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• The magnitude of Poynting vector

S = E×H

represents the amount of power transported — often called energy flux

— by electromagnetic fields E and H over a unit area transverse to the

E×H direction.

This interpretation of the Poynting vector is obtained from a conservation

law extracted from Maxwell’s equations (see margin) as follows:

∇ ·D = ρ

∇ ·B = 0

∇×E = −
∂B

∂t

∇×H = J +
∂D

∂t
.

1. Dot multiply Faraday’s law by H, dot multiply Ampere’s law by E,

(∇× E = −
∂B

∂t
) ·H

(∇×H = J +
∂D

∂t
) · E

and take their difference:

H · ∇ × E− E · ∇ ×H
︸ ︷︷ ︸

= −
∂D

∂t
· E−

∂B

∂t
·H

︸ ︷︷ ︸

−J · E.

∇ · (E×H) −
∂

∂t
(
1

2
ǫE ·E +

1

2
µH ·H)

2. After re-arrangements shown above, the result can be written as
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∂

∂t
(
1

2
ǫE · E +

1

2
µH ·H) +∇ · (E×H) + J · E = 0.

• Poynting theorem derived above is a conservation law just like the

continuity equation ∂ρ
∂t
+∇ · J = 0: Poynting theorem

– The first term on the left,

∂

∂t
(
1

2
ǫE · E +

1

2
µH ·H),

is time rate of change of total electric and magnetic energy den-

sity.

Hence, Poynting theorem is the conservation law for electro-

magnetic energy, just like continuity equation is the conservation law

for electric charge.

– The second term

∇ · (E×H)

accounts for energy transport in Poynting theorem, just like ∇ · J

accounts for charge transport in the continuity equation. There-

fore

S ≡ E×H
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is energy flux per unit area measured in

V

m

A

m
=

W

m2
=

J/s

m2

units, just like J is charge flux per unit area in C/s
m2 = A

m2 units.

– Finally, the last term in Poynting theorem (repeated in the mar-

gin), Poynting thm:

∂
∂t(

1
2ǫE ·E+ 1

2µH ·H) +

∇ · (E×H) + J ·E = 0

J · E

is called Joule heating, and it represents power absorbed per

unit volume (which can only be non-zero in the presence of J).

If J·E is negative in any region, then J in that region is acting as a

source of electromagnetic energy, just like any circuit component

with negative vi is acting as an energy source in the electrical

circuit.

Note that J ·E had a negative value on the current sheet radiator

examined in last lecture. We return to the current sheet radiator

in the next example.
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y

z

E
+ = −x̂

η

2
f(t−

z

v
)

H
− = ŷ

1

2
f(t +

z

v
)

E
− = −x̂

η

2
f(t +

z

v
)

Js = x̂f(t)

S
+

S
−

Example 1: On z = 0 plane we have a time-harmonic surface current specified as

Js = x̂f(t) = x̂2 cos(ωt)
A

m

where ω is some frequency of oscillation.

(a) Determine the radiated TEM wave fields E(z, t) and H(z, t) in the regions z ≷ 0,

(b) The associated Poynting vectors E×H, and

(c) Js · E on the current sheet.

Solution: (a) With reference to the solution of the current sheet radiator depicted
in the margin (from last lecture), we that an x-polarized surface current f(t)
produces the wave fields

Ex = −
η

2
f(t∓

z

v
) and Hy = ∓

1

2
f(t∓

z

v
)

in the surrounding regions propagating away from the current sheet on both sides.
Given that f(t) = 2 cos(ωt), this implies that

Ex = −η cos(ωt∓ βz) and Hy = ∓ cos(ωt∓ βz)

where
β =

ω

c
and η = ηo ≈ 120πΩ

since the current sheet is surrounded by vacuum. Hence in vector form we have

E(z, t) = −η cos(ωt∓ βz)x̂
V

m
and H(z, t) = ∓ cos(ωt∓ βz)ŷ A

m ,

where the upper signs are for z > 0, and lower signs for z < 0.
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(b) The associated Poynting vectors are

S = E×H = ±η cos2(ωt∓ βz)ẑ
W

m2
.

Note that the time-average value of vector S points in the direction of wave
propagation on both sides of the current sheet.

(c) Since on z = 0 surface of the current sheet the electric field vector is

E(0, t) = −η cos(ωt)x̂
V

m
,

it follows that Js · E on the same surface is

Js(t) · E(0, t) = (x̂2 cos(ωt)
A

m
) · (−η cos(ωt)x̂

V

m
) = −2η cos2(ωt)

W

m2
.

• In the above example, a time-harmonic source current oscillating at

some frequency ω produced “monochromatic waves” of radiated fields

propagating away from the current sheet on both sides.

– The calculations showed time-varying Poynting vectors E×H.

The time-averaged values of these time-varying vectors can be eas-

ily determined by making use of the trig identity

cos2(ωt + φ) =
1

2
[1 + cos(2ωt + 2φ)].

Since the time-average of the second term on the right is zero, we
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can express the time-average of this identity as

〈cos2(ωt + φ)〉 = 〈
1

2
[1 + cos(2ωt + 2φ)]〉 =

1

2
,

where the angular brackets denote the time-averaging procedure.
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• Consequently, the result

E×H = ±η cos2(ωt∓ βz)ẑ
W

m2

from Example 1 implies that

〈E×H〉 = ±η
1

2
ẑ

W

m2
= ±60π ẑ

W

m2
,

which represent the time-average power per unit area transported by

the waves radiated by the current sheet.

• In Poynting theorem the Joule heating term J ·E is power absorbed

per unit volume, and, accordingly, −J · E is power injected per

unit volume.

– Likewise, ±Js·E can be interpreted as power absorbed/injected

per unit area on a surface.

In Example 1 above we calculated an instantaneous injected power

density of
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−Js · E = 2η cos2(ωt)
W

m2
.

Clearly, its time-average works out as

〈−Js · E〉 = η
W

m2
= 120π

W

m2
.

– Note that 〈−Js ·E〉 exactly matches the sum of |〈E×H〉| calcu-

lated on both sides of the current sheet, in conformity with energy

conservation principle (Poynting theorem).
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