28 Distributed circuits and bounce diagrams o e reme  mopsori

set of lecture notes (Lects. 1-39) may be re-
produced without permission from the author.

Last lecture we learned that voltage and current variations on TL’s are gov-
erned by telegrapher’s equations and their d’Alembert solutions — the latter
can be expressed as
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e In this lecture we will learn how to solve distributed circuit prob-
lems containing TL segments and two terminal elements such as resis-
tors and voltage (or current) sources. In solving the problems, we will
apply the usual rules of lumped circuit analysis at element terminals
and treat the TL’s in terms of d’Alembert solutions above.

e Consider a TL with a characteristic impedance Z, extending from z = 0
to z = [, where a two-terminal source circuit (e.g., a receiving antenna)
modeled by a Thevenin equivalent with voltage fi(t) and resistance
R, is connected between the TL terminals at z = 0 and a load (e.g.,
a receiver circuit) modeled by a resistance Ry terminates the line at
z =1 (see margin).



— We want to determine voltage and current signals V(z,t) and
I(z,t) on the TL and the load Ry for time ¢ > 0 in terms of
source signal f;(¢) assuming that f;(¢) =0 for t < 0.

Using the d’Alembert solutions V(z,t) and I(z,t) from above at z = I,
we have
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from which we obtain
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is the load reflection coefficient in the TL circuit. We can re-write
the d’Alembert solution for V(z,t) and I(z,t) in terms of only f(¢) as
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Assuming that f;(t) = 0= f(¢) for t <0, we can relate f(t) to fi(t) in
t > 0 interval using the KVL equation at z = 0 that states

fi(t) = R,1(0,t) + V(0,1),
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which is, using V(z,t) and I(z,t) at z = 0,
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Now, since f(t — %l) =0fort — %l < 0, we find out that for the epoch
(or time interval) 0 < t < %l,
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is the injection coefficient of the TL circuit!.

e Thus, for the epoch 0 < t < %l, we have the voltage and current
solutions
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on the line.

'Note how f(t) appears to be related to f;(t) according to a voltage division rule with Z, representing
the resistance across which voltage f(t) is measured.
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— So far f;(t) function is arbitrary and the above results would also
be valid for f;(t) = §(t), Dirac’s impulse, in which case
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would be the voltage and current impulse response functions
of the TL circuit for the 0 <t < %l epoch.

e To extend the impulse response functions above to the “next epoch”
2 <t <2 we note that at z = 0 the KVL equation with f;(t) = §(t)
reads as
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which can be re-arranged as
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where for f(t — 2L) we used a delayed copy of f(t) = 7,fi(t) solution
for f(t) from the previous epoch in view of the time delay %l contained
within f(¢t — 2).
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— Hence, solving this for f(t), we find, for this epoch,
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is the source reflection coefficient of the TL circuit.

— Substituting f(¢) for the epoch %l <t < 4;[ within voltage and

current formulae
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we obtain the “extended” voltage and current impulse response

functions
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o At this point the algebra is pretty messy, but a straightforward
pattern is emerging (to obviate the need for algebraic analysis
for the upcoming epochs) that is best appreciated with the
help of bounce diagrams explained next:

— A bounce diagram is a plot of the “trajectories” of traveling im-

pulses found on transmission line segments excited by impulse in-
puts.

The horizontal axis represents position z of the traveling impulses
while time ¢ is represented by a downward pointing axis.

The first slanted line on the top of the diagram, representing the

traveling impulse
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(first term of h,(t) = V/(z,t)) is “reflected” at time ¢ = £ from load
R; to turn into a backward propagating impulse
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represented by the second line of the diagram.

The backward propagating impulse reaches z =0 at t = %ﬁ and is
reflected once more with a reflection coefficient
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to become a forward propagating impulse
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represented by the third line of the diagram.

o Reflection at R, is in effect the same physical process as re-
flection at IRy, and therefore its coeflicient I'; is identical with
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— The bounce diagram is advanced in time with further reflections 5(t) [(zjt)X(Z’t) % VL% i
occurring at both ends. 0 AL

— We show the calculated weights of traveling impulses directly on
the diagram just above the slanted lines representing the trajec-
tories of each traveling impulse (each having a lifetime of ¢/v)
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e Using the bounce diagram, the full expressions for the voltage and
current impulse response functions of the circuit can be written as
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e Although these series formulae look daunting, only the lower order
terms usually matter — that is true because |[I'f| < 1 and |I'y| <1 and
thus (I'tI'y)" is typically a rapidly diminishing function of n (unless
the ckt is “dissipation free” and resonant, a concept explored in Lecture
31).

e We typically rely on the bounce diagram technique more so than the
series expressions developed above. This will be illustrated by several
examples in the next lecture.

— The main idea is to combine delayed versions of the circuit input
fi(t) with the impulse weights indicated on the bounce diagram,

since, in general, the convolution 6(t — T%,) x f;(t) = fi(t — T%.) for

any z-dependent delay such as =, = — %g, etc...

R!J ﬂ'% t)
+

Cg\/\/v V(Z,t) Zo
ST I(zts

0

Bounce di agram

S |~



