
SOME USEFUL MATHEMATICAL FORMULAS

APPENDIX A

Some Useful Mathematical Formulas

A.I Useful Vector Identities

a· (b x c) == b· (c x a) == c· (a x b),

a x (b x c) == b(a· c) - c(a· b),

\7 x \71)) == 0,

\7 . \7 x A == 0,

\7 . ('ljJA) == A . \7'ljJ + 1/)\7 . A,

\7 x ('ljJA) == \7'ljJ x A + 'ljJ\7 x A,

\7 . (A x B) == B . \7 x A - A . \7 x B,

\7(A . B) == (A . \7)B + (B . \7)A + A x \7 x B + B x \7 x A,

\7 x (A x B) = (B . \7)A - (A . \7)B + A \7 . B - B\7 . A,

\7 x \7 x A == \7\7 . A - \72A.

In Cartesian coordinates, \72A can be decomposed as
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(A.I)

(A.2)

(A.3)

(a.4)

(A.5)

(A.6)

(A.7)

(A.S)

(A.9)

(A.I0)

(A.II)

because \72 commutes with X, y, and z, i.e., \72x == x\7 2 and so on. This
is not true in other curvilinear coordinates; hence, this decomposition is not
allowed.

A.2 Gradient, Divergence, Curl, and Laplacian in
Rectangular, Cylindrical, Spherical, and General
Orthogonal Curvilinear Coordinate Systems

(a) Rectangular System; x, y, z:

(A.12)

(A.13)

(A.14)

(A.15)
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(b) Cylindrical System; p, ¢, z:
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(A.16)

(A.17)

8'4;" 18'4;" 8'4;"
\71/J = 8PP + P8fj> fj> + 8z z,

\7 . A = ~~(pA ) + ~ 8A", + 8A z

p dp P p 8¢ 8z '

(
18Az 8A¢) " (8A p 8A z ) " 1(8 8A p ) "V' x A = -- - - p + - - - ¢ + - -(pA¢) - - z,
p 8¢ 8z Bz 8p p 8p 8¢

(A.18)

(A.19)

(c) Spherical System; T, 8, ¢:

(A.20)

(A.21)

\7 x A = -~- [~(SineA",) - 8Ao] f + ~ [_.1_8A r
- ~(rA",)] {)

r SIn 0 ao a¢ r SIn e a¢ ar

+ ~ [~(rAo) - 8A r
] ¢, (A.22)

r ar BO

(A.23)

(d) General Orthogonal Curvilinear Coordinate System; Xl, X2, X3:

The metric coefficients (hI, h2 , h3 ) in a general orthogonal curvilinear
coordinate system are defined by

(A.24)

where ds, denotes a differential length in the direction of dx : Moreover,
the variable, Xi may not have the dimension of length. One way of finding
the metric coefficients is to express the rectangular variables in terms of the
variables of that system:

X = Y(Xl' X2, X3),

Y = Y(Xl' X2, X3),

Z = Z(Xl' X2, X3)'
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Then

[(~X ) 2 + (~)2 + (~)2] 1/2 dx.,
OXi OXi OXi

i==I,2,3.
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(A.25)

Hence,

[(
8X)2 (8y)2 (8Z)2]1/2

h-== - + - + -
z OXi OXi OXi .

(A.26)

For instance, in an elliptical coordinate system,

x == c cosh u cos v,

Y == c sinh u sin v.

If (Xl, X2, X3) represent (u, u, z ), then by applying (26), we have

(A.27)

(A.28)

hI == h2 == c(sinh2 u cos2 v + cosh/ u sin ' V}1/2 == c(cosh/ U - cos2 V )1/2,

(A.29)
h3 == 1. (A.30)

In general, for any orthogonal curvilinear coordinate system,

3 1 87jJ "
\11/) == '" --Xi,c: h· ox-

i=1 2 2

(A.31)

(A.32)

(A.33)

(A.34)

A.3 Useful Integral Identities

In the following formulas, V is a volume bounded by a closed surface S.
The unit vector it is norrnal to 5 and points outward.

(a) Gradient Identity:

f "V¢dV = f ¢ndS.

v s

(A.35)



574

(b) Gauss' Divergence Theorem:

f V · A dV = fA. nss.
v s

(c) Vector Stokes' Theorem:

f V x A dV = f ii x AdS.
v s

(d) First Form of Green's Theorem:

f[<PI V2<P2 + V<PI · V<P2] dV = f n' <PI V<P2 dS.
v s

(e) Second Form of Green's Theorem:

f[<PI V2<P2 - <P2V2<pddV = f ii- (<PI V<P2 - <P2V<Pd dS.
v s

(f) Vector Green's Theorem:

f [P · V x V x Q - Q · V x V x P] dV
v
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(A.36)

(A.37)

(A.38)

(A.39)

=f [Q x V x P - P x V x Q] · ii dS. (A.40)

s

The above may all be proved from Gauss' divergence theorem.

(g) Stokes' Theorem:
If S is an unclosed surface bounded by a contour C, then

j(V x A)· ndS = fA. dl,
s c

j n x V <P dS = f <P dl.
s c

(A.41)

(A.42)
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(h) Gauss' Theorem in Two Dimensions:
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J(tJ. A) as = fA. ii dl, (A.43)

5 C

The above identities for tensors and dyads can also be readily established
(see Appendix B).

A.4 Integral Transforms

(a) Fourier:

00

f(x) = 2
1
-;r Jdy e

ix y f(y),
-00

00

j(y) = Jdx e-ix y f(x),

00

b(x - x') = ~ J dy ei(x-x')y.
27r

-00

(b) Cylindrical Hankel:

oc

f(p) = Jd>" >..In(>..p)j(>..),
o

ex>

j(>..) = Jdp pJn(>..p)f(p),

o
CXJ

b(p; p') =Jd>" >''In(>..p)Jn(>''p'),

o

where In(x) is a cylindrical Bessel function of n-th order.

(c) Spherical Hankel:

1/2 00

f(r) = (~) Jd>..>..2jn(>..r)j(>..),

o

1/2 00

j(>..) = (~) Jdrr2jn(>..r)f(r),

o

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)
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00

b(r - r') 2J 2 . . ,
--2- = - d); >.. In(>..r)Jn(>..r ),

r 1r
o

where jn(x) is a spherical Bessel function of n-th order.

(d) Hilbert:

00

1 J f(r)g(t) = -P.V. dr-,
1T r-t

-00

00

f(T) = -~P.V. Jdt g(t) ,
1T t - T

-00

00

( ') 1 J 1 1b t - t = -2"P'V, dr --P.V.-,-,
1r r-t t-T

-00
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(A.52)

(A.53)

(A.54)

(A.55)

where P.V.~ is regarded as a generalized function (see Appendix C).

(e) Radon:
A Radon transform in an n-dimensional space is defined as

00

j(p,~) = J f(x) e5 (p - ( x) dx:

-00

(A.56)

where x is a position vector in an n-dimensional space, ~ is a unit vector, and
dx implies a volume integral in an n-dimensional space. The inverse Radon
transform is different in even and odd dimensions. In even dimensions, it is

1 J Joo 1 ( a)n-l - "
f(x) = (211"i)n d~ dp p _ ~ . x op f(p,O,

1~1=1 -00

(A.57)

where the d~ integral implies integrating over all angles of i, i.e., d~ is an
elemental area on the surface of a unit sphere. In odd dimensions,

1 1 J (o)n-l - "
f(x) = '2 (211"i)n-l d~ op f(p, 0 Ip=(.x·

1~1=1

(A.58)


