2 Static fields and potentials

Static fields

E=E(r), D=D(r), B=B(r), H=H(r)

independent of the time variable ¢ are produced by static source distributions

p=p(r) and J=J(r)

which only depend on position vector r = (z,y, 2). In case of static fields

Maxwell’s equations simplify and decouple as

Gime-dependent: )
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Electrostatics: (curl-free)

V-D =p
VxE =0
D = ¢E

Magnetostatics: (divergence-free, solenoidal)

V:-B =0
VxH =]
\_ B = uH




Important vector identities:
o V x (VV)=0
e V- (VXA)=0

e VXVXA=V(V-A)- VA

-

Electrostatics: (curl-free)

V-D =p
VXE = 0
D = ¢ E

Since all curl-free fields can be expressed in
terms of a scalar gradient, we choose

E=-VV,

where

V=V(z,y,z)

\s called electrostatic potential.

/
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Magnetostatics: (divergence-free)

V-B =0
VxH =1]
B = u,H

Since all divergence-free fields can be ex-
pressed in terms of a curl, we choose

B=VxA

where

A=A(z,y,2)

\s called vector potential.
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Electrostatics: (curl-free)

V-D =p
VxE =0
D = ¢ E
such that
E=-VV.
Electrostatic potential
V=V(x,y,z2)

signifies the kinetic energy available (i.e.,
stored potential energy) — total energy be-
ing %mv - v + gV — per unit charge in a
static field measured from a convenient refer-

\ence point (ground). )

~

Magnetostatics: (divergence-free)

V-B =0
VxH =]
B = u,H
such that
B=VxA.

If we apply the constraint V-A = 0 — known
as Coulomb gauge and discussed in more
detail next lecture — then the vector po-
tential

A=A(z,y,z)

can be interpreted as kinetic momentum mv
available — total (canonical) momentum be-
ing mv + gA — per unit charge in a static

field.
\ %

e In general, given V' and A, it is easy to compute E and B.

e How do we get V and A (and thus E

and B) from p and J?

Before addressing this question in full generality let’s review the electric
field E and the electrostatic potential V' of a stationary point charge.



Coulomb’s law specifies the electric field of a stationary charge () at the

Q

B dme,|r|?

origin as

E(r)

as a function of position vector r = (z,y, z) with a magnitude

Force exerted by Q on q:
: F =qE

with electric field

r| =7 = /22 + 12+ 22 and direction unit vector 7 = —
-

e This Coulomb field E(r) will exert a force F = ¢E(r) on any stationary E Q ;

dre,|r|?

“test charge” ¢ brought within distance r of @) (see margin).

With multiple Q’s superpose
multiple E’'s

e The associated electrostatic potential is

Q

- 47re,|r|

V(r)

with an implied ground for |r| — oo.
Verification: this can be done in two ways,
1. by computing —VV = E(r), or
2. by computing the line integral [7°E - dl = V(r) along any path.

In HW 1 we will ask you to verify the potential of the point charge
using both methods.



Poisson’s equations:

4 V4 ~

Electrostatics: Since Magnetostatics: Since

VXE=0 = E:_v‘/7 V-B=0 = ]3:V><1A7

we have we have
D=¢E and V-D=p B=uyH and VxH=1J
implying implying
Vo (—eVV)=p = VIV =-1L Vx(u,'VxA)=T = VA =—pul
. o |
atter using

V-A =0 (Coulomb gauge)

in the expansion of

\\ VXVxA=V(V-A)-V’A )
e We can get V' and A from p and J by solving the Poisson’s equations

VQV:—B and VA = —p,J

€o

where
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Vi=V.-V= is Laplacian operator.




The solution of electrostatic Poisson’s equation

vy = -2

60
with an arbitrary p(r) existing over any finite region in space can be obtained

V(r) = / p(r') By’

drre,lr — 1|

as

where d®r’ = dz'dy’dz’ and the 3D volume integral on the right over the
primed coordinates is performed over the entire region where the charge
density is non-zero (see margin).

e Verification: The solution above can be verified by combining a num-
ber of results we have seen earlier on:

1. Electric potential V(r) of a point charge @ at the origin is
@

B dre,|r|

V(r)

Clearly, this singular result is a solution of Poisson’s equation
above for a charge density input of

p(r) = Qd(r).

(a) Using ECE 210-like terminology and notation, the above re-
sult can be represented as

1
d7e,|r|

d(r) — |Poisson’s Eqn| —

The general solution
Viz,y,2)
is obtained by performing a
3D volume integral of
p(@',y', 2)
47T60|(x7 Y, Z) - (I,a y,a Z/)|

over the primed coordinates.
In abbreviated notation

&ér' = do'dy'd?

denotes an infinitesimal vol-
ume of the primed coordinate

system.



identifying the output on the right as a 3D “impulse response”

of the linear and shift-invariant (LSI) system represented

by the Poisson’s equation.

Because of shift-invariance, we have

é(r—r') —

1

Poisson’s Eqn| —

dre,|r — ']

meaning that a shifted impulse causes a shifted impulse re-

sponse.

The shifted impulse response is usually called “Green’s
function” G(r,r’) in EM theory.

Because of linearity, we are allowed to use superpositioning

arguments like

/p(r’)é(r—r')d?’r’ = p(r) — |Poisson’s Eqn

1
— /p(r’)4ﬁ€0|r — I‘/|0l3r' = V(r),

which concludes our verification. Note how we made use of

the sifting property of the impulse (from ECE 210) in above

calculation.



Solutions of Poisson’s equations:

& p(r’)

Electrostatics:

vy =L

€o

implies a general solution

dme,lr —

\

Wﬂ:/ pW)wm¢

/

Magnetostatics:
VZA = —p,J

implies a general solution

/

4rr|r — 1|

-

Alr) = / pod (r')

d°r’ .

)

These results indicate that potentials

V(r) and Af(r)

are appropriately weighted sums of

p(r) and J(r)

in convolution-like 3D space integrals.
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Quasi-static approximation:

A

z ) p(r',t)
r r

Electro-quasi-statics: Magneto-quasi-statics:
E~-VV B~V xA
:LLO r, 3./
! ¢ Ar,t) =~ / ————~d’r
V(r,t) ~ / p(r7 ) d?)r/ ( ) 47-(-‘1. _ I'/‘
4re,r — 1/ .
\{or slowly varying J(r,?).
\or slowly varying p(r, ¢). J
Validity of these quasi-static results requires that
L
> —
c

where T is the period of the highest frequency in source functions p(r,t) and
J(r,t), while L is the size of the region around the source region where quasi-
static approximation is acceptable. This condition cannot be satisfied as
L — o0, in which case the required “fix” is to replace the potential functions
above by their “retarded potential” counterparts — see next lecture.
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