29 Bounce diagrams

e Last lecture we obtained the impulse-response functions

Vi(z,t) = T1,0(t — %) +Tpo(t + g - %l>]
and 9]
I(z1) = 18t = ) = Tud(t + - = )]

for the voltage and current in the TL circuit shown in the margin where

% — circuit response with

an arbitrary input f(¢) is obtained by convolving these with f(¢) (as
shown in Example 1 in last lecture).

the source is matched to the line so that 7, =

e The impulse-response for V(z,t) is depicted in the margin in the form
of a bounce diagram, in which

— the trajectories of the impulses constituting the impulse response
are plotted, with

o z axis in the horizontal, and

o t axis in the vertical extending from top to bottom

— and coeflicients of each impulse noted in the diagram next to the
trajectory lines.

— the blue line sloping down on the top is a depiction of forward
propagating impulse 7,0(t — 2),
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— the next line down is the depiction of backward propagating im-
pulse 7,I',6(t + 2 — 2).

Bounce diagrams are graphical representations of impulse re-
sponse functions derived in TL circuit problems, and are pri-
marily used to determine the impulse response functions,
rather than the other way around as will be illustrated below.

We show in the margin a circuit with an arbitrary

Zy
R,+Z,

R, and 1, =

for which the bounce diagram is not terminated at ¢ = %l because the
backward propagating impulse on the line arriving at z = 0 at time
t = %l is reflected from z = 0 with a reflection coefficient of

Ry, — 2%,
I R, +Z,

— Reflections of negative-going impulses incident on the source cir-
cuit are justified because these impulses just see the resistor R, at
the generator end — the source voltage f(t) = §(t) is by then just
a short is series with R, — unmatched to Z,, just like the forward
going impulses seeing a load R; unmatched to Z, and reflecting
with a coefficient

Rp — Z,

L:RL—I—ZO.
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e Once the bounce diagram for voltage has been constructed as shown
above, then the impulse response can be written by inspection as

= " z 21
V(zt) = 7, ) (Tly)"s(t — ——n=)
n=0
+7,T; i(rLr )18t + = — (n+ 1)2—5).
g =0 g v v
Also,
. > . 2 21
I(z,t) =2 Y (I1Ty)"s(t - ~—n~)
n=0
_Dop i(r T)"6(t+ = — (n+ 1)2—1)
ZZ)'Ln:O L9 v v’

— It can also be shown that the first term of V(z,t) above is derived
from the formal solution of the equation

21
V() =7,0(t) + 0,V (t — ;)

which is obtained from
5(t> T V(07 t)

10,t) = =——
g

enforced at z = 0. We have effectively by-passed such a formal
approach to the problem by using the bounce diagram technique.
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e These awful series formulae above are hardly needed in most appli-
cations when only the first few terms of the series are sufficient for
reasonably accurate results (like in the next example).



Example 1: Consider a TL circuit where Z, = 50, v = ¢, [ = 2400 m, R,
Ry =100€. Determine and plot V(1200,t) if f(t) = u(t).

Solution: For this circuit

ZO R - Zo R - ZO
Ty = =1, I'y=-2 =1, and I = =222 —
Ry + Z, R, + Z, Rp + Z,
Also, the transit time across the TL is
[ 2400 m
— = 8 us.

v 300 x 105m /s

=0, and

1
5

From the bounce diagram shown in the margin, the impulse response for z = 1200

m (the location marked by the vertical dashed line) is found to be

1 1 1 1
V(1200,1) = 8(t — 4) + 38(t — 12) = 58(t — 20) — 56(t = 28) + £0(t — 36) + - -

Replacing the () in this expression with the unit-step u(t), the specified source

function f(t), we get

V(1200,t) = u(t —4)+ lu(t —12) — lu(t —20) — lu(t —28) + lu(t —36)+ -

3 3 9 9

which is plotted in the margin.

z = 1200 m

(z,1)
—
V(zt) | Ry =100
u(t) I(z,t ;Zo =500
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Bounce di agram

e Note that as t — oo, V(1200,¢) — 1 V in Example 1, as if DC condi-
tions prevail and the TL becomes a pair of wires in the lumped circuit
sense.

— DC steady-state corresponds to w = 0 and signal wavelength A —
oo. In that limit [ < A is always valid and TL can be treated like
an ordinary lumped circuit.

— Of course this simplification can only occur with f(¢) oc u(t), or
its delayed versions, which are all asymptotically DC in t — o0
limit. The simplification does not apply for f(t) = sin(wt)u(t), for -
example.




Example 2: In the TL circuit described in Example 1, determine V(z,t) and I(z,1)
for a new source signal f(t) = rect(%)+2rect(=L), T =1 ps. Plot V(z,¢) versus
zatt =3 pus and t = 11 us.

Solution: With 7, =1, Ty = —1, 'y = 3, and 2 — 16 us, we obtain, by convolving
with the general impulse response, the voltage response

V(z,t) = Z(—%)”f(t I nl6) + % Z(—l)"f(t + % — (n+1)16)

C

V(e3) = 3 () B~ 2 —n16) + 3 S~ B+~ (n+1)16),
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which is plotted in the margin using f(¢) = rect(t) 4+ 2rect(t — 1). Likewise, at

t =11 us,
V(e 1) = S (-3) f(11 = 2 = n16) 4 3 3 ()" F(11+ 2 — (n + 1)16).
n=0 n=0
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