34 Line impedance, generalized reflection coefficient, Smith Chart

Copyright ©2021 Reserved — no parts of this set of lecture notes (Lects. 1-39) may be reproduced without permission from the author.

• Consider a TL of an arbitrary length l terminated by an arbitrary load

$$Z_L = R_L + j X_L$$

as depicted in the margin.

Voltage and current phasors are known to vary on the line as

$$V(d) = V^+ e^{j\beta d} + V^- e^{-j\beta d}$$
 and $I(d) = \frac{V^+ e^{j\beta d} - V^- e^{-j\beta d}}{Z_o}$

In this lecture we will develop the general analysis tools needed to determine the unknowns of these phasors, namely V^+ and V^- , in terms of source circuit specifications.

• Our analysis starts at the load end of the TL where V(0) and I(0) stand for the load voltage and current, obeying Ohm's law

$$V(0) = Z_L I(0).$$

Hence, using V(0) and I(0) from above, we have

$$V^{+} + V^{-} = Z_{L} \frac{V^{+} - V^{-}}{Z_{o}} \Rightarrow V^{-} = \frac{Z_{L} - Z_{o}}{Z_{L} + Z_{o}} V^{+}.$$
1

– Define a load reflection coefficient

$$\Gamma_L \equiv \frac{Z_L - Z_o}{Z_L + Z_o}$$

and re-write the voltage and current phasors as

$$V(d) = V^+ e^{j\beta d} [1 + \Gamma_L e^{-j2\beta d}]$$
 and $I(d) = \frac{V^+ e^{j\beta d} [1 - \Gamma_L e^{-j2\beta d}]}{Z_o}.$

– Define a generalized reflection coefficient

$$\Gamma(d) \equiv \Gamma_L e^{-j2\beta d}$$

and re-write the voltage and current phasors as

$$V(d) = V^+ e^{j\beta d} [1 + \Gamma(d)]$$
 and $I(d) = \frac{V^+ e^{j\beta d} [1 - \Gamma(d)]}{Z_o}.$

– Line impedance is then defined as

$$Z(d) = \frac{V(d)}{I(d)} = Z_o \frac{1 + \Gamma(d)}{1 - \Gamma(d)}$$

for all values of d on the line extending from the load point d = 0all the way to the input port at d = l.

With the dependence on d of Z(d) as well as $\Gamma(d)$ tacitly implied, we can re-write this important relation and its inverse as

$$\frac{Z}{Z_o} = \frac{1+\Gamma}{1-\Gamma} \quad \Leftrightarrow \quad \Gamma = \frac{Z-Z_o}{Z+Z_o}.$$

"Load reflection coefficient" is a well justified name for Γ_L since the forward traveling wave with phasor $V^+ e^{j\beta d}$ gets reflected from the load.

The term "generalized reflection coefficient" is also well justified even if there is no reflection taking place at arbitrary d — the reason is, if the line were cut at location d and the stub with the load were replaced by a lumped load having a reflection coefficient equal to $\Gamma(d)$, then there would be no modification of the voltage and current variations on the line towards the generator.

Each location d on the line has an impedance Z and a reflection coefficient Γ linked by these equations. **Properties of** Z(d) = R(d) + jX(d) and $\Gamma(d) = \Gamma_L e^{-j2\beta d}$ linked by the relations

$$\frac{Z}{Z_o} = \frac{1+\Gamma}{1-\Gamma} \quad \Leftrightarrow \quad \Gamma = \frac{Z-Z_o}{Z+Z_o}$$

1. For real valued Z_o and $R(d) \ge 0$, $|\Gamma(d)| \le 1$:

Verification:

$$|\Gamma| = \frac{|Z - Z_o|}{|Z + Z_o|} = \frac{|(R - Z_o) + jX|}{|(R + Z_o) + jX|} = \frac{\sqrt{(R - Z_o)^2 + X^2}}{\sqrt{(R + Z_o)^2 + X^2}}.$$

Since with $R \ge 0$

$$\sqrt{(R - Z_o)^2 + X^2} \le \sqrt{(R + Z_o)^2 + X^2} \implies |\Gamma| \le 1.$$

2. Since

$$|\Gamma| = |\Gamma_L|$$
 and $\angle \Gamma(d) = \angle \Gamma_L - 2\beta d$

property (1) implies that $\Gamma(d)$ is a complex number which is constrained to be on or within the unit-circle on the complex plane.

3. Relationships

$$\frac{Z}{Z_o} = \frac{1+\Gamma}{1-\Gamma} \quad \Leftrightarrow \quad \Gamma = \frac{Z-Z_o}{Z+Z_o}$$

between Γ and Z are known as **bilinear transformations** — here the term *bilinear* refers to the numerator *as well as* the denominator of these transformations being *linear* in the variable being transformed (from right to left).

Bilinear (or Möbius) transformations are known to have the general property of mapping **straight lines** into **circles** on the complex number plane.

• Bilinear transformations between

$$\Gamma \equiv \Gamma_r + j\Gamma_i \equiv (\Gamma_r, \Gamma_i)$$

and

$$\frac{Z}{Z_o} \equiv z \equiv r + jx,$$

known as **normalized impedance**, lead to an ingenious graphical aid known as the **Smith Chart**.

 On a Smith Chart (SC), straight lines on the right hand side of the complex number plane (see margin), represented by

$$r = \text{const.}$$
 and $x = \text{const.}$.

are mapped onto circular loci of

$$(\Gamma_r, \Gamma_i) = \Gamma = \frac{Z - Z_o}{Z + Z_o} = \frac{z - 1}{z + 1}$$

occupying the region of the plane bordered by the unit circle.

Circles corresponding to z = const. + jx and z = r + jconst.constitutea **gridding** of the unit circle and its interior. By means of this **grid**, the normalized impedance z corresponding to every possible Γ can be directly read off the SC.

• SC can be constructed by first noting that

$$\Gamma = \frac{z-1}{z+1} = \frac{r+jx-1}{r+jx+1} = \frac{[(r-1)+jx][(r+1)-jx]}{(r+1)^2+x^2} = \frac{(r^2+x^2-1)+j2x}{(r+1)^2+x^2} \equiv \Gamma_r + j\Gamma_r + j\Gamma$$

thus

$$\Gamma_r = \frac{(r^2 + x^2 - 1)}{(r+1)^2 + x^2}$$
 and $\Gamma_i = \frac{2x}{(r+1)^2 + x^2}$,

and by direct substitution we can verify the following equations

$$(\Gamma_r - \frac{r}{r+1})^2 + \Gamma_i^2 = (\frac{1}{r+1})^2$$
 and $(\Gamma_r - 1)^2 + (\Gamma_i - \frac{1}{x})^2 = (\frac{1}{x})^2$

describing r and x dependent circles, respectively, on complex plane constituting the grid lines of the SC.

- Typical SC usage:
 - 1. Locate and mark z(0) normalized load impedance on the SC, which places you at a distance $|\Gamma(0)| = |\Gamma_L|$ from the origin of the complex plane (and the SC), at an angle of $\theta = \angle \Gamma(0)$.
 - 2. Draw a constant $|\Gamma| = |\Gamma_L|$ circle with a compass going through point z(0) on the SC (the read circle in the margin). Rotate clockwise on the circle by an angle of

$$2\beta d = \frac{4\pi}{\lambda} d \operatorname{rad} = \frac{d}{\lambda/2} 360^{\circ}$$

to land on z(d) that can be read off using the SC gridding.

-1

SmithChart

 Γ_r

- Rotation by an angle of $2\beta d$ amounts to rotation by full circle for $d = \frac{\lambda}{2}$, rotation by half circle for $d = \frac{\lambda}{4}$, rotation by quarter circle for $d = \frac{\lambda}{8}$, etc.
- 3. Also,

$$y(d) \equiv \frac{1}{z(d)}$$

which is the **normalized line admittance** is located on the SC on the constant $|\Gamma| = |\Gamma_L|$ circle across the point corresponding to z(d).

Verification: Since

$$z = \frac{1+\Gamma}{1-\Gamma} \quad \Rightarrow \quad y = \frac{1}{z} = \frac{1-\Gamma}{1+\Gamma} = \frac{1+(-\Gamma)}{1-(-\Gamma)};$$

hence whereas z is the transform of Γ , y is the transform of $-\Gamma$, having the same magnitude as Γ but an angle off by $\pm 180^{\circ}$.

- Therefore, "reflect" on the SC across the origin to jump from z(d) to y(d) if you need the value of the normalized admittance.

Our first SC example is given next.

Example 1: A transmission line is terminated by an inductive load of

$$Z_L = 50 + j100\,\Omega.$$

Determine the input impedance $Z_{in} = Z(l)$ of the line at a distance

$$d = l = \frac{\lambda}{8}$$

if the characteristic impedance of the line is $Z_o = 50 \Omega$. Also determine the normalized input admittance y(l).

Solution: The normalized load impedance is

$$z(0) = \frac{Z_L}{Z_o} = \frac{50 + j100}{50} = 1 + j2$$

Enter z(0) on the SC and then rotate clockwise by $\frac{\lambda}{8} \Leftrightarrow$ (quarter circle) to obtain the normalized input impedance

$$z(l) = 1 - j2,$$

and the normalized input admittance

$$y(l) = 0.2 + j0.4$$

right across z(l). The input impedance is

$$Z_{in} = Z_o z(l) = 50(1 - j2) = 50 - j100\,\Omega.$$

Blow up of the SC's used in Example 1:

- A SmithChartTool linked from the class calendar (a javascript utility that requires a Safari or Firefox browser to work properly) marks and prints z(d) in **red** and y(d) in **magenta** across from z(d) on the constant- $|\Gamma_L|$ circle (shown in red) as in the above examples. Also
 - printed in **black** is the real valued normalized impedance $z(d_{max})$ discussed in the upcoming lectures (also known as VSWR).
 - also printed in **red** is $|\Gamma_L| \angle \Gamma(d)$ where the second entry is expressed in terms of an equivalent $\frac{d}{\lambda}$ such that $\frac{d}{\lambda} = 0.5$ corresponds to an angle of 360°. This way of referring to $\angle \Gamma(d)$ will be convenient in many SC applications that we will see.