25 Wave reflection and transmission

In this lecture we will examine the phenomenon of plane-wave reflections at
an interface separating two homogeneous regions where Maxwell’s equations
allow for traveling TEM wave solutions. The solutions will also need to
satisfy the boundary condition equations repeated in the margin. We will
consider a propagation scenario in which (see margin):

1. Region 1 where z < 0 is occupied by a perfect dielectric with medium
parameters 1, €1, and o1 = 0,

2. Region 2 where z > 0 is homogeneous with medium parameters uo, €,
and o9,

3. Interface z = 0 contains no surface charge or current except possibly
in o9 — oo limit which will be considered separately at the end.

® [n Region 1 we envision an incident plane-wave with linear-polarized field phasors

where

— F, is the wave amplitude due to far away source located in z — —o0 region,

— m =,/ and 81 = w\/mer.
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Fields above satisfy Maxwell’s equations in Region 1, but if there were no
other fields in Regions 1 and 2 boundary condition equations requiring
continuous tangential E2 and H at the z = 0 interface would be violated.

In order to comply with the boundary condition equations we postulate
a set of reflected and transmitted wave fields in Regions 1 and 2 as follows:

e In Region 1 we postulate a reflected plane-wave with linear-polarized field phasors

_ . N T'E,
E, = i['E,e’* and H, = —y—
m

including an unknown I' that we will refer to as reflection coefficient.
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— Note that the reflected wave propagates in —z direction (direction of H, and
the exponential terms have been adjusted accordingly).

e In Region 2 we postulate a transmitted plane-wave with linear-polarized field

phasors
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including an unknown 7 that we will refer to as transmission coefficient.

E, = i7E,e " and H; =4

— Note that the transmitted wave propagates in z direction, and

— since Region 2 is conducting we have

S
o9 + Jwes

Yo =/ (Jwps) (02 + jwes) = g + 7 Pa.
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e 'To determine the unknowns I' and 7 we enforce the following boundary
conditions at z = 0 where the fields simplify as shown in the margin:

1. Tangential E continuous at z = 0: This requires Ey,+ E,, = Etx,
leading to

1+DE,=7FE, = |[14+I=7

~

2. Tangential H continuous at z = 0: This requires ﬁ[iy +H,, = ﬁ[ty,

leading to
E, E,
1-T)—=7— = |[1-'=L47
m 72 i

Replacing 7 by 1 + I' in the second equation, we can solve for the
reflection coefficient as

2=
n2+1m

and substituting this in turn in the first equation we can solve for the
transmission coefficient as

2
n2+m

The results are summarized in the margin on the next page.
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Special cases: Reflection coeft.:

1. Region 2 is a perfect conductor with o9 — oo: In that case = 2 _?71,
ny — 0, and consequently 2t
= -1 and 7 =0. Transmission coeff.:

. , 212
Incident wave cannot penetrate the perfect conductor, and it reflects = Tt
totally back into Region 1 — we will study this idealized limiting case
more carefully later on. Memorize the I’ for-
Practical application of total reflection: marrors mula, and memorize

T as “one plus [".
2. Region 2 is the same as Region 1: In that case 1o = n;, and

consequently Above,
['=0 and 7=1.

231

This is the matched impedance case when no reflection takes place = €

and the incident wave is transmitted in its entirety. q
an

3. Region 2 is lossless, i.e., 09 = 0: Unless 19 = n; there will be -
reflected as well as transmitted waves. Ny = ﬂ
09 + JWeEy

Partial reflections can be reduced by applying a “anti-glare” coat-
ing! on the surface, a practice known as “impedance matching”.

IThis is a A\/4 thick layer of a material having a characteristic impedance given by /717, — the reason
for why this “quarter-wave matching” works will be discussed when we study transmission lines later on.
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Example 1: An plane-wave in vacuum,
E; = #V120me /77 L,
9

is incident at z = 0 on a dielectric medium with = 1, and € = 7¢,. Determine
the average Poynting vectors (S;), (S,), and (S;) of the incident, reflected, and

transmitted fields.

Solution: The intrinsic impedance of the second medium occupying z > 0 is

_ [Ho 2
T2 = %EO — 3770-

Therefore, the reflection coefficient is

2
F:772_771_§770_770

2
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and the transmission coeflicient is

1
T + 5

The reflected wave therefore has the field phasors
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The transmitted wave, likewise, has the field phasors

.4 . - 4 :
Etzg.f:\/lQOﬂe_jBQZ and H, = = GV 120me9%*

3'lo

and

1.4,31200 14,3 W
S} — LRefE, x FI*} — 25 ~ 5 oW
(St) Re{tx '} ()2770 “9'5) 9 m2

As for the incident wave

E; = £V120me /#* and H; = —y\/1207re ibrz

and 1120
(S;) = —Re{E x HI} = 25 il
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w

m

Nz

| —
[\

Note: We have
1.1 163 1.1 24 1
ST S = —( — —_) = —( — ) = —
S 18I = 5055+ 5530 = 3055 T 35
in compliance with energy conservation (as expected) — energy flux per unit

area of the transmitted and reflected waves add up the that of the
incident wave!




