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• An x̂ polarized plane TEM wave propagating in z direction is depicted in the mar-

gin.

– A pair of conducting plates placed at x = 0 and x = d would not perturb
the fields except that charge and current density variations would be induced
on plate surfaces at x = 0 and x = d (on both sides) to satisfy Maxwell’s
boundary condition equations.
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• If charge and currents were confined only to interior surfaces of the plates facing one

another, fields E and H accompanying them would be restricted to the region in

between the plates, constituting what we would call guided waves.

– Such a guided wave field confined to the region between the plates will sat-
isfy Maxwell’s equations including a minor fringing component that can be
neglected when the plate width W is much larger than plate separation d.

In the following discussion of guided waves in parallel-plate transmission lines

(TL) we will assume W ≫ d and neglect the effects of fringing fields.

– Guided waves produce wavelike surface charge and current variations on plate
surfaces.

– Conversely, wavelike charge and current variations on plate surfaces would
produce guided wave fields.

It is sufficient to apply a time-varying current and/or charge density at some location
z on a parallel-plate TL — e.g., by a time-varying voltage or current source — in
order to “excite” the TL with propagating guided fields.
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How such excitations propagate away from their “source points” on TL systems will
be our main subject of study for the rest of the semester.

• In a parallel-plate TL we ignore any fringing fields and assume that
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E = x̂Ex(z, t) and H = ŷHy(z, t)

occupy the region between the plates. For these fields uniform in x and

y, Faraday’s and Ampere’s laws reduce to scalar expressions

∇×E = −µ
∂H

∂t
⇒ ∂Ex

∂z
= −µ

∂Hy

∂t

and

∇×H = σE + ǫ
∂E

∂t
⇒ −∂Hy

∂z
= σEx + ǫ

∂Ex

∂t
.

• Now, multiply both equations by d and let Note that voltage drop

V =

∫

1

2

E · dl = Exd

is uniquely defined — inde-

pendent of integration path

— on constant z surfaces be-

cause with TEM fields

Bz = µHz = 0,

and consequently circulation

∮

C

E · dl = − d

dt

∫

S

B · dS = 0

when C is on constant z plane

and dS = ±dxdyẑ.

V ≡ Exd voltage drop from plate 2 to plate 1

to obtain

∂V

∂z
= −µd

∂Hy

∂t
and − d

∂Hy

∂z
= ǫ

∂V

∂t
+ σV.

• Next, multiply these with W and let

I ≡ HyW current in z-direction on plate 2

(because Jsz = Hy on plate 2) to obtain

W
∂V

∂z
= −µd

∂I

∂t
and − d

∂I

∂z
= ǫW

∂V

∂t
+ σWV.
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• We can re-write these equations as

−∂V

∂z
= L∂I

∂t
and − ∂I

∂z
= C∂V

∂t
+ GV

utilizing

L = µ
d

W
, C = ǫ

W

d
, G = σ

W

d

appropriate for the parallel-plate TL — we recognize these parameters

as inductance, capacitance, and conductance of the parallel plate TL. Telegrapher’s

equations:

−∂V

∂z
= L∂I

∂t

−∂I

∂z
= C∂V

∂t

– In the equations above the GV term accounts for Ohmic losses of

wave fields having to do with currents leaking between the wires

(plates) of the TL.

– Another possible loss term that we have not picked up — because

we assumed infinite conducting plates — is a missing RI term in

the right-hand-side of the first equation.

Rather than correcting for that at this stage, we will drop the GV term

from the second equation, and focus our attention for a while (until

the last day of the semester, in fact) on ideal lossless transmission lines

governed by the equations shown in the margin — they are known as

known as telegrapher’s equations1.

1Telegrapher’s equations were first compiled by Oliver Heaviside (of close-up method, unit-step, and
countless other contributions) in 1880’s. Telegraphy was being used worldwide by 1850’s as a means of
rapid communications.
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• Except for − ∂
∂z

on the left, the telegrapher’s equations look like the

V − I relations of inductors and capacitors (which is the best way of

remembering them). Telegrapher’s

equations:

−∂V

∂z
= L∂I

∂t

−∂I

∂z
= C∂V

∂t

where

C = ǫGF, L =
µ

GF
,

with “geometrical factor”

GF =
W

d
parallel-plate

=
2π

ln
b

a

coax

=
π

cosh
−1 D

2a

twin-lead

• The equations can be readily combined to obtain a 1D scalar wave

equation
∂2V

∂z2
= LC∂

2V

∂t2
.

In analogy to
∂2Ex

∂z2
= µǫ

∂2Ex

∂t2
,

the wave equation for V has d’Alembert wave solutions

V (z, t) = f(t∓ z

v
) where v ≡ 1√

LC
=

1√
µǫ

.

• In that case the second telegrapher’s equation demands

−∂I

∂z
= C∂V

∂t
= Cf ′(t∓ z

v
)

implying an anti-derivative

I(z, t) = ±Cv f(t∓ z

v
) = ±f(t∓ z

v
)

Zo

with

Zo ≡
1

Cv =

√
LC
C =

√

L
C =

1

GF

√

µ

ǫ
.
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• In summary, d’Alembert wave solutions of telegrapher’s equations are

V (z, t) = f(t∓ z

v
) and I(z, t) = ±f(t∓ z

v
)

Zo

with a propagation speed

v =
1√
LC

=
1√
µǫ

that equals the wave speed of the associated electric and magnetic fields,

and voltage-to-current ratio representing a characteristic impedance

Zo =

√

L
C =

1

GF

√

µ

ǫ
.

Telegrapher’s equations and their d’Alembert solutions provide us with a

“handle” on the following physics:

• Suppose that + and - terminals of a 3 V battery makes contact with

the terminals of a charge neutral TL at t = 0 as depicted in the margin.

We will assume that V (z, t) = I(z, t) = 0 on the TL for t < 0.

As soon as contact is made between the terminals of the battery and the

TL, the excess + and - charges on battery terminals will “spill onto” the TL

terminals as shown in the figure for t = 0+:
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• what really happens is,
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– electrons move from the - terminal of the battery onto the bottom

wire of the TL,

– replenished by an equal amount of electrons moving from the top

wire into the battery via its + terminal,

giving the overall impression of current flows I (in opposite direction

to electron motion) as marked on the two wires in the diagram.

– currents I and voltage V marked in the diagram are confined only

to location z = 0+ at t = 0+, while there is still zero current on

the rest of the TL!!!
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Having unequal currents on a length of wire is in conflict with our

notions from earlier circuit courses, but that’s because earlier courses

taught us “lumped-circuit analysis”, an approximate technique jus-

tified when it’s OK to ignore certain time delays of charge movements

in the circuit (when wire lengths are sufficiently short).

Having unequal currents on the TL wire is really what happens

– because, for instance, electrons at some z > 0 on the top wire will

start moving towards the battery terminal only after the neighbor-

ing electrons at z− deplete the region leaving some excess positive

charge.

Thus, currents I on the wires, and voltage V defined and measured

across the wires, spread out of z = 0 region at a finite speed v, in
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analogy with ripples spreading out on a pond surface when perturbed

by a falling pebble.

• Telegrapher’s equations and their d’Alembert solutions will

allow us to calculate how I and V evolve on the TL in quan-

titative terms.

To appreciate the distinction between lumped and distributed circuit anal-

ysis, we next develop a lumped circuit model of a very short length of a TL

over which lumped circuit notions may be applicable:

−∂V

∂z
= L∂I

∂t

−∂I

∂z
= C∂V

∂t

∆zC
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• Let us re-write the first telegrapher’s equation as

−∆V ≡ V (z, t)− V (z +∆z, t) = ∆zL∂I

∂t

after approximating the left side as a ratio of infinitesimals.

– This relation shows that in the current flow direction there is an

infinitesimal inductive voltage drop of ∆zL∂I
∂t

between points z

and z+∆z on the wire carrying current I ≡ I(z, t) ≈ I(z+∆z, t).

• Likewise, the second equation re-arranged as

−∆I ≡ I(z, t)− I(z +∆z, t) = ∆zC∂V
∂t

,

– this shows that an infinitesimal capacitor current ∆zC ∂V
∂t

flows out

of a node located between z and z +∆z on the wire with current

I into a node on the second wire at the same location.
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Evidently, a short section ∆z of the TL has an equivalent T-network with

1. a series inductance ∆zL carrying a current I(z, t) ≈ I(z +∆z, t), and

2. a shunt capacitance ∆zC carrying a voltage V (z + ∆z, t) ≈ V (z, t)

as shown in the margin.
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This lumped-circuit equivalent is only accurate for ∆z so small that

I(z, t) ≈ I(z +∆z, t) and V (z +∆z, t) ≈ V (z, t)

are both true, which is of course possible only if ∆z ≪ λ, λ being the shortest

wavelength in I(z, t) ∝ H(z, t) and V (z, t) ∝ E(z, t) waveforms. TL’s can also support non-TEM

modes having non-zero compo-

nents of Hz or Ez. These modes

are non-propagating (evanescent)

at low frequencies and remain lo-

calized near their excitation re-

gions (e.g., discontinuity points on

the line) if d <
λ

2
(pp TL) or if

a+ b <
λ

π
(coax). At high frequen-

cies when these modes cannot be

avoided with practical dimensions

d, a, and b, it may be practicable

to use them rather than the TEM

mode. Use single-wire waveguides

in that case instead of two-wire

TL’s.

• Going back to parallel-plate TL in TEM mode, observe that the total

power transported in the guide will be the Poynting vector E × H =

ExHyẑ times the cross-sectional area of the guide, namely, Wd.

Thus, power transported in z direction is

p(z, t) = WdEx(z, t)Hy(z, t),

= (Ex(z, t)d)(Hy(z, t)W ) = V (z, t)I(z, t)

the familiar formula from circuit theory.

Hence, the circuit theory formula

P =
1

2
Re{Ṽ Ĩ∗}

for average power will also hold in sinusoidal-steady state TL problems when

we use phasors Ṽ (z) and Ĩ(z) to represent the V (z, t) and I(z, t) waveforms.
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