3 Lorenz gauge and inhomogeneous wave equa-
tion

Last lecture we found out that given the static sources

p=p() and J=J(r),

static fields

E=-VV and B=V x A

satisfying
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e Over the next two lectures we will explain why in case of time-varying

sources

p=p(rt) and J=

the full set of Maxwell’s equations (see margin) can be satisfied by

E=-VV - 8—A and
ot

in terms of delayed or retarded potentials specified as
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the solution of inhomogeneous wave equation
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the solution of inhomogeneous wave equation
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e Note that retarded potentials
V(r,1)

are essentially weighted and delayed sums of charge and current densi-

ties

is the speed of light in free space.

and A(r, 1)
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pr;t) and  J(r,?),

while the fields E and B are obtained by spatial and temporal deriva-
tives of the potentials.

e Alternatively, we can first use
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and then find the anti-derivative of Ampere’s law
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to determine E outside the region where J is non-zero, bypassing the
use of scalar retarded potential V(r,¢) — that is the most common

approach used in radiation studies.

We will next verify the procedure outlined above and the start discussing its
applications in radiation studies.



e The full set of Maxwell’s equations is repeated in the margin for con-
venience. Divergence-free nature of B compels us to define a vector

potential A via V-B =
B=VxA V X E
just as before. Inserting this in Faraday’s law we get vV x H
0 0A
E=—VxA = Vx(E+—)=0.
V X 5V x (E+ 5 )
Evidently
A A
E + 8_ is curl free, so it must be true that E + 8_ =—-VV,
ot ot
or IA
E=-VV - —
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in terms of some scalar potential V.

V-D =

Main difference from statics appears to be the need for fwo poten-
tials, instead of one, to represent the electric field E under time-
varying conditions. We continue ....

e Now substitute

B=V x A and E:—V‘/—({;—il



in the remaining two Maxwell’s equations — Gauss’s and Ampere’s

laws 9
V- (e,E)=p and V x (u,'B)=J + E(EOE),
that we have not touched yet. Upon substitutions we get
0A 0 0A
eV - (=VV — E) = p and V X z X A = p,J + uoe%(—vv — E),
V(V-A) - VA
which looks like a big mess.
But if we specify
V- -A=-— ﬂoeo%—‘; (Lorenz gauge)
these messy equations simplify as
0’V 0 O?A
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which we recognize as the inhomogeneous or “forced” wave equations
for V and A stated earlier on.

— The derivation of the decoupled wave equations above hinged upon
our use of Lorenz gauge which reduces to the Coulomb gauge,
V - A =0, in static situations.

— Note also that the forced wave equations reduce to Poisson’s equa-
tions under time-static conditions.
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— Since we know how to solve the unforced wave equation from ECE
329, and since we know how to solve the Poisson’s equation, it is
now a matter of combining those methods to solve the forced wave
equations obtained above.

Just a few additional comments on gauge selection before we go on (next
lecture):

e Gauge selection amounts to deciding what to assign to V - A.

e We can make any assignment that pleases us. This is like choosing the
ground node in a circuit problem. Whatever simplifies the problem the
most is the best gauge to use.

— Lorenz gauge is clearly a good one since it led to decoupled wave
equations which are very convenient to work with.

We can attack the decoupled equations for V' and A one at a time.



