20 Poynting theorem and monochromatic waves

Copyright ©2021 Reserved — no parts of this set of lecture notes (Lects. 1-39) may be reproduced without permission from the author.

• The magnitude of **Poynting vector**

$$S = E \times H$$

represents the amount of power transported — often called energy flux — by electromagnetic fields \mathbf{E} and \mathbf{H} over a unit area transverse to the $\mathbf{E} \times \mathbf{H}$ direction.

This interpretation of the Poynting vector is obtained from a conservation law extracted from Maxwell's equations (see margin) as follows:

1. Dot multiply Faraday's law by **H**, dot multiply Ampere's law by **E**,

$$(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}) \cdot \mathbf{H}$$
$$(\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}) \cdot \mathbf{E}$$

and take their difference:

$$\underbrace{\mathbf{H} \cdot \nabla \times \mathbf{E} - \mathbf{E} \cdot \nabla \times \mathbf{H}}_{\nabla \cdot (\mathbf{E} \times \mathbf{H})} = \underbrace{-\frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{E} - \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{H}}_{-\frac{\partial \mathbf{D}}{\partial t} \cdot (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E} + \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H})}_{-\frac{\partial \mathbf{D}}{\partial t} \cdot (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E} + \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H})$$

2. After re-arrangements shown above, the result can be written as

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}.$$

$$\frac{\partial}{\partial t} (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E} + \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H}) + \nabla \cdot (\mathbf{E} \times \mathbf{H}) + \mathbf{J} \cdot \mathbf{E} = 0.$$

• Poynting theorem derived above is a conservation law just like the continuity equation $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$:

Poynting theorem

- The first term on the left,

$$\frac{\partial}{\partial t}(\frac{1}{2}\epsilon\mathbf{E}\cdot\mathbf{E} + \frac{1}{2}\mu\mathbf{H}\cdot\mathbf{H}),$$

is time rate of change of total electric and magnetic **energy** density.

Hence, Poynting theorem is the conservation law for electromagnetic energy, just like continuity equation is the conservation law for electric charge.

- The second term

$$\nabla \cdot (\mathbf{E} \times \mathbf{H})$$

accounts for energy transport in Poynting theorem, just like $\nabla \cdot \mathbf{J}$ accounts for charge transport in the continuity equation. Therefore

$$S \equiv E \times H$$

is **energy flux per unit area** measured in

$$\frac{V}{m}\frac{A}{m} = \frac{W}{m^2} = \frac{J/s}{m^2}$$

units, just like **J** is charge flux per unit area in $\frac{C/s}{m^2} = \frac{A}{m^2}$ units.

- Finally, the last term in Poynting theorem (repeated in the margin),

$$J \cdot E$$

is called **Joule heating**, and it represents power absorbed per unit volume (which can only be non-zero in the presence of J).

If $\mathbf{J} \cdot \mathbf{E}$ is negative in any region, then \mathbf{J} in that region is acting as a source of electromagnetic energy, just like any circuit component with negative vi is acting as an energy source in the electrical circuit.

Note that $\mathbf{J} \cdot \mathbf{E}$ had a negative value on the current sheet radiator examined in last lecture. We return to the current sheet radiator in the next example.

Poynting thm:

$$\frac{\partial}{\partial t} (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E} + \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H}) + \nabla \cdot (\mathbf{E} \times \mathbf{H}) + \mathbf{J} \cdot \mathbf{E} = 0$$

Example 1: On z = 0 plane we have a time-harmonic surface current specified as

$$\mathbf{J}_s = \hat{x}f(t) = \hat{x}2\cos(\omega t)\frac{\mathbf{A}}{\mathbf{m}}$$

where ω is some frequency of oscillation.

- (a) Determine the radiated TEM wave fields $\mathbf{E}(z,t)$ and $\mathbf{H}(z,t)$ in the regions $z \geq 0$,
- (b) The associated Poynting vectors $\mathbf{E} \times \mathbf{H}$, and
- (c) $\mathbf{J}_s \cdot \mathbf{E}$ on the current sheet.

Solution: (a) With reference to the solution of the current sheet radiator depicted in the margin (from last lecture), we that an x-polarized surface current f(t) produces the wave fields

$$E_x = -\frac{\eta}{2}f(t \mp \frac{z}{v})$$
 and $H_y = \mp \frac{1}{2}f(t \mp \frac{z}{v})$

in the surrounding regions propagating away from the current sheet on both sides. Given that $f(t) = 2\cos(\omega t)$, this implies that

$$E_x = -\eta \cos(\omega t \mp \beta z)$$
 and $H_y = \mp \cos(\omega t \mp \beta z)$

where

$$\beta = \frac{\omega}{c}$$
 and $\eta = \eta_o \approx 120\pi\,\Omega$

since the current sheet is surrounded by vacuum. Hence in vector form we have

$$\mathbf{E}(z,t) = -\eta \cos(\omega t \mp \beta z) \hat{x} \frac{\mathbf{V}}{\mathbf{m}} \text{ and } \mathbf{H}(z,t) = \mp \cos(\omega t \mp \beta z) \hat{y} \frac{\mathbf{A}}{\mathbf{m}},$$

where the upper signs are for z > 0, and lower signs for z < 0.

(b) The associated Poynting vectors are

$$\mathbf{S} = \mathbf{E} \times \mathbf{H} = \pm \eta \cos^2(\omega t \mp \beta z) \hat{z} \frac{W}{m^2}.$$

Note that the time-average value of vector S points in the direction of wave propagation on both sides of the current sheet.

(c) Since on z = 0 surface of the current sheet the electric field vector is

$$\mathbf{E}(0,t) = -\eta \cos(\omega t)\hat{x}\frac{\mathbf{V}}{\mathbf{m}},$$

it follows that $\mathbf{J}_s \cdot \mathbf{E}$ on the same surface is

$$\mathbf{J}_s(t) \cdot \mathbf{E}(0, t) = (\hat{x}2 \cos(\omega t) \frac{\mathbf{A}}{\mathbf{m}}) \cdot (-\eta \cos(\omega t) \hat{x} \frac{\mathbf{V}}{\mathbf{m}}) = -2\eta \cos^2(\omega t) \frac{\mathbf{W}}{\mathbf{m}^2}.$$

- In the above example, a time-harmonic source current oscillating at some frequency ω produced "monochromatic waves" of radiated fields propagating away from the current sheet on both sides.
 - The calculations showed time-varying Poynting vectors $\mathbf{E} \times \mathbf{H}$. The time-averaged values of these time-varying vectors can be easily determined by making use of the trig identity

$$\cos^2(\omega t + \phi) = \frac{1}{2}[1 + \cos(2\omega t + 2\phi)].$$

Since the time-average of the second term on the right is zero, we

can express the time-average of this identity as

$$\langle \cos^2(\omega t + \phi) \rangle = \langle \frac{1}{2} [1 + \cos(2\omega t + 2\phi)] \rangle = \frac{1}{2},$$

where the angular brackets denote the time-averaging procedure.

• Consequently, the result

$$\mathbf{E} \times \mathbf{H} = \pm \eta \cos^2(\omega t \mp \beta z)\hat{z} \frac{W}{m^2}$$

from Example 1 implies that

$$\langle \mathbf{E} \times \mathbf{H} \rangle = \pm \eta \frac{1}{2} \hat{z} \frac{W}{m^2} = \pm 60\pi \,\hat{z} \frac{W}{m^2},$$

which represent the time-average power per unit area transported by the waves radiated by the current sheet.

- In Poynting theorem the Joule heating term $\mathbf{J} \cdot \mathbf{E}$ is **power absorbed per unit volume**, and, accordingly, $-\mathbf{J} \cdot \mathbf{E}$ is **power injected per unit volume**.
 - Likewise, $\pm \mathbf{J}_s \cdot \mathbf{E}$ can be interpreted as **power absorbed/injected per unit area** on a surface.

In Example 1 above we calculated an instantaneous injected power density of

$$-\mathbf{J}_s \cdot \mathbf{E} = 2\eta \cos^2(\omega t) \frac{\mathbf{W}}{\mathbf{m}^2}.$$

Clearly, its time-average works out as

$$\langle -\mathbf{J}_s \cdot \mathbf{E} \rangle = \eta \frac{W}{m^2} = 120\pi \frac{W}{m^2}.$$

– Note that $\langle -\mathbf{J}_s \cdot \mathbf{E} \rangle$ exactly matches the sum of $|\langle \mathbf{E} \times \mathbf{H} \rangle|$ calculated on both sides of the current sheet, in conformity with energy conservation principle (Poynting theorem).