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Condition β α |η| τ λ =
2π
β

δ =
1
α

Perfect

dielectric
σ = 0 ω

√
ǫµ 0

√

µ
ǫ 0 2π

ω
√
ǫµ ∞

Imperfect

dielectric
σ
ωǫ

≪ 1 ∼ ω
√
ǫµ β 1

2
σ
ωǫ

=
σ
2

√

µ
ǫ

∼
√

µ
ǫ

∼ σ
2ωǫ

∼ 2π
ω
√
ǫµ

2
σ

√

ǫ
µ

Good

conductor
σ
ωǫ ≫ 1 ∼

√
πfµσ ∼

√
πfµσ

√

ωµ
σ 45

◦ ∼ 2π√
πfµσ

∼ 1√
πfµσ

Perfect

conductor
σ = ∞ ∞ ∞ 0 - 0 0

• The table above summarizes TEM wave parameters in homogeneous

conducting media where the propagation velocity x-polarized phasor

Ẽ = x̂Eoe
∓αze∓jβz

accompanied by

H̃ = ±ŷEo
η e

∓αze∓jβz.

vp =
ω

β

(note that it can be frequency dependent) and field phasors can be

expressed in formats similar to that shown in the margin, keeping in

mind that propagation direction coincides with vector

S̃ ≡ Ẽ× H̃
∗

such that

〈S〉 = 〈E×H〉 = 1

2
Re{S̃}

is the average energy flux per unit area (time-average Poynting vector).
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Example 1: Consider the plane TEM wave

Ẽ = ŷ2e−αze−jβz V

m
,

in an imperfect dielectric. Determine H̃ and time-average Poynting vector
〈S〉. Compute 〈S〉 at z = 0 and z = 10 m, if ǫ = 4ǫo, µ = µo, σ = 10−3 S/m,
and ω = 2π · 109 rad/s

Solution: Using right hand rule, so that E×H points in propagation direction ẑ, we
find that

H̃ = −x̂
2

η
e−αze−jβz ≈ −x̂

2
√

µ/ǫ
e−αze−jβze−jτ A

m

using |η| =
√

µ
ǫ

from the table above for a perfect dielectric.

The avg. Poynting vector is

〈S〉 =
1

2
Re{Ẽ× H̃

∗} =
1

2
Re{ŷ2e−αze−jβz × (−x̂

2
√

µ/ǫ
e−αze−jβze−jτ )∗}

= −1

2
Re{ŷ2e−αz × x̂

2
√

µ/ǫ
e−αzejτ} = ẑ

2
√

µ/ǫ
e−2αz cos τ.

With the given parameters,

σ

ωǫ
=

10−3 · 36π × 109

2π · 109 · 4 =
9

2
10−3 ≪ 1,

τ ≈ σ

2ωǫ
≈ 9

4
10−3 rad

|η| ≈
√

µ

ǫ
=

√

µo

4ǫo
=

ηo
2

= 60πΩ

α ≈ σ

2

√

µ

ǫ
=

1

2
10−360π = 30π · 10−3

1

m
.
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Hence, at z = 0,

〈S〉 = ẑ
2

√

µ/ǫ
cos τ ≈ ẑ

2

60π
= ẑ

1

30π

W

m2
,

whereas, at z = 10 m,

〈S〉 = ẑ
2

√

µ/ǫ
e−2·30π·10−3·10 cos τ ≈ ẑ

2

60π
e−6π/10 ≈ ẑ

0.15

30π

W

m2
.

• Note that in above example power transmitted per unit area has dropped

to 15% of its value upon propagating over a relatively short distance of

10 m.

– In the physical terms, the lost power of the wave is gained by the

propagation medium in the form of heat — average Joule heating ⇐This is what we

want to happen in a

microwave oven.

〈J · E〉 in the medium will be positive and account for the loss of

the wave power (as seen in a HW problem).

From a communications perspective, this rapid attenuation is problematic

since it is evident that the signal energy is being wasted as heat in the

medium rather than being transmitted efficiently to distant communication

targets.

As the next example shows, we are better off using lower frequencies in

under-water communications.
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Example 2: Repeat Example 1 for ω = 2π · 103 rad/s and σ = 4 S/m (sea water) in
which case the propagation medium becomes a good conductor.

Solution: Using right hand rule, so that E×H points in propagation direction ẑ, we
have

H̃ = −x̂
2

η
e−αze−jβz ≈ −x̂

2

|η|e
−αze−jβze−jτ A

m

as well as

〈S〉 =
1

2
Re{Ẽ× H̃

∗} =
1

2
Re{ŷ2e−αze−jβz × (−x̂

2

|η|e
−αze−jβze−jτ)∗}

= −1

2
Re{ŷ2e−αz × x̂

2

|η|e
−αzejτ} = ẑ

2

|η|e
−2αz cos τ.

With the given parameters,

σ

ωǫ
=

4 · 36π × 109

2π · 103 · 4 = 18 · 106 ≫ 1,

which confirms that the medium behaves as a good conductor at this small ω,
and using the appropriate formulae from the table,

τ ≈ π

4
rad

|η| ≈
√

ωµ

σ
=

√

2π · 103 · 4π · 10−7

4
= π

√

2× 10−4 ≈ π
√
2

100
Ω

α ≈
√

πfµσ =
√
π · 103 · 4π · 10−7 · 4 =

√
42π210−4 =

π

25

1

m
.

Hence, at z = 0,

〈S〉 = ẑ
2

|η| cos τ ≈ ẑ
200

π
√
2
cos

π

4
= ẑ

100

π

W

m2
,
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whereas, at z = 10 m,

〈S〉 = ẑ
100

π
e−2· π

25
·10 ≈ ẑ

100

π
0.081

W

m2
.

• As Example 2 illustrates, at a frequency of ω = 2π · 103 rad/s or f = 1

kHz, wave power is reduced to about 8% over a 10 m distance in sea

water. Less reduction in power is possible over the same distance if at

a smaller frequency f since α ∝
√
f .

– The disadvantage of being forced to use smaller frequencies is of

course having a smaller available bandwidth at small frequencies.

Thus communication with submarines at great depths will only be

possible at very slow rates.

The next example identifies the penetration depth in sea water at 1 kHz.
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Example 3: What is the penetration depth δ = α−1 in a medium with σ = 4 S/m,
ǫ = 81ǫo, and µ = µo for ω = 2π · 103 rad/s.

Solution: With the given parameters we have

σ

ωǫ
=

4 · 36π × 109

2π · 103 · 81 =
72× 109

81× 103
≈ 106 ≫ 1,

i.e., good conductor situation. Hence the penetration depth is

δ ≈ 1√
πfµσ

=
1√

π103 · 4π · 10−74
=

1√
42π2 · 10−4

=
100

4π
=

25

π
≈ 7.95m.
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