15 Plane-wave form of Maxwell’s equations, prop-
agation in arbitrary direction

Having seen how EM waves are generated by radiation sources and how spher- % —
ical TEM waves develop a “planar” character over increasingly large regions w5
as they propagate away from their sources, it is time to shift our attention "-.“‘ _______________ . | h%
to propagation and guidance phenomena using a plane-wave formalism. E— — A'

Perhaps the most “practical” rationalization of this switch from spherical ?HPB“ D
to plane-wave emphasis is that waves produced by compact sources invariably kS .
“look” planar at the scales of practical receiving systems (that will study near
the end of this course) situated afar. i resne

e We wish to study wave solutions of Maxwell’s equations exhibiting the : :

planar phasor form i»"fi’"»; 2
E =E,c /%" = ¢E e /T W

and time-domain variations

Re{Ee™'} = Re{E,e/“ k1)1
= é|E,|cos(wt —k-r+ LE,)
where wave vector k is to be found in compliance with w and Maxwell’s

equations according to some specific “dispersion relation” including the
details of the propagation medium.



— For simplicity, the above phasor has been declared to be linearly
polarized. Circular or elliptic polarized wave fields can be con-
structed later on via superposition methods.

e Linearly polarized wave field phasor above can be expanded as

E = Eoe_jk'r — Eoe_j(kx$+kyy+kzz)

assuming a wave vector

k = (ky, ky, k) = &k, + Gk, + 2k

expressed in terms of its projections (ky, ky, k.) along the Cartesian
coordinate axes (x,y, z).

e A special case we are familiar with is
ke =k, =0,k >0, when k = k.2 = k2 and e /*" = ¢ /¥

as in plane TEM waves travelling in 4z direction having a

2T W
wavelength \ = = and propagation speed v, = —.

k

— Likewise, the case
ky=hk.=0,k, >0, when k = k,& = ki and e /5" = ¢ /%

corresponds to plane TEM waves travelling in +x direction with
the same wavelength and propagation speed.
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e The general case with non-zero components (k,, ky, k,) corresponds to
a plane wave propagating in the direction of unit vector

_k (kxakakz> . 21
== Wherek:yk\:\//~<:§+/~c§+k§=7

and also having the same wavelength and propagation speed as above.

x>

Wavelength A\ now describes the shift invariance of the wave field in
spatial k direction, i.e., the propagation direction.

k - r = const.

Example 1: A plane wave electric field phasor is specified as

E _ 26—j(37rx—47ry) X

m

Determine the propagation direction k, wavenumber k = k|, wavelength A = 27”

and wave frequency f = 5= assuming a propagation speed ¢ = 3 X 10% m/s.

Solution: Contrasting E with e (k=2 +kutk:2) we note that
rad rad
ky=3m—, ky = —4m—, k., = 0.
m m
Hence, wave vector
rad

and wave number

d
k=[] = \ /2 + 2+ k2 = /(307 + (4m)? + 0% = V252 = B~

m




The propagation direction is specified by the unit vector

~ k3w —A4ny
k=—-=———=>=0.62 —0.8y.
k; - 0.6 — 0.8y
The wavelength is
2T 27
A=—=—=04
k 5% H
Since
W
c=v,=—
Pk
in general, it follows that
g rad

w=ke=5mrx3x10® =21 x 7.5 x 108 —
S

and N
f= 5= 750 x 10% Hz = 750 MHz.

™

e Based on what we learned in ECE 329, we recognize that the wave
analyzed in Example 1 must have been propagating in free space.

e What are the constraints on wave vector k for plane waves propagating
in arbitrary media?



To answer the above question, we will return to macroscopic-form
Maxwell’s equations written in phasor form (see margin) and ex-
amine under which conditions phasor solutions

x e—jk-r

can be applicable for all the field quantities in the absence of source
currents J and their accompanying p.

e First, we note that in view of relation

~

D:eE,

we can have plane-wave solutions of the form

~

D =D, %" and E = E, e /¥"
if and only if € does not depend on position r (why?).

e Likewise, relation

B =uH,

implies plane-wave solutions

B = B,e %" and H = H,e /k*

if and only if u does not depend on position r (why?).

V-D =)

V-B =0
VxE = —jwB
VxH = J+jwD

where (constitutive rela-
tions)

D = ¢E
B = uH
J. = oE.

k - r = const.




e In a homogeneous region where €, u, and o are, by definition, inde-
pendent of r, plane-wave solutions of phasor-form Maxwell’s equations
given in the margin become possible provided that

—jk-D = p

—jk-B = 0
—jkxE = —jwB
—jkxH = J+ jwD.

We have obtained these vector-algebraic relations from phasor-form
Maxwell’s equations in the margin after replacing the vector-differential
operator V by the vector-algebraic operator —jk.

The justification of this simple procedure is as follows:

If

D = Doe_jk'r = DOG_‘j(k‘Tx_l_kyy_‘_kzz) = (DZEOJ Dy07 Dzo>e_j(kx$+kyy+kzz)

then
5 o 0 0

_ —jkxone_j (kpr+kyy+kzz) jkyDyoe_j(ka+kyy+kzz) . jkzDzoe_j (kpr+kyy+k,z)

—j(kyx+kyy+k —j(kyx+kyy+k,z —j(kyx+kyy+k.z
one j(kg yY ZZ)JDyOe J(kg yY Z)aDzoe J (ke yY z))

~

— _J(k$7 ]{:y’ k‘z) . (on’ Dy07 Dzo)e_j(kx$+kyy+kz2) — _Jk . D
Likewise, if
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then
o 0 0

VxE =

)

Exoe—](k‘x:ﬁ—l—k‘yyjtkzz)’ Eyoe—](k‘xm—l—k‘yyjtkzz) EZOG_](kxx+kyy+kzz))

— (—jkxa _jkya _sz> X (Exoe_j<kxx+kyy+kZZ)7 Eyoe—j(ka;x—i—kyyj%zz), Ezoe_j(kxx+kyy+kZ2))

= —jk x E.

The vector-algebraic relations above, repeated in the margin (after cancel-
ing out some common terms), are known as plane-wave form of Maxwell’s
equations.

e Plane-wave form ME in the margin provide us with the constraints such
plane waves satisfy in various types of propagation media categorized
according to €, u, and o.

~

e Focusing first on the case p = J = 0 and ¢ = 0 (source free and
non-conducting), the equations simplify as

k-D = 0
k-B =0
kxE = wB
—kxH = wD.

The first two constraints tell us that wave vector k is necessarily or-
thogonal to both D = eE and B = pyH.

— Hence, the plane waves satisfying the above equations will be

TEM.

Plane-wave form of
Maxwell’s equations:

—jk-D =
k-B 0
- )



e Cross-multiplying the third equation with k and substituting from the
fourth equation we get

k x (k x E) = wuk x H=wu(—wD) = —uew’E.
But we also have
kx(kxE)=—-(k- -kE
since vectors k and E are perpendicular as shown in the margin —

cross-multiplying E twice by k = kk produces —E times k% = k - k!

— The above lines are compatible if and only if
k-k=uwpe = kok= land k = w4/ €,

which is the dispersion relation of TEM plane-wave solutions of

Maxwell” equations )
~ e JwynekT

with

k-E=0 and £-H = 0.

as well as (according to the last two equations in the margin)

kxE - -
. and E=nH X k with n= ay
n €

ﬂ:

e TEM plane wave solutions obtained above correspond to undamped
uniform plane waves when the wavevector k obeying the dispersion
relation k - k = w?pe is real valued.

8

Also, the vector identity
Ax(BxC)=(C-A)B—(B-A)C

leads to the same result.

Plane-wave form of
Maxwell’s equations:

k-D = 0
k-B =0
kxE = wyH
—k x H = weE.



e Same results also describe damped plane waves and/or non-uniform
plane waves with complex valued k:

— Damped waves: if i is real but k = w 1€ is complex valued with
a negative imsaginary part - e.g., in Ohmic conductors

— Non uniform waves: if /2:, obeying k-k=1isa complex valued
unit vector - e.g., with surface waves, evanescent waves ... to be
studied over the next few weeks

e Example: Non-uniform plane waves with real valued k - k

— Consider k - k = w?u,e, where the right hand side is real valued
and equal to the square of w/c.

— Let k =k, + jk; where k, and k; are real valued.
— Then k -k = (k, - k, — k; - k;) + 52k, - k; = w? 1€, leading to the
constraints
k, -k — ki - ki = w’pio€,
k. -k, =0.

— For instance k = (k,, ky, k.) = (27,0, —j7) will comply with these
constraints with k, = (2,0,0) and k; = (0,0, —m) and w? .6, =
372 | describing a non-uniform plane wave with a phasor

e—jk~r _ 6—](27m—j7rz) _ 6—]27Tx6—7rz



that propagates in x direction with a wavelength of A = 27 /k, = 1
m and decays in z direction ... namely a “surface wave” propagat-
ing along, say, z = 0 surface.

o Translating the wave pahsor back to time domain, we see that
it will be described as

Re{e /KTl = Refe /2™ e ™ e/ = 7™ cos(wt — 2m).

10



