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e When the fields and the sources in Maxwell’s equations are all monochro-
matic functions of time expressed in terms of their phasors, Maxwell’s

equations can be transformed into the phasor domain. V-D =y
V-B =0
— In the phasor domain all VxE = _8_B
ot
0 . oD
— — _
ot Jw V xH J+ BT
and all variables D, p, etc. are replaced by their phasors D, p,
and so on. With those changes Maxwell’s equations take the form
shown in the margin.
— Also in these equations it is implied that = .
quations it is impli v . [~) _ 5
D = ¢E V-B =0
B = uH VxE = —jwB

where €, i, and o could be a function of frequency w (as, strictly
speaking, they all are as seen in Lecture 11).

— We can derive from the phasor form Maxwell’s equations shown
in the margin the TEM wave properties obtained earlier on using
the time-domain equations by assuming p = J = 0.
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We will do that, and and after that relax the requirement J = 0 with
J = oE to examine how TEM waves propagate in conducting media.

e With p = J = 0 the phasor form Maxwell’s equation take their simpli-
fied forms shown in the margin.

— Using \% :NE =0
R L - ' . V-H 0
VXx|VXE=—jwuH] = —V°E=—jwuV xH VxE = —juuH
which combines with the Ampere’s law to produce VxH = jweE

V2E + w?ueE = 0.

— For x-polarized waves with phasors

E = iF,(2),

the phasor wave equation above simplifies as
82
92 b+ w 21eF, = 0.

— Try solutions of the form

E.(z)=¢e " ore’”

where 7y is to be determined.



— Upon substitution into wave equation both of these lead to
(v? + w?ue)E, =0,
which yields
V4wne=0 = 7= —w’ne
from which one possibility is

v =3B, with B =w,/ue.

Thus viable phasor solutions are

~

E.(z) = e TIbz

as we already knew.

— Furthermore, using the phasor form Faraday’s law it is easy to

show that ;
FjB2
‘ with 7 = K
n €

H,=+

Note that we have recovered above the familiar properties of
plane TEM waves using phasor methods.

Next, the phasor method carries us to a new domain that cannot be
easily examined using time-domain methods.



e With 5 = 0 but J = ¢E # 0, implying non-zero conductivity o, the
pertinent phasor form equations are as shown in the margin.

— This is the same set as before, except that V- ]NE = 0
. . V-H 0
jwe has been replaced by o + jwe. VxE = —juuH
Thus, we can make use of phasor wave solutions above after ap- V X H = oK + jweE
plying the following modifications to v and n: = (0 + jwe)E
1.
7" = e = (up)(we) | 7 1y =V (wn)(o + jwe)
2.
y = B jwp | == n = JW
€ jwe |0 #0 o+ jwe
Note that the modified v and n satisty
vn:jw,uandzzaJrjwe M:ﬁ
n Jw
. . . . | o = Re{l}
leading to useful relations shown in the margin (assuming real n
valued o and €). 1
) € = —Im{l}
w U



. (a) Danped wave snapshot at t=0
In terms of v and n above, we can express an z-polarized plane wave together with exponential envel ope

propagating in z direction in terms of phasors e

T o Eo // \,
E = 2E,e™* and H:iy_eﬂmz — AN

\ / \ N
77 \ f \J/ N

Vem " cos(wt — B2);—0

where F, is an arbitrary complex constant (complex wave amplitude).

In expanded forms v and n appear as: (b) Snaphot at t>0, with t=0 waveform
for conparison

v = V(Gwp)(o + jwe) = a+jB, sothat @ =Re{y} and f=Tm{~}, |~

arui ﬁ \ ‘ € \\ '/// \ 5\ /.Z

Ve cos(wt — f3z)

JW , v,
n=4/————=|nle’” sothat |n| =| and 7= /4y ———.
g + jJwe 0 + Jwe
— [ appears within cosine
. . . . argument and deter-
In the special case of a perfect dielectric with o = 0, we find mines the wavelength
A\ 2
. . L ==
v = jwy/pe=jp and =4/, ’
€ and propagation speed
and, therefore, v, =2,
p
g
N e Fibz
. . N GE,e B )
E = xEoeszﬁZ and H = + 0 e} ?ontrols wave attenu
n ation by
e$az

as before. In this case « = 7 = 0.
factor in propagation
direction.



2. Another case of imperfect dielectric (or “lousy” conductor) occurs
when o is not zero, but it is so small that are justified in using

(1+a) =1=%pa, if o] <1,

with p = 5 as follows: For = <1,

o ln .
v = (jwp)(o + jwe) = jwy/pe(1— J—)1/2 ~ jwy/pe(1— J—) = §\£+Jw\/u6;
hence
E ~ $E,e™ 9% with o = %\/E and 8 = wy/ue;
€

also in the same case

. VE eFlatif)z N
n e(l1—j%) € 2we €

|77|z\/E and Tzén%i.
€ 2we

Note: v and n both are complexr valued, the consequences of which

such that

will be examined later on.

3. A third case of good conductor corresponds to 2 > 1. In that case,

: .0 . O N o w W o
v—yw\/ué(l—J—) R wy e = (1+])\/L and n [ = \/u Sy
WE w 2 —Jo o o




(a) Danped wave snapshot at t=0

I‘Ience7 . toget her with exponential envel ope
am B 2R V7 fpo while |n| =4 [ZE and = /n = 45°. W\ SN T
2 o | A W A §
. Finally, perfect conductor case corresponds to o — oo, in which case e cosfut — B2)je0

E, — 0 as we will show later on. Wave fields cannot exist in perfect

COHdUCtOFS' (b) Snaphot at t>0, with t=0 waveform

for conparison
\

Summarizing, in a homogeneous medium with arbitrary but con- |/

stant i, €, and o, time-harmonic plane TEM waves are in terms of Ny AN ST
) . . ) Y \ Y S N
E = acRe{EOqu(o‘”ﬁ)Zej”t} = | F,|eT* cos(wt F Bz + LE,) AV
\ ) Ve cos(wt — (z)

and accompanying magnetic fields

E ‘ ‘ E ‘ ® [ appears within cosine
H = igRe{_Oe:F(a‘l‘]ﬂ)Ze]Wt} — ig_OeiFaz cos(wt Fhz+/LE,— ln) argument and deter-
n ‘77‘ mines the wavelength
\ 2
Propagation velocity -5
w w and propagation speed
’Up = — = = = ,
B n{y/Gem(o 1 jwo) -
now depends on frequency w and it describes the speed of the nodes .
a controls wave attenu-
(zero-crossings, not modified by the attenuation factor) of the field ation by
waveform. Subscript p is introduced to distinguish v, — also called Fo

phase velocity — from group velocity v, discussed in ECE 450 (velocity

factor in propagation
of narrowband wave packets). direction.



(a) Danped wave snapshot at t=0
toget her with exponential envel ope

e Wavelength
2m vy

now depends on frequency f via both the numerator and the denomi- 1/ / -

A:

nator, and measures twice the distance between successive nodes of the | | W/

A '/ —Qz
waveform. Ve cos(wt — B2)j—

e Penetration depth (also called skin depth if very small)

(b) Snaphot at t>0, with t=0 waveform
for conparison

5 — I 1 T
o Re{y/ljerlo + jwe)} L 7 e
is the distance for the field strength to be reduced by e™! factor in its = | \ / BN %
L \

direction of propagation. \

\ \/m‘\v/e_“z cos(wt — f3z)

— For a fixed o, and a sufficiently large w, the penetration depth
— [} appears within cosine

2 ar
~ . . gument and deter-
)~ T Imperfect dielectric formula mines the wavelength
‘ 2
. . . . . ﬂ-
which can be very small if o is large — with small 6 the wave is A=

severely attenuated as it propagates. and propagation speed

For a fixed o, and a sufficiently small w,

_ ¥
2 1 S
0~ = Good conductor "skin depth" formula — 4 controls wave attenu-
HWo V 7Tflu'0- ation by
which, although small with large o, increases as w decreases, mak- JFaz

ing low frequencies to be preferable in applications requiring prop-
agating through lossy media with large o, such as in sea-water.

8

factor in propagation
direction.



