5 Vector calculus in spherical coordinates E

In studies of radiation from compact antennas it is more convenient to use
spherical coordinates instead of the Cartesian coordinates that we are
familiar with. In this lecture we will learn

r cos 0

1. how to represent vectors and vector fields in spherical coordinates,

2. how to perform div, grad, curl, and Laplacian operations in spherical < sin @ sin [
coordinates. rsin 0 cos ¢ -
e A 3D position vector
r=(z,y,2)
with Cartesian coordinates (x,y, z) is said to have spherical coordinates
(1,0, @) where
4 N/~ In terms of spherical coordinates, Cartesian coordi

nates can be expressed as

length r = |r| = /22 +y2 + 22

IRV T x = rsinfcos ¢

zenith angle § = tan . y = rsinfsing

: 1Y
azimuth angle ¢ = tan 2. z = rcosb. J

Ratios x/r = sinfcos ¢, y/r = sinfsin ¢, and z/r = cosf are referred

to as direction cosines as they represent the cosine of the angle between
vector r = (z,y, z) and the z-, y-, and z-axes, respectively.
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e In Cartesian coordinates we have mutually orthogonal unit vectors

A A A

I? y?z

pointing in the direction of increasing Cartesian coordinates x, y, z,
respectively.

e Likewise, in spherical coordinates we have mutually orthogonal unit
vectors I
T, 0, ¢ rsin 6 cos ¢

pointing in the direction of increasing coordinates r, 6, ¢, respectively.  ypitpectors 7, f.and ¢ shown
in red, green, and blue point

e However, unlike z, ¢, 2z, the unit vectors r, 6, ¢ are not global — in mutually orthogonal direc-
tions of increasing spherical

rather they are local in the sense that their directions depend on the c¢oordinates r, 6, and ¢, re-
local coordinates. spectively, such that 0 x ¢ = 7.
Note that 7, f,and ¢ are local
unit vectors (i.e., coordinate

— The local nature of 7, 6, ¢ becomes clear when they are expressed dependent) unlike the global
unit vectors 7, y, and Z of the

ng
x

A r xr,Y,z n . i N
ro=—-= M = xsinf cos ¢ + ysinfsin ¢ + 2 cos f
T r
N —Y,T, O A . A
¢ = —( Y )z—xsmngrycosgb

0 = éx 7 =2xcosfcosp+ ycoshsing — zsinb

Make sure you understand each of the terms above with reference
to the figure shown in the margin.
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e In Cartesian coordinates we have an infinitesimal volume element E A
SR S VAR
dV = dxdydz v (2,9 # Ay, 2)
(7.y, =
which is used in 3D volume integrals and often denoted as “d’r”. (z+ A2y,
— Note that dV is the volume of a rectangular box formed by the '
intersection of constant coordinate surfaces of two infinitesi- g
mally close points having a separation vector Any vector

R R R A(r)=A, 2+ Ayy+ A2,
dr = zdx + ydy + zdz.
where A;, Ay, and A, are the projec-
tions of A(r) on red, green, and blue

e Infinitesimal volume element d°r expressed in terms of spherical coor- #rows aligned with &.j, 2, respectively.

. . : 1 N
dinates and their increments is : y /.
7 sin 06 e
dV = (dr) (rd9) (r sin 0d¢) = r*sin Odrdfde.
r i rdf
— Once again dV' is the volume of a rectangular box formed by the | , %
intersection of constant coordinate surfaces of two infinitesi- | /(5%
mally close points having a separation vector /e o

Any vector

dr = #dr + 6rdf + ¢r sin do.

A(r) = A7 + Agh + Ay,

— Note that in this case constant coordinate surfaces are no longer where 4,, 45, and A, are the projec-

tions of A(r) on red, green, and blue

planar globaﬂy, but over infinitesimal dimensions of dV the sur- arrows aligned with 7,0, ¢, respectively.
faces will appear locally planar.



/" In Cartesian coordinates div, curl)

and grad
0A, 0A, O0A
LA — x Yy z
v ox i oy 0z

0 0 0
A, A, A
ov . oV . 8V2

V = -
v 8azx+8yy+8z

are obtained by applying the del operator

G,
V:(ax’ay’az)

“algebraically” to vectors

A=Ac+Ay+ Az

~

/" In spherical coordinates div, curl, and grad

J(sin 0 Ay) 1 0Ay

1 9(r*A,) 1
V-A = —
r2  Or * rsinf 00 * rsinf O¢
P 0 )
r2sinf rsind r
_ 0 0 0
VXA = 5 55 9

A, rAy rsinfdAy

ov . 10V . 1 oV,
vV = §T+;899+Tsin98gb¢

are obtained for vectors

A = A+ Agh + Ay

and scalars

Vir,0,¢)

as indicated above. Note that there is no del operator

that “works algebraically” in spherical coordinates.
/

and scalars
V(z,y, 2) ~

as indicated above.
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Example 1: Verify the 7 component of V x A formula in spherical coordinates by
showing that it corresponds to

A .dl
lim Je A
Ac—0 AC

where Ag is the enclosed area of contour C' orthogonal to 7 marked in the margin
by blue and green edges.

Solution: In spherical coordinates

P 6 é
r2sinf rsinf r
_ 0 0 0

A, 1Ay rsinfA,

and, therefore, 7 component of V x A is

1 0 0 1 0 0

> sinﬁ(%r sinfAy — 8—¢7“A9) = rsinQ(% singA, — 8—¢A9).

(VxA)-7 =

To show that this expression corresponds (as it should by definition) to
A - dl
lim Je A
Ac—0 AC

where circulation path C and enclosed area A¢ are as described in the question
statement, we first note that

Ac = (rsin0d¢)(rdb)
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to second order in increments df and d¢. Also,
7{ A-dl = Ap(r,0,¢)rdd+ Ay(r,0 + db, ¢)rsin(d + db)d¢
C
—Ap(r, 0,0+ dp)rdd — Ay(r, 0, ¢)rsin Od¢

starting on the green edge. Thus
§C A-dl . A@(Ta 87 ¢) - A@(Ta 97 ¢ + d¢)

Ac rsin fdo
Ay(r,0+db, ¢)sin(0 + db) — Ay(r, 0, ¢) sinb
+ :
r sin 6d0
which yields in the limit of vanishing df and d¢
1 1
8A gsinﬁA(bE(VxA)-f

_rsin€8—¢ 0t rsin 6 00

as requested.

See Appendix A and B in Rao for a complete coverage of the
derivation of div, grad, curl in spherical coordinates.



Example 2: Verify the gradient procedure

ov . 10V . 1 oV -

V=5 g e a0

in spherical coordinates.

Solution: Independent of the coordinate employed, the total differential dV and the
gradient VYV of a scalar field V(r) are related by

dV =VV -dr.

In the Cartesian coordinate system where V' = V' (x,y, z), this relation expands as

dV = 8—vdx + 8_de + 8—vdz =VV - (2dzx + ydy + 2dz)
ox oy 0z

and implies
ov._ oV, oV
VV = 8xx+ 8yy+ 8,22'

Likewise, for spherical coordinates where V' =V (7,0, ¢), we have

oV oV oV . ~ A
dV = 5 dr + 50 do + a—¢d¢ = VV . (fdr + 0rdf + ¢r sin 0d¢)

implying that o Lov Loy

Vo= e e a0




Example 3: Show that the Laplacian of a scalar field V(r, 8, ¢) is specified as

18,,0V 1 9 1% 1 9V
v?‘f _ 2 :
B ) (Sinb5g) + Zanre 0¢*

r2or:  Or r2 sin 6 00

Solution: Since the Laplacian is the divergence of a gradient, we start by noting that

oV +1@Vé+ 1 8‘/&
or r 00 rsinf 0¢ =

Applying to this vector the divergence formula

i@(rQ(VV)T)+ 1 9(sinf(VV)y) 1 9(VV),

VV =
vV 72 or rsin 6 00 +TSiIl(9 0¢
_ 1065 1 o665 1 Ol a)
r2  or rsin 6 00 rsinf  0¢

the above result for the Laplacian is readily obtained.




