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set of lecture notes (Lects. 1-39) may be re-
produced without permission from the author.

e The magnitude of Poynting vector
S=ExH

represents the amount of power transported — often called energy flux
— by electromagnetic fields E and H over a unit area transverse to the
E x H direction.

This interpretation of the Poynting vector is obtained from a conservation
law extracted from Maxwell’s equations (see margin) as follows:
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2. After re-arrangements shown above, the result can be written as
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e Poynting theorem derived above is a conservation law just like the
continuity equation % +V-J=0: Poynting theorem

— The first term on the left,

0.1 1
E-E H -H
gl o B B guH-H),
is time rate of change of total electric and magnetic energy den-
sity:.

Hence, Poynting theorem is the conservation law for electro-
magnetic energy, just like continuity equation is the conservation law
for electric charge.

— The second term
V- (E x H)

accounts for energy transport in Poynting theorem, just like V - J
accounts for charge transport in the continuity equation. There-
fore

S=ExH



is energy flux per unit area measured in
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Finally, the last term in Poynting theorem (repeated in the mar-
gin),

units, just like J is charge flux per unit area in units.

J-E

is called Joule heating, and it represents power absorbed per
unit volume (which can only be non-zero in the presence of J).

[f J-E is negative in any region, then J in that region is acting as a
source of electromagnetic energy, just like any circuit component
with negative v? is acting as an energy source in the electrical
circuit.

Note that J - E had a negative value on the current sheet radiator
examined in last lecture. We return to the current sheet radiator
in the next example.

Poynting thm:

)
ot
V

(

1

2

eE-E+pH-H) +
(ExH)+J-E=0



Example 1: On z = 0 plane we have a time-harmonic surface current specified as

Js =2 f(t) = 22 cos(wt) A
m

where w is some frequency of oscillation.
(a) Determine the radiated TEM wave fields E(z,t) and H(z,t) in the regions z 2 0,
(b) The associated Poynting vectors E x H, and
(c) Js - E on the current sheet.

Solution: (a) With reference to the solution of the current sheet radiator depicted
in the margin (from last lecture), we that an z-polarized surface current f(t)
produces the wave fields

_ z _ 1 z
E, = 2f(Hv) and Hy—$2f(t$v)

in the surrounding regions propagating away from the current sheet on both sides.
Given that f(t) = 2cos(wt), this implies that

E, = —ncos(wt F fz) and H, = F cos(wt F Bz)

where w
f=— and n=mn,~ 1201
c
since the current sheet is surrounded by vacuum. Hence in vector form we have
.V A
E(z,t) = —ncos(wt F Bz) — and H(z,t) = F cos(wt F B2)7 3,
m

where the upper signs are for z > 0, and lower signs for z < 0.




(b) The associated Poynting vectors are
W
S = E x H = £ cos’(wt F $2)Z —;.
m

Note that the time-average value of vector S points in the direction of wave
propagation on both sides of the current sheet.

(c) Since on z = 0 surface of the current sheet the electric field vector is
\Y%
E(0,t) = —ncos(wt)z —,
m
it follows that J, - E on the same surface is

) = —2n cos®(wt) W

Js(t) - E(0,t) = (22 cos(wt) é) - (—m cos(wt)x -~

m
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e In the above example, a time-harmonic source current oscillating at
some frequency w produced “monochromatic waves” of radiated fields
propagating away from the current sheet on both sides.

— The calculations showed time-varying Poynting vectors E x H.

The time-averaged values of these time-varying vectors can be eas-
ily determined by making use of the trig identity

cos*(wt + ¢) = %[1 + cos(2wt + 2¢)].

Since the time-average of the second term on the right is zero, we
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can express the time-average of this identity as
5 1 1
(cos™(wt + ¢)) = <§[1 + cos(2wt + 29)]) = 5
where the angular brackets denote the time-averaging procedure.

Consequently, the result

E x H = 4ncos*(wt T £2)2 —
m
from Example 1 implies that
1. W W

which represent the time-average power per unit area transported by
the waves radiated by the current sheet.

In Poynting theorem the Joule heating term J - E is power absorbed
per unit volume, and, accordingly, —J - E is power injected per
unit volume.

— Likewise, +J4-E can be interpreted as power absorbed /injected
per unit area on a surface.

In Example 1 above we calculated an instantaneous injected power
density of
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Clearly, its time-average works out as
W W
(=Js-E) = n— = 120m —.
m m

— Note that (—J, - E) exactly matches the sum of |(E x H)| calcu-
lated on both sides of the current sheet, in conformity with energy
conservation principle (Poynting theorem).



