7 Hertzian dipole fields

e We concluded last lecture with the retarded potential solutions
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. Lo L _ Mo cos(wt — kr) .
A(I‘) _ E]AZ - 3 A(I‘,t) 47T[AZ . z

)

of a z directed Hertzian dipole.

e We noted that these oscillatory solutions describe spherical waves by
virtue of the e™#*" dependence of the potential phasor on r:

— the variable r measures distance in all directions away from the
origin, as opposed to, say, x measuring distance only along one
coordinate axis labelled as x.

Thus, while the phasor variation e ** describes a plane wave, the pha-

sor e /¥ describes a spherical wave (see margin).

We will next determine the magnetic and electric fields produced by a Hertzian
dipole.



e To calculate the magnetic field phasor B we will make use of
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in spherical coordinates.
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Expanding the determinant, we obtain

B=VxA

Consequently;,

e To obtain the accompanying electric field phasor we will next employ

Ampere’s law

with J = 0, which is true at all locations outside the Hertzian dipole.

In that case
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Notice, the wave field
H(r) = ¢H,(r)

of the Hertzian dipole is
purely “azimuthal” — this is
the direction the right-hand-
rule would give if the right-
hand-thumb were directed in
the direction of dipole cur-

rent.
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e This is a very complicated looking result.

— Fortunately, many of the terms above are important only at very
small values of r!



o If were to drop all of the terms in E and H above except for those
1

varying as -, we would be left with
~ e_jkr N - e—jl{?T’ .
E = jn,/kAzsin6 0 and H = jlkAzsinf 0,
r Amr

which are the only terms of the fields of the Hertzian dipole that matter
at large distances (of interest for communication and remote sensing

purposes).

— They are called the radiation fields of the Hertzian dipole, and
the remainder (the terms which have been dropped) are called the

storage fields. Radiation fields:
— The reasoning behind this terminology is as follows: B AL ee—ﬂﬂ“é
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computed with the full expressions for E and H gives the same H — jIkAzsin ee_jkr </A5
result as that computed with only the simplified radiation fields. r

— What that means is the remaining parts of E and H (storage
fields) do not contribute to the transport of energy away from the
dipole.

— They only represent a local energy exchange (and storage) between
inductive and capacitive attributes of the dipole — recall that the

5



dipole is both a filament having some inductance and a capacitor
with two reservoirs for charge storage.

In many applications of radiation theory we only need to focus on the radi-
ation fields.

Fortunately, the expressions for radiation fields are simple and have fea-
tures resembling the plane TEM waves that we are already familiar with.
Let’s see what these features are:

1. The phasors are orthogonal and
ExH o0 x¢=r

points in the radial direction 7 of the spherical wave propagation just
as in plane TEM waves.

2. The magnitude of H can be obtained by dividing the magnitude of E
by the intrinsic impedance 7, just as for plane TEM waves.

3. Conversely, the magnitude of E can be obtained by multiplying the
magnitude of H by the intrinsic impedance 7, just as for plane TEM
waves.

4. The direction of H can be deduced from the direction of E (and vice
versa) by a 90° rotation and enforcing the right-hand-rule of having
E x H* point in r direction.

Radiation fields:
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On the other hand, these spherical TEM waves radiated by the Hertzian
dipole differ from uniform plane TEM waves by the facts that:

1. Field amplitude is not constant in the propagation direction because of
% dependence.

2. Field amplitude is not constant in the direction orthogonal to the prop-
agation direction because of sinf dependence.

As such, a Hertzian dipole radiates TEM waves which are non-uniform
as well as spherical (non-planar).

As such, Hertzian dipole radiation is said to be anisotropic!

e Radiation is strong — forms a “beam”, so to speak — in the broadside
direction of # = 90° (with respect to the dipole axis),

e Radiation vanishes for § = 0°,180° along the dipole axis.

— In short, radiation strength scales with Azsin#f, a foreshortened
version of length Az of the dipole “seen” from an angle 6 with
respect to the dipole axis. More on this later on...

Radiation fields:
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