
15 Plane-wave form of Maxwell’s equations, prop-

agation in arbitrary direction

Having seen how EM waves are generated by radiation sources and how spher-

ical TEM waves develop a “planar” character over increasingly large regions

as they propagate away from their sources, it is time to shift our attention

to propagation and guidance phenomena using a plane-wave formalism.

x

y

z
Dx

0 M

HPBW =
λ

Dx

2Dx
2D2

x

λ

Fresnel
region

ro

x

Perhaps the most “practical” rationalization of this switch from spherical

to plane-wave emphasis is that waves produced by compact sources invariably

“look” planar at the scales of practical receiving systems (that will study near

the end of this course) situated afar.

• We wish to study wave solutions of Maxwell’s equations exhibiting the

planar phasor form

Ẽ = Eoe
−jk·r = êEoe

−jk·r

and time-domain variations

Re{Ẽejωt} = Re{Eoe
j(ωt−k·r)}

= ê|Eo| cos(ωt− k · r + ∠Eo)

where wave vector k is to be found in compliance with ω and Maxwell’s

equations according to some specific “dispersion relation” including the

details of the propagation medium.
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– For simplicity, the above phasor has been declared to be linearly

polarized. Circular or elliptic polarized wave fields can be con-

structed later on via superposition methods.
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• Linearly polarized wave field phasor above can be expanded as

Ẽ = Eoe
−jk·r = Eoe

−j(kxx+kyy+kzz)

assuming a wave vector

k = (kx, ky, kz) = x̂kx + ŷky + ẑkz

expressed in terms of its projections (kx, ky, kz) along the Cartesian

coordinate axes (x, y, z).

• A special case we are familiar with is

kx = ky = 0, kz > 0, when k = kzẑ = kẑ and e−jk·r = e−jkz

as in plane TEM waves travelling in +z direction having a

wavelength λ =
2π

k
and propagation speed vp =

ω

k
.

– Likewise, the case

ky = kz = 0 , kx > 0, when k = kxx̂ = kx̂ and e−jk·r = e−jkx

corresponds to plane TEM waves travelling in +x direction with

the same wavelength and propagation speed.
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• The general case with non-zero components (kx, ky, kz) corresponds to

a plane wave propagating in the direction of unit vector

k̂ ≡ k

k
=

(kx, ky, kz)

k
where k ≡ |k| =

√

k2x + k2y + k2z =
2π

λ

and also having the same wavelength and propagation speed as above.

Wavelength λ now describes the shift invariance of the wave field in

spatial k̂ direction, i.e., the propagation direction.
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Example 1: A plane wave electric field phasor is specified as

Ẽ = ẑe−j(3πx−4πy) V

m
.

Determine the propagation direction k̂, wavenumber k = |k|, wavelength λ = 2π
k

and wave frequency f = ω
2π assuming a propagation speed c = 3× 108 m/s.

Solution: Contrasting Ẽ with e−j(kxx+kyy+kzz), we note that

kx = 3π
rad

m
, ky = −4π

rad

m
, kz = 0.

Hence, wave vector

k = x̂kx + ŷky + ẑkz = 3πx̂− 4πŷ
rad

m
,

and wave number

k = |k| =
√

k2x + k2y + k2z =
√

(3π)2 + (4π)2 + 02 =
√
25π2 = 5π

rad

m
.
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The propagation direction is specified by the unit vector

k̂ =
k

k
=

3πx̂− 4πŷ

5π
= 0.6x̂− 0.8ŷ.

The wavelength is

λ =
2π

k
=

2π

5π
= 0.4m.

Since
c = vp =

ω

k
in general, it follows that

ω = kc = 5π × 3× 108 = 2π × 7.5× 108
rad

s

and
f =

ω

2π
= 750× 106 Hz = 750MHz.

• Based on what we learned in ECE 329, we recognize that the wave

analyzed in Example 1 must have been propagating in free space.

• What are the constraints on wave vector k for plane waves propagating

in arbitrary media?
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To answer the above question, we will return to macroscopic-form

Maxwell’s equations written in phasor form (see margin) and ex-

amine under which conditions phasor solutions

∇ · D̃ = ρ̃

∇ · B̃ = 0

∇× Ẽ = −jωB̃

∇× H̃ = J̃ + jωD̃

where (constitutive rela-

tions)

D̃ = ǫẼ

B̃ = µH̃

J̃c = σẼ.

∝ e−jk·r

can be applicable for all the field quantities in the absence of source

currents J̃ and their accompanying ρ̃.

kz

x

y

z
k

r = (x, y, z)

kx

ky

k · r = const.

• First, we note that in view of relation

D̃ = ǫẼ,

we can have plane-wave solutions of the form

D̃ = Doe
−jk·r and Ẽ = Eoe

−jk·r

if and only if ǫ does not depend on position r (why?).

• Likewise, relation

B̃ = µH̃,

implies plane-wave solutions

B̃ = Boe
−jk·r and H̃ = Hoe

−jk·r

if and only if µ does not depend on position r (why?).
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• In a homogeneous region where ǫ, µ, and σ are, by definition, inde-

pendent of r, plane-wave solutions of phasor-form Maxwell’s equations

given in the margin become possible provided that

−jk · D̃ = ρ̃

−jk · B̃ = 0

−jk× Ẽ = −jωB̃

−jk× H̃ = J̃ + jωD̃.

We have obtained these vector-algebraic relations from phasor-form

Maxwell’s equations in the margin after replacing the vector-differential

operator ∇ by the vector-algebraic operator −jk.

The justification of this simple procedure is as follows:
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If

D̃ = Doe
−jk·r = Doe

−j(kxx+kyy+kzz) = (Dxo, Dyo, Dzo)e
−j(kxx+kyy+kzz)

then

∇ · D̃ = (
∂

∂x
,
∂

∂y
,
∂

∂y
) · (Dxoe

−j(kxx+kyy+kzz), Dyoe
−j(kxx+kyy+kzz), Dzoe

−j(kxx+kyy+kzz))

= −jkxDxoe
−j(kxx+kyy+kzz) − jkyDyoe

−j(kxx+kyy+kzz) − jkzDzoe
−j(kxx+kyy+kzz)

= −j(kx, ky, kz) · (Dxo, Dyo, Dzo)e
−j(kxx+kyy+kzz) = −jk · D̃.

Likewise, if

Ẽ = Eoe
−jk·r = Eoe

−j(kxx+kyy+kzz) = (Exo, Eyo, Ezo)e
−j(kxx+kyy+kzz)
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then

∇× Ẽ = (
∂

∂x
,
∂

∂y
,
∂

∂y
)× (Exoe

−j(kxx+kyy+kzz), Eyoe
−j(kxx+kyy+kzz), Ezoe

−j(kxx+kyy+kzz))

= (−jkx,−jky,−jkz)× (Exoe
−j(kxx+kyy+kzz), Eyoe

−j(kxx+kyy+kzz), Ezoe
−j(kxx+kyy+kzz))

= −jk× Ẽ.

The vector-algebraic relations above, repeated in the margin (after cancel-

ing out some common terms), are known as plane-wave form of Maxwell’s

equations. Plane-wave form of

Maxwell’s equations:

−jk · D̃ = ρ̃

k · B̃ = 0

k× Ẽ = ωB̃

−jk× H̃ = J̃ + jωD̃.

• Plane-wave form ME in the margin provide us with the constraints such

plane waves satisfy in various types of propagation media categorized

according to ǫ, µ, and σ.

• Focusing first on the case ρ̃ = J̃ = 0 and σ = 0 (source free and

non-conducting), the equations simplify as

k · D̃ = 0

k · B̃ = 0

k× Ẽ = ωB̃

−k× H̃ = ωD̃.

The first two constraints tell us that wave vector k is necessarily or-

thogonal to both D̃ = ǫẼ and B̃ = µH̃.

– Hence, the plane waves satisfying the above equations will be

TEM.
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• Cross-multiplying the third equation with k and substituting from the

fourth equation we get

k× (k× Ẽ) = ωµk× H̃ = ωµ(−ωD̃) = −µǫω2
Ẽ.

But we also have

k× (k× Ẽ) = −(k · k)Ẽ
since vectors k and Ẽ are perpendicular as shown in the margin —

k̂

k̂ × (k̂ × E)

E

k̂ × E

Also, the vector identity

A×(B×C) = (C·A)B−(B·A)C

leads to the same result.

cross-multiplying Ẽ twice by k = kk̂ produces −Ẽ times k2 ≡ k · k!

– The above lines are compatible if and only if

k · k = ω2µǫ ⇒ k̂ · k̂ = 1 and k = ω
√
µǫ,

which is the dispersion relation of TEM plane-wave solutions of

Maxwell’ equations Plane-wave form of

Maxwell’s equations:

k · D̃ = 0

k · B̃ = 0

k× Ẽ = ωµH̃

−k× H̃ = ωǫẼ.

∝ e−jω
√
µǫk̂·r

with

k̂ · Ẽ = 0 and k̂ · H̃ = 0.

as well as (according to the last two equations in the margin)

H̃ =
k̂ × Ẽ

η
and Ẽ = ηH̃× k̂ with η =

√

µ

ǫ
.

• TEM plane wave solutions obtained above correspond to undamped

uniform plane waves when the wavevector k obeying the dispersion

relation k · k = ω2µǫ is real valued.
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• Same results also describe damped plane waves and/or non-uniform

plane waves with complex valued k:

– Damped waves: if k̂ is real but k = ω
√
µǫ is complex valued with

a negative imsaginary part - e.g., in Ohmic conductors

– Non uniform waves: if k̂, obeying k̂ · k̂ = 1 is a complex valued

unit vector - e.g., with surface waves, evanescent waves ... to be

studied over the next few weeks

• Example: Non-uniform plane waves with real valued k · k

– Consider k · k = ω2µoǫo where the right hand side is real valued

and equal to the square of ω/c.

– Let k = kr + jki where kr and ki are real valued.

– Then k · k = (kr · kr − ki · ki) + j2kr · ki = ω2µoǫo leading to the

constraints

kr · kr − ki · ki = ω2µoǫo

kr · ki = 0.

– For instance k = (kx, ky, kz) = (2π, 0,−jπ) will comply with these

constraints with kr = (2π, 0, 0) and ki = (0, 0,−π) and ω2µoǫo =

3π2 , describing a non-uniform plane wave with a phasor

e−jk·r = e−j(2πx−jπz) = e−j2πxe−πz
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that propagates in x direction with a wavelength of λ = 2π/kx = 1

m and decays in z direction ... namely a “surface wave” propagat-

ing along, say, z = 0 surface.

◦ Translating the wave pahsor back to time domain, we see that

it will be described as

Re{e−jk·rejωt} = Re{e−j2πxe−πzejωt} = e−πz cos(ωt− 2πx).

10


