20 Doppler shift and Doppler radars

e Doppler radars make a use of the Doppler shift phenomenon to
detect the motion of EM wave reflectors of interest — e.g., a police
Doppler radar aims to identify the speed of a vehicle in relative motion.

— In this lecture we will describe the general principle of how a
Doppler radar works and also learn about the Doppler shift phe-
nomenon in non-relativistic and relativistic limits.

Doppler radar:

e Consider a stationary dipole located at the origin excited by a co-
sinusoidal input current

i(t) = I, cos(wt) oc ¥t 4 e = /¥ 4 ce
where “cc” refers to the complex conjugate of the term preceding it.
e The dipole will radiate a spherical wave field
E(r,t) o cos(wt — kr) o< /@) 4 e

where
—_ C

k

assuming propagation in vacuum or air.



e Consider now a car speeding away with velocity v from the dipole along - »
the x-axis having an instantaneous location B = Bycos(wt — ka)
CU(t) — l’o —I_ ’Ut ;:7Eocos(w"t+k"x)
at time t. The field at the location of the car at time ¢ will then be To + vt

o cos(wt — k(x, + vt)) = cos((w — ko)t — kx,) oc el (@k0)i=kzo) 4 e

e An induced surface current o< cos(w't — kx,) on the car’s body oscillat-
ing at a frequency
W =w— kv

will then radiate like a collection of dipoles, producing a “reflected field”

o< cos(w't—kx,—k(x,4vt)) = cos((w—2kv)t—2kx,) oI ((w=2kv)t=2kao) | .

detected back at the location of the original dipole — in this waveform
we have included an additional phase delay of k(z, + vt) to account
for the return trip of the reflected wave. Clearly, the reflected field
oscillates with the frequency

W=w — kv =w—2kv
in the reference frame of the stationary dipole.

— If the dipole is arranged to detect the reflected wave field (us-
ing a T/R switch — a radar jargon implying that the antenna is
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switched to connect to the input port of a receiving device shortly
after the transmission of a burst of EM wave), then the veloc-
ity of the car, v, can be obtained from “two-way” Doppler shifted
frequency w”. That’s how police radars work.

Note that W =w— kv

— positive v (motion away from the radar antenna) causes w” < w W — o — e

and is referred to as redshift, whereas

— negative v (motion toward the radar antenna) causes w” > w and
is referred to as blueshift.

Doppler shift in relativistic and non-relativistic limits:
e The “one-way” and “two-way” Doppler shift formulae
W =w—kv and W' =w —2kv

obtained above, where v is the relative! radial recession velocity of the
radiator and the observer, are valid only when |v| < c.

The reason for this is, our analysis above, leading to these formulae,
neglected an important detail that according to Maxwell’s equations

we need to have
/
W W
not only 7= c, but also — =c,

k/

Tt does not matter whether the radiator or the observer is “moving” since motion is always relative.
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. . . . /
whereas we have, in effect, used an inconsistent relation % = ¢ at an

intermediate stage.

— This inconsistency produces a negligible error if |v| < ¢ (the usual
case pertinent for police radar applications) but the errors are
unacceptably large if |v| approaches ¢ (like in Fermilab).

e We will refer to the approximate Doppler shift formulae given above as
non-relativistic Doppler formulae — they are to be used if and
only if |[v/c| < 1, i.e., in the non-relativistic limit.

e Relativistic Doppler formulae that can be used unconditionally
(and most importantly for |v/c| approaching unity) are

1 —
1+

1 —
I+

ol
Qe
ol

and " =

ol
Id
Id

— Before deriving these relativistic formulae (correct for all v), let us
note that they reduce to the non- relat1v1stlc formula if |v/c| < 1.
In that case we have, for instance,

1 -2 (1 —y)l/2

I N N <A 1/2 1/2
W W e w(l—l—%)l/? w(l — c) (1+ )
v v v
~ wll— 1D mwl-—w—k
w1 1= D w1 = ) =w— ke



Derivation of the relativistic formula:

To derive the relativistic Doppler shift formulae we will not need complicated
relativistic transformation formulae discussed in PHY'S 325 (also summarized
in ECE 329 notes). It is sufficient that we make a careful use of Maxwell’s
equations in developing an accurate model of a field reflected from a reflector
in motion as shown next:

e Consider a plane TEM wave in free-space,
Ei(z,t) = ZE, cos(wt — kx),
incident on a conducting surface at x = 0 plane from the left such that

k=2

C

The wave will be reflected to produce
E, (x,t) = —2F, cos(wt + kx)
so that the total tangential field at x = 0 plane

2+ (Ei(0,t) + Ey(0,t)) = E, cos(wt — 0) — E, cos(wt + 0) = 0.

Now, what would E,(x,t) be if the conducting reflector were not
stationary on the x = 0 plane, but rather moving with a steady
velocity v to the right, having a trajectory x = vt as depicted in
the margin?

(a) Stationary reflector (in lab frame)

4z

7

i
—_—

E;. = E,cos(wt — kz)

E;, = —E,cos(wt + kz)
-
k,

(b) Moving reflector

k;
—_—

E;, = E,cos(wt — kzx)

E;. = —E,cos(w't + k")
-—
k,




e The answer of the question raised above is quite simple: We would have
B/ (e,t) = 2f(t + )
where f(t) is to be determined, so that
z - (E;(vt, t) + Ep(vt, t)) = E, cos(wt — kvt) + f(t + %t) =0,
because

1. E.(z,t) = 2f(t 4+ %) is a viable (and the only viable) Z-polarized

wave solution of Maxwell’s equations propagating in the —x di- k. ¥
rection in free space, and

. . L. E;, = E,cos(wt — kz)

2. the second equation above is the relevant boundary condition to

be fulfilled on the surface of the moving reflector at every instant 5=~ _Focosle’t k)
— P > %
in time. kr vt
The boundary condition equation above implies that
v v 1 -2 v
f(t(14+—)) = —E, cos(wt—kuvt) = —E, cos(wt(1—=)) = —E, cos(w—-=t(14-)).
C C 1+ p C
Thus,
_v
£(#) = — B, cos(w——=t),
C
and
R x . l1—= x A " "
E, (z,t)=2f(t+-) = —ZE, Cos(cu1 C(t4+—)) = —2E, cos(w"t+k"x),
c Y oc
C



with

w":wl_% and ]{:”_—wﬁzfl_%: i
l—l—% c cl—l—% l—l-%
With
1_ v v
" C 7 C
W =w - and k' =k -
1+ 1+

the reflected wave

E (z,t)=Z2f(t+ E) = —2FE, cos(w"t + k" x)
c

wave is clearly a co-sinusoid — just like the incident wave — but
with Doppler shifted frequency and wavenumbers w” and k", respec-
tively, caused by the motion of the reflector surface (as discussed
below). The result can also be used with negative v corresponding to a
reflector moving to the left.

e The Doppler shift formulae given above are relativistically correct —
that is, they are valid for all possible values of ¢ — even though we did
not invoke any ‘“relativistic argument” above.

This is true because relativity derives from the Maxwell’s equations and the
accompanying boundary conditions, and so any rigorous deduction derived
from Maxwell’s equations will be by default relativistically valid.

k;
—_—

E;. = E,cos(wt — kz)

E;, = —E,cos(w"t + k")
—
k,

_



e Focusing next on the Doppler shifted frequency formula

e \/1——\/1——

1—% _ , 1 —
. with W' = w
1+E 1+

ol

ol

ol

— We now recognize the Doppler shifted frequency

"n_ 1 — %
1+
of the reflected wave as a Doppler shifted version of the wawve
frequency
1 v
/ C
W =w
1+7

seen in the reflector frame, which is in turn a Doppler shifted
version of the frequency w of the in the incident wave field E;(x, t)
defined in the so-called? “lab frame”.

This concludes our derivation of the relativistic Doppler shift formulae
stated earlier on.

2By definition the frame where the “unprimed” frequency w is observed is the lab frame; it can also be
called the unprimed frame.

k;
—_—

E;. = E,cos(wt — kz)

E;, = —E,cos(w"t + k")
-—
k,

_



One-way Doppler shift:

When a TEM wave is observed to have a frequency w in the lab frame (and
wavenumber k = w/c since we are concerned with free-space propagation
at this point), the same TEM wave will appear to have a frequency &’ in a
second reference frame which is in motion within the lab frame,

e The one-way Doppler shifted frequency w’ will be related to the lab-
frame frequency w as

W =w
1+

if the moving observer has a velocity v in the lab frame defined to
be positive in the direction of wave propagation (away from the wave

source).
e LFor non-relativistic speeds such that % < 1 we have )
k; ‘
. v
w = CU(l — E) =W — kv E;, = E, cos(wt — kz)
. . . : E;. = —E,cos(w"t + k")
sisnileready seen. This simplified Doppler formula is easy to understand — B %

Ei(z,t) = ZFE, cos(wt — kx)

(see margin) implies that the incident field at the location x = vt of
the reflector must vary with time ¢ as

E;(vt,t) = 2E, cos(wt — kvt) = 2E, cos((w — kv)t) = 2E, cos(w't)
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where
W =w — kv

as obtained above3.

e Relativistic Doppler shift equations given above are applicable for free-
space propagation only — the reason is, a frequency independent prop-
agation velocity was assumed in the derivation of w”. The equations
take modified forms* for propagation in material media. However, non-
relativistic Doppler equations — as the time-rate-of-change of wave
phase — are found to be valid in material media where w/k is gener-
ally w dependent.

3An astute student may ask at this point: “how come E;(vt,t) oc cos((w — kv)t) and not cos(w ;%t)
if a rigorous application of electromagnetic solutions should produce relativistically accurate results (as
claimed earlier on)?” This is the sort of question Albert Einstein asked to himself in his free time at work

in a Swiss patent office and figured out that the rigorous conclusion ought to be

-2 1+ 2 v v?

v
C
’l) v
Cc 1 Cc

(w—Fkv)t

where ¢’ is the time kept by a clock attached to the reflecting surface. The fact that clocks in relative
motion keep time at different rates — see the relativistic transformation formula between ' (measured on
the reflector) and ¢ (measured in the lab where the reflector is moving with velocity v) given in a footnote
of Lecture 12 in ECE 329 notes — was one of the surprising results of the work Einstein published in 1905
under the title “On the Electrodynamics of Moving Bodies”, popularly known as the relativity paper.

4The modified form

v2

T2
where n = = is the refractive index of the medium in terms of propagation speed v, = %, hardly comes
p

up in practice because relativistic velocities are rarely encountered within material media.
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