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Last lecture we learned that voltage and current variations on TL’s are gov-

erned by telegrapher’s equations and their d’Alembert solutions — the latter

can be expressed as

V (z, t) = f(t− z

v
) + g(t +

z

v
) and I(z, t) =

f(t− z
v)

Zo
− g(t + z

v)

Zo

in terms of

v =
1√
LC

and Zo =

√

L
C

and functions f(t) and g(t) corresponding to signal waveforms propagated in

+z and −z directions, respectively.
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• In this lecture we will learn how to solve distributed circuit prob-

lems containing TL segments and two terminal elements such as resis-

tors and voltage (or current) sources. In solving the problems, we will

apply the usual rules of lumped circuit analysis at element terminals

and treat the TL’s in terms of d’Alembert solutions above.

• Consider a TL with a characteristic impedance Zo extending from z = 0

to z = l, where a two-terminal source circuit (e.g., a receiving antenna)

modeled by a Thevenin equivalent with voltage fi(t) and resistance

Rg is connected between the TL terminals at z = 0 and a load (e.g.,

a receiver circuit) modeled by a resistance RL terminates the line at

z = l (see margin).
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– We want to determine voltage and current signals V (z, t) and

I(z, t) on the TL and the load RL for time t > 0 in terms of

source signal fi(t) assuming that fi(t) = 0 for t < 0.

• Using the d’Alembert solutions V (z, t) and I(z, t) from above at z = l,

we have

V (ℓ, t)

I(ℓ, t)
=

f(t− ℓ
v) + g(t + ℓ

v)

f(t− ℓ
v )

Zo
− g(t+ ℓ

v )

Zo

= Zo

f(t− ℓ
v) + g(t + ℓ

v)

f(t− ℓ
v)− g(t + ℓ

v)
=

VL

IL
= RL,

from which we obtain
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g(t +
l

v
) =

RL − Zo

RL + Zo︸ ︷︷ ︸

f(t− l

v
) ⇒ g(t) = ΓLf(t−

2l

v
)

ΓL

where

ΓL =
RL − Zo

RL + Zo

is the load reflection coefficient in the TL circuit. We can re-write

the d’Alembert solution for V (z, t) and I(z, t) in terms of only f(t) as

V (z, t) = f(t−z

v
)+ΓLf(t+

z

v
−2l

v
) and I(z, t) =

f(t− z
v)

Zo
−ΓLf(t +

z
v − 2l

v )

Zo
.

• Assuming that fi(t) = 0 = f(t) for t < 0, we can relate f(t) to fi(t) in

t > 0 interval using the KVL equation at z = 0 that states

fi(t) = RgI(0, t) + V (0, t),
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which is, using V (z, t) and I(z, t) at z = 0,

fi(t) = Rg (
f(t)

Zo
− ΓLf(t− 2l

v )

Zo
)

︸ ︷︷ ︸

+ f(t) + ΓLf(t−
2l

v
)

︸ ︷︷ ︸

.

I(0, t) V (0, t)

Now, since f(t− 2l
v
) = 0 for t− 2l

v
< 0, we find out that for the epoch

(or time interval) 0 < t < 2l
v ,

fi(t) = Rg
f(t)

Zo
+ f(t) ⇒ f(t) =

Zo

Rg + Zo
︸ ︷︷ ︸

fi(t)

τg

where
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τg =
Zo

Rg + Zo

is the injection coefficient of the TL circuit1.

• Thus, for the epoch 0 < t < 2l
v , we have the voltage and current

solutions

V (z, t) = τgfi(t−
z

v
)+ΓLτgfi(t+

z

v
−2l

v
) and I(z, t) =

τgfi(t− z
v)

Zo
−ΓLτgfi(t +

z
v − 2l

v )

Zo

on the line.
1Note how f(t) appears to be related to fi(t) according to a voltage division rule with Zo representing

the resistance across which voltage f(t) is measured.
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– So far fi(t) function is arbitrary and the above results would also

be valid for fi(t) = δ(t), Dirac’s impulse, in which case

V (z, t) = τgδ(t−
z

v
)+ΓLτgδ(t+

z

v
−2l

v
) and I(z, t) =

τgδ(t− z
v
)

Zo
−ΓLτgδ(t +

z
v
− 2l

v
)

Zo

would be the voltage and current impulse response functions

of the TL circuit for the 0 < t < 2l
v

epoch.

• To extend the impulse response functions above to the “next epoch”
2l
v < t < 4l

v , we note that at z = 0 the KVL equation with fi(t) = δ(t)

reads as
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Bounce diagram
δ(t) = Rg (

f(t)

Zo
− ΓLf(t− 2l

v )

Zo
)

︸ ︷︷ ︸

+ f(t) + ΓLf(t−
2l

v
)

︸ ︷︷ ︸

.

I(0, t) V (0, t)

which can be re-arranged as

δ(t) = (1 +
Rg

Zo
)f(t) + (1− Rg

Zo
)ΓL f(t−

2l

v
)

︸ ︷︷ ︸

,

τgδ(t−
2l

v
)

where for f(t − 2l
v
) we used a delayed copy of f(t) = τgfi(t) solution

for f(t) from the previous epoch in view of the time delay 2l
v contained

within f(t− 2l
v
).
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– Hence, solving this for f(t), we find, for this epoch,

f(t) = τgδ(t) +
Rg − Zo

Rg + Zo
︸ ︷︷ ︸

ΓLτgδ(t−
2l

v
),

Γg

where

Γg =
Rg − Zo

Rg + Zo

is the source reflection coefficient of the TL circuit.

– Substituting f(t) for the epoch 2l
v
< t < 4l

v
within voltage and

current formulae

V (z, t) = f(t−z

v
)+ΓLf(t+

z

v
−2l

v
) and I(z, t) =

f(t− z
v
)

Zo
−ΓLf(t +

z
v
− 2l

v
)

Zo

we obtain the “extended” voltage and current impulse response

functions

V (z, t) = τgδ(t−
z

v
)+ΓLτgδ(t+

z

v
−2l

v
)+ΓgΓLτgδ(t−

z

v
−2l

v
)+ΓgΓ

2
Lτgδ(t+

z

v
−4l

v
)

and

I(z, t) = Z−1
o [τgδ(t−

z

v
)−ΓLτgδ(t+

z

v
−2l

v
)+ΓgΓLτgδ(t−

z

v
−2l

v
)−ΓgΓ

2
Lτgδ(t+

z

v
−4l

v
)]

respectively.
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◦ At this point the algebra is pretty messy, but a straightforward

pattern is emerging (to obviate the need for algebraic analysis

for the upcoming epochs) that is best appreciated with the

help of bounce diagrams explained next:
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Bounce diagram– A bounce diagram is a plot of the “trajectories” of traveling im-

pulses found on transmission line segments excited by impulse in-

puts.

– The horizontal axis represents position z of the traveling impulses

while time t is represented by a downward pointing axis.

– The first slanted line on the top of the diagram, representing the

traveling impulse

τgδ(t−
z

v
),

(first term of hz(t) = V (z, t)) is “reflected” at time t = ℓ
v

from load

RL to turn into a backward propagating impulse

τgΓLδ(t +
z

v
− 2ℓ

v
)

represented by the second line of the diagram.

– The backward propagating impulse reaches z = 0 at t = 2ℓ
v and is

reflected once more with a reflection coefficient

Γg =
Rg − Zo

Rg + Zo
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to become a forward propagating impulse

τgΓLΓgδ(t−
z

v
− 2ℓ

v
)

represented by the third line of the diagram.

◦ Reflection at Rg is in effect the same physical process as re-

flection at RL and therefore its coefficient Γg is identical with

ΓL except for the replacement of RL by Rg.

– The bounce diagram is advanced in time with further reflections

occurring at both ends.

+
-

+

-

0

δ(t)

Rg I(z, t)

V (z, t)

zl

Zo

I(z, t)
RL

+

-

IL

VL

3l

v

τgΓ
3

LΓ
2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ
2

LΓg

τgΓ
2

LΓ
2

g

2l

v

4l

v

l

v

Bounce diagram
– We show the calculated weights of traveling impulses directly on

the diagram just above the slanted lines representing the trajec-

tories of each traveling impulse (each having a lifetime of ℓ/v)

• Using the bounce diagram, the full expressions for the voltage and
current impulse response functions of the circuit can be written as

V (z, t) = τg

∞∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2ℓ

v
)

+τgΓL

∞∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2ℓ

v
)

and

I(z, t) =
τg
Zo

∞∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2ℓ

v
)

− τg
Zo

ΓL

∞∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2ℓ

v
).
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• Although these series formulae look daunting, only the lower order

terms usually matter — that is true because |ΓL| ≤ 1 and |Γg| ≤ 1 and

thus (ΓLΓg)
n is typically a rapidly diminishing function of n (unless

the ckt is “dissipation free” and resonant, a concept explored in Lecture

31).
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Bounce diagram• We typically rely on the bounce diagram technique more so than the

series expressions developed above. This will be illustrated by several

examples in the next lecture.

– The main idea is to combine delayed versions of the circuit input

fi(t) with the impulse weights indicated on the bounce diagram,

since, in general, the convolution δ(t− Tz) ∗ fi(t) = fi(t− Tz) for

any z-dependent delay such as z
v
, z
v
− 2ℓ

v
, etc...
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