's equationswe need to have not only ω

k
= c, but also ω′

k′
= c,1It does not matter whether the radiator or the observer is �moving� sin
e motion is always relative.3



whereas we have, in e�e
t, used an in
onsistent relation ω′

k
= c at anintermediate stage.� This in
onsisten
y produ
es a negligible error if |v| ≪ c (the usual
ase pertinent for poli
e radar appli
ations) but the errors areuna

eptably large if |v| approa
hes c (like in Fermilab).

• We will refer to the approximate Doppler shift formulae given above asnon-relativisti
 Doppler formulae � they are to be used if andonly if |v/c| ≪ 1, i.e., in the non-relativisti
 limit.
• Relativisti
 Doppler formulae that 
an be used un
onditionally(and most importantly for |v/c| approa
hing unity) are

ω′ = ω

√

1− v
c

1 + v
c

and ω′′ = ω′

√

1− v
c

1 + v
c

= ω
1− v

c

1 + v
c

.� Before deriving these relativisti
 formulae (
orre
t for all v), let usnote that they redu
e to the non-relativisti
 formula if |v/c| ≪ 1.In that 
ase we have, for instan
e,
ω′ = ω

√

1− v
c

1 + v
c

= ω
(1− v

c)
1/2

(1 + v
c
)1/2

= ω(1−
v

c
)1/2(1 +

v

c
)−1/2

≈ ω(1−
v

2c
)(1−

v

2c
) ≈ ω(1−

v

c
) = ω − kv.
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Derivation of the relativisti
 formula:To derive the relativisti
 Doppler shift formulae we will not need 
ompli
atedrelativisti
 transformation formulae dis
ussed in PHYS 325 (also summarizedin ECE 329 notes). It is su�
ient that we make a 
areful use of Maxwell'sequations in developing an a

urate model of a �eld re�e
ted from a re�e
torin motion as shown next:

• Consider a plane TEM wave in free-spa
e,

Ei(x, t) = ẑEo cos(ωt− kx),in
ident on a 
ondu
ting surfa
e at x = 0 plane from the left su
h that
k =

ω

c
.The wave will be re�e
ted to produ
e

Er(x, t) = −ẑEo cos(ωt + kx)so that the total tangential �eld at x = 0 plane

Eiz = Eo cos(ωt − kx)

x

z

Eiz = −Eo cos(ωt + kx)

ki

kr

(a) Stationary reflector (in lab frame)

PEC

Eiz = Eo cos(ωt − kx)

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

ki

kr

(b) Moving reflector

PEC

vt

ẑ · (Ei(0, t) + Er(0, t)) = Eo cos(ωt− 0)− Eo cos(ωt + 0) = 0.Now, what would Er(x, t) be if the 
ondu
ting re�e
tor were notstationary on the x = 0 plane, but rather moving with a steadyvelo
ity v to the right, having a traje
tory x = vt as depi
ted inthe margin? 5



• The answer of the question raised above is quite simple: We would have

Er(x, t) = ẑf(t +
x

c
),where f(t) is to be determined, so that

ẑ · (Ei(vt, t) + Er(vt, t)) = Eo cos(ωt− kvt) + f(t +
vt

c
) = 0,be
ause1. Er(x, t) = ẑf(t + x

c
) is a viable (and the only viable) ẑ-polarizedwave solution of Maxwell's equations propagating in the −x di-re
tion in free spa
e, and2. the se
ond equation above is the relevant boundary 
ondition tobe ful�lled on the surfa
e of the moving re�e
tor at every instantin time. Eiz = Eo cos(ωt − kx)

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

ki

kr

PEC

vtThe boundary 
ondition equation above implies that
f(t(1+

v

c
)) = −Eo cos(ωt−kvt) = −Eo cos(ωt(1−

v

c
)) = −Eo cos(ω

1− v
c

1 + v
c

t(1+
v

c
)).Thus,

f(t) = −Eo cos(ω
1− v

c

1 + v
c

t),and
Er(x, t) = ẑf(t+

x

c
) = −ẑEo cos(ω

1− v
c

1 + v
c

(t+
x

c
)) = −ẑEo cos(ω

′′t+k′′x),6



with

ω′′ = ω
1− v

c

1 + v
c

and k′′ =
ω′′

c
=

ω

c

1− v
c

1 + v
c

= k
1− v

c

1 + v
c

. Eiz = Eo cos(ωt − kx)

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

ki

kr

PEC

vtWith

ω′′ = ω
1− v

c

1 + v
c

and k′′ = k
1− v

c

1 + v
cthe re�e
ted wave

Er(x, t) = ẑf(t +
x

c
) = −ẑEo cos(ω

′′t + k′′x)wave is 
learly a 
o-sinusoid � just like the in
ident wave � butwith Doppler shifted frequen
y and wavenumbers ω′′ and k′′, respe
-tively, 
aused by the motion of the re�e
tor surfa
e (as dis
ussedbelow). The result 
an also be used with negative v 
orresponding to are�e
tor moving to the left.

• The Doppler shift formulae given above are relativisti
ally 
orre
t �that is, they are valid for all possible values of v
c � even though we didnot invoke any �relativisti
 argument� above.This is true be
ause relativity derives from the Maxwell's equations and thea

ompanying boundary 
onditions, and so any rigorous dedu
tion derivedfrom Maxwell's equations will be by default relativisti
ally valid.
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• Fo
using next on the Doppler shifted frequen
y formula

ω′′ = ω
1− v

c

1 + v
c

= ω

√

1− v
c

1 + v
c

√

1− v
c

1 + v
c

,we 
an re-express ω′′ as

ω′′ = ω′

√

1− v
c

1 + v
c

with ω′ ≡ ω

√

1− v
c

1 + v
c

.� We now re
ognize the Doppler shifted frequen
y Eiz = Eo cos(ωt − kx)

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

ki

kr

PEC

vt

ω′′ = ω′

√

1− v
c

1 + v
cof the re�e
ted wave as a Doppler shifted version of the wavefrequen
y

ω′ = ω

√

1− v
c

1 + v
cseen in the re�e
tor frame, whi
h is in turn a Doppler shiftedversion of the frequen
y ω of the in the in
ident wave �eld Ei(x, t)de�ned in the so-
alled2 �lab frame�.This 
on
ludes our derivation of the relativisti
 Doppler shift formulaestated earlier on.2By de�nition the frame where the �unprimed� frequen
y ω is observed is the lab frame; it 
an also be
alled the unprimed frame. 8



One-way Doppler shift:When a TEM wave is observed to have a frequen
y ω in the lab frame (andwavenumber k = ω/c sin
e we are 
on
erned with free-spa
e propagationat this point), the same TEM wave will appear to have a frequen
y ω′ in ase
ond referen
e frame whi
h is in motion within the lab frame.
• The one-way Doppler shifted frequen
y ω′ will be related to the lab-frame frequen
y ω as

ω′ = ω

√

1− v
c

1 + v
cif the moving observer has a velo
ity v in the lab frame de�ned tobe positive in the dire
tion of wave propagation (away from the wavesour
e).

• For non-relativisti
 speeds su
h that |v|
c ≪ 1 we have

ω′ ≈ ω(1−
v

c
) = ω − kvas already seen. This simpli�ed Doppler formula is easy to understandsin
e Eiz = Eo cos(ωt − kx)

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

ki

kr
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Ei(x, t) = ẑEo cos(ωt− kx)(see margin) implies that the in
ident �eld at the lo
ation x = vt ofthe re�e
tor must vary with time t as
Ei(vt, t) = ẑEo cos(ωt− kvt) = ẑEo cos((ω − kv)t) = ẑEo cos(ω

′t)9



where

ω′ = ω − kvas obtained above3.

• Relativisti
 Doppler shift equations given above are appli
able for free-spa
e propagation only � the reason is, a frequen
y independent prop-agation velo
ity was assumed in the derivation of ω′′. The equationstake modi�ed forms4 for propagation in material media. However, non-relativisti
 Doppler equations � as the time-rate-of-
hange of wavephase � are found to be valid in material media where ω/k is gener-ally ω dependent.3An astute student may ask at this point: �how 
ome Ei(vt, t) ∝ cos((ω− kv)t) and not cos(ω√1−
v

c

1+
v

c

t)if a rigorous appli
ation of ele
tromagneti
 solutions should produ
e relativisti
ally a

urate results (as
laimed earlier on)?� This is the sort of question Albert Einstein asked to himself in his free time at workin a Swiss patent o�
e and �gured out that the rigorous 
on
lusion ought to be
(ω − kv)t = ω

√

1− v
c

1 + v

c

t′ ⇒ t′ =

√

1 + v
c

1− v

c

(1−
v

c
)t =

√

1−
v2

c2
t,where t′ is the time kept by a 
lo
k atta
hed to the re�e
ting surfa
e. The fa
t that 
lo
ks in relativemotion keep time at di�erent rates � see the relativisti
 transformation formula between t′ (measured onthe re�e
tor) and t (measured in the lab where the re�e
tor is moving with velo
ity v) given in a footnoteof Le
ture 12 in ECE 329 notes � was one of the surprising results of the work Einstein published in 1905under the title �On the Ele
trodynami
s of Moving Bodies�, popularly known as the relativity paper.4The modi�ed form

ω′ = ω
1− v

c
n

√

1− v2

c2

,where n ≡ c

vp

is the refra
tive index of the medium in terms of propagation speed vp = ω

k

, hardly 
omesup in pra
ti
e be
ause relativisti
 velo
ities are rarely en
ountered within material media.10


