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• Recall that we reached the traveling-wave d’Alembert solutions

E, H ∝ f(t∓ z

v
)

via the superposition of time-shifted and amplitude-scaled versions of

f(t) = cos(ωt),

namely the monochromatic waves

A cos[ω(t∓ z

v
)] = A cos(ωt∓ βz),

with amplitudes A where

β ≡ ω

v
= ω

√
µǫ

can be called wave-number in analogy with wave-frequency ω.

T =
2π

ω

cos(ωt)

t

1

-1

Period

λ =
2π

β

cos(βz)

z

1

-1

Wavelength

– As depicted in the margin, monochromatic solutions A cos(ωt∓βz)

are periodic in position and time, with the wave-number β being

essentially a spatial-frequency, the spatial counterpart of ω.

This is an important point that you should try to understand

well — it has implications for signal processing courses related

to images and vision.
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– In general, monochromatic solutions of 1D wave-equations ob-

tained in various branches of science and engineering can all be rep-

resented in the same format as above in terms of wave-frequency

/ wave-wavenumber pairs ω and β having a ratio

v ≡ ω

β

recognized as the wave-speed and specific dispersion relations

such as:

T =
2π

ω

cos(ωt)

t

1

-1

Period

λ =
2π

β

cos(βz)

z

1

-1

Wavelength

Dispersion relations

between

wave frequency ω

and

wavenumber β

determine the

propagation veloc-

ity

v =
ω

β
= λf

for all types of

wave motions.

1. TEM waves in perfect dielectrics:

β = ω
√
µǫ,

2. Acoustic waves in monoatomic gases with temperature T (K)

and atomic mass m (kg):

β = ω

√

m
5
3KT

,

3. TEM waves in collisionless plasmas (ionized gases) with plasma

frequency ωp =
√

Ne2

mǫo
:

β =
1

c

√

ω2 − ω2
p.
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– For any type of wave solution — TEM, acoustic, plasma wave

— once the dispersion relation is available (meaning that it has

been derived from fundamental physical laws governing the specific

wave type), wave propagation velocity is always obtained as

v =
ω

β

or, equivalently, as

v =
λ

T
= λf

where

λ ≡ 2π

β
Wavelength

and

T =
2π

ω
≡ 1

f
Waveperiod.

propagatingWaveCos.eps
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• Monochromatic x-polarized waves

E = Eo cos(ωt∓ βz) x̂
V

m

can also be expressed in phasor form as

Ẽ = Eoe
∓jβz x̂

V

m

such that

Re{Ẽejωt} = Eo cos(ωt∓ βz) x̂ = E

in view of Euler’s identity.

Example 1: Study the following table to understand monochromatic wave

fields and their phasors.

Field Phasor Comment

E = cos(ωt + βy) ẑ Ẽ = ejβy ẑ z-polarized wave propagating in −y direction

H̃ = −ejβy

η
x̂ magnetic phasor that accompanies Ẽ above

H = sin(ωt− βz) ŷ H̃ = −je−jβz ŷ wave propagating in +z direction

Ẽ = −jηe−jβz x̂ electric field phasor of H̃ above

E = η sin(ωt− βz) x̂ which is an x-polarized field (see the right column)

5



Example 2: Given that

H = x̂H+ cos(ωt− βz) + ŷH− sin(ωt+ βz)

representing the sum of wave fields propagating in opposite directions, the corre-
sponding phasor

H̃ = x̂H+e−jβz − jŷH−ejβz.

The corresponding E-field phasor is

Ẽ = −ŷηH+e−jβz + jx̂ηH−ejβz,

from which

E = −ŷηH+ cos(ωt− βz)− x̂ηH− sin(ωt+ βz).

Make sure to check that all the signs make sense, and if you think you have

caught an error, let us know.

• In general, we transform between plane TEM wave phasors Ẽ and H̃

as follows:

1. To obtain H̃ from Ẽ: divide Ẽ by η and rotate the vector direction

so that vector S̃ ≡ Ẽ × H̃
∗ points in the propagation direction of the

wave — more on complex vector S̃ later on.

2. To obtain Ẽ from H̃: multiply H̃ by η and rotate the vector direction

so that vector S̃ ≡ Ẽ × H̃
∗ points in the propagation direction of the
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wave.
y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

Example 3: On z = 0 plane we have a monochromatic surface current specified as

Js = x̂f(t) = x̂2 cos(ωt)
A

m
= Re{x̂2 ejωt}.

Determine wave field phasors Ẽ± and H̃
± for plane TEM waves propagating away

from the z = 0 surface on both sides (assumed vacuum).

Solution: We know that an x-polarized surface current f(t) produces

Ex = −η

2
f(t∓ z

v
) and Hy = ∓1

2
f(t∓ z

v
)

in surrounding regions. Given that f(t) = 2 cos(ωt), this implies

Ex = −η cos(ωt∓ βz) and Hy = ∓ cos(ωt∓ βz)

where
β =

ω

c
and η = ηo ≈ 120πΩ

since the current sheet is surrounded by vacuum. Converting these into phasors,
we find

Ẽ
± = −ηe∓jβzx̂ and H̃

± = ∓e∓jβzŷ.
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• In the last lecture we calculated the time-average E×H and Js ·E of

the fields examined in Example 3 using a time-domain approach. The

same calculations can be carried out in terms of phasors Ẽ, H̃, and J̃s

as follows:

〈E×H〉 = 1

2
Re{Ẽ× H̃

∗} and 〈Js · E〉 =
1

2
Re{J̃s · Ẽ∗}

where Ẽ× H̃
∗ ≡ S̃ is called complex Poynting vector. Instantaneous power

p(t) = v(t)i(t)

with time-harmonic signals is

v(t)i(t) = (
V ejωt + cc

2
)(
Iejωt + cc

2
)

where V and I are phasors of v(t) and
i(t) and cc indicates the conjugate of
the term to the left of + sign.
This can be expanded as

v(t)i(t) =
V I∗ + cc

4
+

V Iej2ωt + cc

4
.

The second term has a zero time aver-
age. It follows that time-average power

〈v(t)i(t)〉 = V I∗ + cc

4
=

1

2
Re{V I∗}

since

V I∗ + cc = V I∗ + V ∗I = 2Re{V I∗}.

(Also see ECE 210 text.)

– The proof of these are analogous to the proof of

〈p(t)〉 = 1

2
Re{V I∗}

for the average power of a circuit component in terms of voltage and current
phasors V and I (see margin).

For, instance, given that

J̃s = 2x̂
A

m
and Ẽ

±(z) = −ηe∓jβzx̂
V

m

in Example 3, it follows that

〈−Js(t) · E(0, t)〉 =
1

2
Re{−J̃s · Ẽ∗(0)} = η ≈ 120π

W

m2
,

in conformity with the result from last lecture.
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