
20 Doppler shift and Doppler radars

• Doppler radars make a use of the Doppler shift phenomenon todetet the motion of EM wave re�etors of interest � e.g., a polieDoppler radar aims to identify the speed of a vehile in relative motion.� In this leture we will desribe the general priniple of how aDoppler radar works and also learn about the Doppler shift phe-nomenon in non-relativisti and relativisti limits.Doppler radar:

• Consider a stationary dipole loated at the origin exited by a o-sinusoidal input urrent

i(t) = Io cos(ωt) ∝ ejωt + e−jωt ≡ ejωt + where �� refers to the omplex onjugate of the term preeding it.

• The dipole will radiate a spherial wave �eld
E(r, t) ∝ cos(ωt− kr) ∝ ej(ωt−kr) + where

ω

k
= cassuming propagation in vauum or air.1



• Consider now a ar speeding away with veloity v from the dipole alongthe x-axis having an instantaneous loation

x(t) = xo + vtat time t. The �eld at the loation of the ar at time t will then be

Eiz = Eo cos(ωt − kx)

x

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

PEC

xo + vt

∝ cos(ωt− k(xo + vt)) = cos((ω − kv)t− kxo) ∝ ej((ω−kv)t−kxo) + .
• An indued surfae urrent ∝ cos(ω′t− kxo) on the ar's body osillat-ing at a frequeny

ω′ = ω − kvwill then radiate like a olletion of dipoles, produing a �re�eted �eld�
∝ cos(ω′t−kxo−k(xo+vt)) = cos((ω−2kv)t−2kxo) ∝ ej((ω−2kv)t−2kxo)+deteted bak at the loation of the original dipole � in this waveformwe have inluded an additional phase delay of k(xo + vt) to aountfor the return trip of the re�eted wave. Clearly, the re�eted �eldosillates with the frequeny

ω′′ = ω′ − kv = ω − 2kvin the referene frame of the stationary dipole.� If the dipole is arranged to detet the re�eted wave �eld (us-ing a T/R swith � a radar jargon implying that the antenna is2



swithed to onnet to the input port of a reeiving devie shortlyafter the transmission of a burst of EM wave), then the velo-ity of the ar, v, an be obtained from �two-way� Doppler shiftedfrequeny ω′′. That's how polie radars work.Note that ω′ = ω − kv

ω′′ = ω − 2kv

� positive v (motion away from the radar antenna) auses ω′′ < ωand is referred to as redshift, whereas� negative v (motion toward the radar antenna) auses ω′′ > ω andis referred to as blueshift.Doppler shift in relativisti and non-relativisti limits:
• The �one-way� and �two-way� Doppler shift formulae

ω′ = ω − kv and ω′′ = ω − 2kvobtained above, where v is the relative1 radial reession veloity of theradiator and the observer, are valid only when |v| ≪ c.The reason for this is, our analysis above, leading to these formulae,negleted an important detail that aording to Maxwell's equationswe need to have not only ω

k
= c, but also ω′

k′
= c,1It does not matter whether the radiator or the observer is �moving� sine motion is always relative.3



whereas we have, in e�et, used an inonsistent relation ω′

k
= c at anintermediate stage.� This inonsisteny produes a negligible error if |v| ≪ c (the usualase pertinent for polie radar appliations) but the errors areunaeptably large if |v| approahes c (like in Fermilab).

• We will refer to the approximate Doppler shift formulae given above asnon-relativisti Doppler formulae � they are to be used if andonly if |v/c| ≪ 1, i.e., in the non-relativisti limit.
• Relativisti Doppler formulae that an be used unonditionally(and most importantly for |v/c| approahing unity) are

ω′ = ω

√

1− v
c

1 + v
c

and ω′′ = ω′

√

1− v
c

1 + v
c

= ω
1− v

c

1 + v
c

.� Before deriving these relativisti formulae (orret for all v), let usnote that they redue to the non-relativisti formula if |v/c| ≪ 1.In that ase we have, for instane,
ω′ = ω

√

1− v
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= ω
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1/2
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2c
) ≈ ω(1−
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c
) = ω − kv.
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Derivation of the relativisti formula:To derive the relativisti Doppler shift formulae we will not need ompliatedrelativisti transformation formulae disussed in PHYS 325 (also summarizedin ECE 329 notes). It is su�ient that we make a areful use of Maxwell'sequations in developing an aurate model of a �eld re�eted from a re�etorin motion as shown next:

• Consider a plane TEM wave in free-spae,

Ei(x, t) = ẑEo cos(ωt− kx),inident on a onduting surfae at x = 0 plane from the left suh that
k =

ω

c
.The wave will be re�eted to produe

Er(x, t) = −ẑEo cos(ωt + kx)so that the total tangential �eld at x = 0 plane

Eiz = Eo cos(ωt − kx)

x
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Eiz = −Eo cos(ωt + kx)
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(a) Stationary reflector (in lab frame)
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Eiz = Eo cos(ωt − kx)

z

Eiz = −Eo cos(ω′′
t + k

′′
x)

ki

kr

(b) Moving reflector
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vt

ẑ · (Ei(0, t) + Er(0, t)) = Eo cos(ωt− 0)− Eo cos(ωt + 0) = 0.Now, what would Er(x, t) be if the onduting re�etor were notstationary on the x = 0 plane, but rather moving with a steadyveloity v to the right, having a trajetory x = vt as depited inthe margin? 5



• The answer of the question raised above is quite simple: We would have

Er(x, t) = ẑf(t +
x

c
),where f(t) is to be determined, so that

ẑ · (Ei(vt, t) + Er(vt, t)) = Eo cos(ωt− kvt) + f(t +
vt

c
) = 0,beause1. Er(x, t) = ẑf(t + x

c
) is a viable (and the only viable) ẑ-polarizedwave solution of Maxwell's equations propagating in the −x di-retion in free spae, and2. the seond equation above is the relevant boundary ondition tobe ful�lled on the surfae of the moving re�etor at every instantin time. Eiz = Eo cos(ωt − kx)
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Eiz = −Eo cos(ω′′
t + k

′′
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vtThe boundary ondition equation above implies that
f(t(1+

v

c
)) = −Eo cos(ωt−kvt) = −Eo cos(ωt(1−

v

c
)) = −Eo cos(ω

1− v
c
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c

t(1+
v

c
)).Thus,

f(t) = −Eo cos(ω
1− v

c

1 + v
c

t),and
Er(x, t) = ẑf(t+

x

c
) = −ẑEo cos(ω

1− v
c
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(t+
x

c
)) = −ẑEo cos(ω

′′t+k′′x),6



with

ω′′ = ω
1− v

c

1 + v
c

and k′′ =
ω′′

c
=

ω

c
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. Eiz = Eo cos(ωt − kx)
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ω′′ = ω
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and k′′ = k
1− v

c

1 + v
cthe re�eted wave

Er(x, t) = ẑf(t +
x

c
) = −ẑEo cos(ω

′′t + k′′x)wave is learly a o-sinusoid � just like the inident wave � butwith Doppler shifted frequeny and wavenumbers ω′′ and k′′, respe-tively, aused by the motion of the re�etor surfae (as disussedbelow). The result an also be used with negative v orresponding to are�etor moving to the left.

• The Doppler shift formulae given above are relativistially orret �that is, they are valid for all possible values of v
c � even though we didnot invoke any �relativisti argument� above.This is true beause relativity derives from the Maxwell's equations and theaompanying boundary onditions, and so any rigorous dedution derivedfrom Maxwell's equations will be by default relativistially valid.
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• Fousing next on the Doppler shifted frequeny formula

ω′′ = ω
1− v

c

1 + v
c

= ω

√
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c
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c

√

1− v
c
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c

,we an re-express ω′′ as

ω′′ = ω′

√

1− v
c

1 + v
c

with ω′ ≡ ω

√

1− v
c

1 + v
c

.� We now reognize the Doppler shifted frequeny Eiz = Eo cos(ωt − kx)
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Eiz = −Eo cos(ω′′
t + k

′′
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ω′′ = ω′

√

1− v
c

1 + v
cof the re�eted wave as a Doppler shifted version of the wavefrequeny

ω′ = ω

√

1− v
c

1 + v
cseen in the re�etor frame, whih is in turn a Doppler shiftedversion of the frequeny ω of the in the inident wave �eld Ei(x, t)de�ned in the so-alled2 �lab frame�.This onludes our derivation of the relativisti Doppler shift formulaestated earlier on.2By de�nition the frame where the �unprimed� frequeny ω is observed is the lab frame; it an also bealled the unprimed frame. 8



One-way Doppler shift:When a TEM wave is observed to have a frequeny ω in the lab frame (andwavenumber k = ω/c sine we are onerned with free-spae propagationat this point), the same TEM wave will appear to have a frequeny ω′ in aseond referene frame whih is in motion within the lab frame.
• The one-way Doppler shifted frequeny ω′ will be related to the lab-frame frequeny ω as

ω′ = ω

√

1− v
c

1 + v
cif the moving observer has a veloity v in the lab frame de�ned tobe positive in the diretion of wave propagation (away from the wavesoure).

• For non-relativisti speeds suh that |v|
c ≪ 1 we have

ω′ ≈ ω(1−
v

c
) = ω − kvas already seen. This simpli�ed Doppler formula is easy to understandsine Eiz = Eo cos(ωt − kx)
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Eiz = −Eo cos(ω′′
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Ei(x, t) = ẑEo cos(ωt− kx)(see margin) implies that the inident �eld at the loation x = vt ofthe re�etor must vary with time t as
Ei(vt, t) = ẑEo cos(ωt− kvt) = ẑEo cos((ω − kv)t) = ẑEo cos(ω

′t)9



where

ω′ = ω − kvas obtained above3.

• Relativisti Doppler shift equations given above are appliable for free-spae propagation only � the reason is, a frequeny independent prop-agation veloity was assumed in the derivation of ω′′. The equationstake modi�ed forms4 for propagation in material media. However, non-relativisti Doppler equations � as the time-rate-of-hange of wavephase � are found to be valid in material media where ω/k is gener-ally ω dependent.3An astute student may ask at this point: �how ome Ei(vt, t) ∝ cos((ω− kv)t) and not cos(ω√1−
v

c
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v

c

t)if a rigorous appliation of eletromagneti solutions should produe relativistially aurate results (aslaimed earlier on)?� This is the sort of question Albert Einstein asked to himself in his free time at workin a Swiss patent o�e and �gured out that the rigorous onlusion ought to be
(ω − kv)t = ω
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c2
t,where t′ is the time kept by a lok attahed to the re�eting surfae. The fat that loks in relativemotion keep time at di�erent rates � see the relativisti transformation formula between t′ (measured onthe re�etor) and t (measured in the lab where the re�etor is moving with veloity v) given in a footnoteof Leture 12 in ECE 329 notes � was one of the surprising results of the work Einstein published in 1905under the title �On the Eletrodynamis of Moving Bodies�, popularly known as the relativity paper.4The modi�ed form
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c
n

√
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,where n ≡ c

vp

is the refrative index of the medium in terms of propagation speed vp = ω

k

, hardly omesup in pratie beause relativisti veloities are rarely enountered within material media.10


