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Since in perfect dielectrics the propagation velocity vp = v and the intrinsic

impedance η are frequency independent (i.e., propagation is non-dispersive),

d’Alembert plane wave solutions of the form

E = x̂f(t− z

v
) and H = ŷ

f(t− z
v)

η

are valid in such media.
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m(t)

m(t) cos(ωt)

• Consider a waveform

f(t) = m(t) cos(ωt),

where

– ω is some specific frequency having a corresponding period T = 2π
ω ,

– m(t) is some arbitrary signal (e.g., a voice signal, a message)

changing slowly compared to period T .

In that case,

– f(t) specified above can be called narrowband AM, and

– ω the carrier frequency of modulating cosine of the message

signal m(t).
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The corresponding x-polarized wave fields propagating in z direction

can then be represented as Field 1

E = m(t− z

v
) cos(ωt− βz)x̂ and H =

m(t− z
v)

η
cos(ωt− βz)ŷ

where β = ω
√
µǫ as usual1.

• With reference to the expressions above, we could say that the AM

wave field has an x-polarized carrier.

• By contrast, Field 2

E = m(t− z

v
) cos(ωt− βz)ŷ

represents an AM wave field with a y-polarized carrier, and so does Field 3

E = m(t− z

v
) sin(ωt− βz)ŷ

but with a carrier that has been time-delayed by a quarter period.

• Suppose Fields 1 and 3 above were transmitted simultaneously and

therefore superpose. In that case we will have a wave field with Circular

polarized

carrierE = m(t− z

v
)[cos(ωt− βz)x̂ + sin(ωt− βz)ŷ]

1In dispersive media where β is a non-linear function of ω, narrowband AM can propagate as

m(t− z

vg
) cos(ωt− βz)x̂ where vg ≡

∂ω

∂β

is known as group velocity — covered in detail in ECE 450.
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which has a circular polarized carrier. Since this is just a superpo-

sition of two d’Alembert waves, the accompanying H is easily found to

be

x

y
z

t = 0

t > 0

CIRCULAR POLARIZATION:

Field vector rotates instead
of oscillating. 

The rotation frequency is also 
the wave frequency.

cos(ωt− βz)x̂ + sin(ωt− βz)ŷ

RIGHT CIRCULAR

E

H = m(t− z

v
)[cos(ωt− βz)ŷ − sin(ωt− βz)x̂]/η.

– Circular-polarized AM wave fields just introduced are in some

practical applications better to use than the linear-polarized waves

because of, say, the peculiarities of a propagation medium (e.g,

Earth’s ionosphere or the interplanetary medium).

– Since a circular-polarized wave field is a linear combination of

linear-polarized waves, it has a phasor that is a linear combination

of phasors of its linear components, as in Right-circular

cos(ωt−βz)x̂+sin(ωt−βz)ŷ ⇔ e−jβzx̂−je−jβzŷ = (x̂−jŷ)e−jβz

or Left-circular

x

y
z

t = 0

t > 0

cos(ωt− βz)x̂− sin(ωt− βz)ŷ

LEFT CIRCULAR

When left-hand thumb is pointed
along propagation direction z
the fingers curl in the rotation
direction of the field vector.

E

cos(ωt−βz)x̂−sin(ωt−βz)ŷ ⇔ e−jβzx̂+je−jβzŷ = (x̂+jŷ)e−jβz.

• In the last step above, we have introduced two flavors of circularly

polarized waves, which correspond to fields vectors rotating in opposite

directions at any position in space when viewed toward the direction the

wave propagates— clockwise for right-circular, counter-clockwise

for left circular.
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• Also,

x

y
z

t = 0

t > 0

x̂− jŷ

RIGHT CIRCULAR

x-comp leads y-comp because of -j 
 

E

– for the right-circular wave propagating in z direction, the field

vector simplified at z = 0 as

cos(ωt)x̂ + sin(ωt)ŷ ⇔ x̂− jŷ

rotates in the direction that your right-hand fingers curl when

the thumb is directed in propagation direction z, whereas

– for the left-circular wave propagating in z direction, likewise,

vector

cos(ωt)x̂− sin(ωt)ŷ ⇔ x̂ + jŷ

rotates in the direction that your left-hand fingers curl when the

thumb is directed in propagation direction z.

x

y
z

t = 0

t > 0

x̂ + jŷ

LEFT CIRCULAR

x-comp lags y-comp because of +j

E

In general, the “handedness or “helicity” of a circular polarized

wave is always obtained by matching your right or left hand to

the specified propagation and rotation directions — see example

below.

Furthermore, the rotation direction is most easily seen if the

wave is expressed in phasor form by seeing which component leads

(or lags) which. Here is an explanation by example:
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Example 1: A circular polarized wave field vector is given as

Ẽ = (ẑ + jŷ)ejβx.

Determine the propagation and rotation directions of the field vector as well as
its helicity.

Solution: The propagation direction is −x since the exponent in ejβx lacks a minus
sign.

At x = 0, the wave field vector rotates as

E = Re{(ẑ + jŷ)ejωt} = ẑ cos(ωt)− ŷ sin(ωt),

of which the y-component leads the z-component by 90◦ of phase, or, equivalently,
by a quarter period in time — therefore, the vector points in y-direction before it
points in z-direction (or in z-direction before it points in −y-direction), rotating
from y- toward z-axis.

When I direct my right thumb in −x direction, my fingers curl from z- toward y-axis,
which is curling in the wrong direction. Hence this wave is not right-circular! It
is left-circular.

x

yz
t = 0

t > 0

ẑ + jŷ

LEFT CIRCULAR

(i) z-comp lags y-comp because of +j.

(ii)E-vector rotates from y towards z.

(iii) since the wave propagates in -x
direction it is LEFT CIRCULAR

E

Given any propagation direction, a carrier field of an arbitrary polar-

ization can always be expressed as weighted superpositions of any pair of

orthogonal polarized carrier fields — such orthogonal pairs are considered

to be complete sets of basis functions for expressing waves with arbitrary

5



polarizations.

• EXAMPLE: Right- and left circular waves propagating in z directions

are weighted superpositions of orthogonal x- and y-polarized fields

as in (expressed in terms of phasors): basis functions Circulars

in terms of

linears
x̂e−jβz and ŷe−jβz

superpose to form right- and left-circular waves

(x̂− jŷ)e−jβz and (x̂ + jŷ)e−jβz

using the weights

1, −j and 1, j

respectively.

• EXAMPLE: x- and y-polarized waves propagating in z directions

are weighted superpositions of orthogonal right- and left-circular

fields as in (expressed in terms of phasors): basis functions Linears

in terms of

circulars
(x̂− jŷ)e−jβz and (x̂ + jŷ)e−jβz

superpose to form linear polarized waves

x̂e−jβz and ŷe−jβz

using the weights
1

2
,
1

2
and − 1

2j
,
1

2j

respectively.
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• It can be argued that right- and left-circular wave pair forms an in-

trinsically more fundamental set of basis functions than, say, x̂- and

ŷ-polarized waves, because while the selection of which direction is x

and which direction is y can be arbitrary, there is no arbitrariness in

how helicity is assigned to circular polarized modes propagating in a

given direction2.

• Also, oscillating charges will radiate linear-polarized fields, whereas ro-

tating charges will radiate circular-polarized fields (in the direction nor-

mal to the rotation plane) — so, source dynamics selects the radiated

wave polarization.

• Wave polarization is important because

– it depends on physical geometry and dynamics of the wave source,

– it may depend on the physical properties of the region the wave

propagates through,

– it will determine the direction of Lorentz force on any test charge

or electrical load,

– angular momentum carried by the wave depends on polarization,

etc.
2Furthermore RCP and LCP plane waves consist of photons with spin angular momenta of +~ and

−~, respectively, corresponding to the eigenvalues of the quantum mechanical spin operator, while the
photons constituting LP waves will be in a “superposition state” of the eigenvectors of the spin operator
having the eigenvalues ±~ — upon spin measurements the photons of a LP wave will furnish one of +~

and −~ with equal (50%) probabilities, unlike the RCP and LCP wave photons furnishing +~ and −~,
respectively, with 100% probabilities.
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Note that this figure

only shows one linear

component of the sur-

face current on

z = 0 plane. One linear

component causes a lin-

ear polarized radiation.

An orthogonal pair of

linear components will

conspire to radiate a cir-

cular polarized wave as

in Example 2 when they

are 90◦ out of phase.

y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

Example 2: On z = 0 plane we have a time-varying surface current density

Js(t) = m(t)[cos(ωt)x̂+ sin(ωt)ŷ]
A

m

with a carrier frequency of ω. Determine the radiated wave fields E
± and the

polarization (and the helicity if appropriate) of the carrier.

Solution: We have already learned that a surface current Js(t) on z = 0 plane will
produce TEM wave fields

E
± = −η

2
Js(t∓

z

v
)

in surrounding regions. With the given Js(t) , this implies

E
± = −η

2
m(t∓ z

v
)[cos(ωt∓ βz)x̂+ sin(ωt∓ βz)ŷ]

V

m
,

which has a circular-polarized carrier

cos(ωt∓ βz)x̂+ sin(ωt∓ βz)ŷ

that varies, on z = 0 plane, as

cos(ωt)x̂+ sin(ωt)ŷ.

This vector rotates from x- toward y-axis, and therefore the carrier of E
+ is

right-circular and the carrier of E− is left-circular.
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Example 3: In Example 2, what is the average power density of the circular polarized
carrier signal

Ec = cos(ωt− βz)x̂+ sin(ωt− βz)ŷ
V

m
in the region z > 0, assumed to be vacuum?

Solution: In phasor notation Ec and is given as

Ẽc = (x̂− jŷ)e−jβz V

m
.

The corresponding Hc phasor is

H̃c =
1

ηo
(ŷ + jx̂)e−jβz V

m
.

Therefore, the average power density is found to be

1

2
Re{Ẽc × H̃

∗
c} =

1

2ηo
Re{(x̂− jŷ)× (ŷ + jx̂)∗} =

1

2ηo
(ẑ + ẑ) =

1

ηo
ẑ.

This is twice the power content of a linearly polarized wave field of an equal
amplitude!

Make sure you check and follow all the sign changes that take place in

Example 3.
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