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• d’Alembert wave solutions of Maxwell’s equations for homogeneous and

source-free regions obtained in the last lecture having the forms

E, H ∝ f(t∓ z

v
)

are classified as uniform plane-TEM waves.

– TEM stands for Transverse ElectroMagnetic, and the reason for

this designation is:
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viable solutions satisfying ∇ · E = ∇ ·H = 0 conditions have their E

and H vectors transverse to the direction of propagation which always

coincides with the direction of vector S ≡ E×H known as Poynting

vector — more on this later on.

Poynting vector

E×H

– d’Alembert wave solutions such as

E = x̂f(t− z

v
) and H = ŷ

f(t− z
v)

η

are also designated as uniform plane waves because:

these wave-fields are constant (have the same vector value) at planes

of constant phase, e.g., on planes defined by

t− z

v
= const.,
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which are planes transverse to the propagation direction (direction of

vector E×H).

Not all waves solutions of Maxwell’s equations are uniform plane — for in-

stance non-uniform TEM waves with spherical surfaces of constant phase are

ubiquitous, but they will be examined later on (in ECE 450, mainly).

After the next set of examples we will examine how uniform plane waves

can be radiated by infinite planes of surface currents. By contrast, spherical

waves are produced by compact antennas having finite dimensions.

Example 1: Let

E = x̂△(
t− y/c

τ
)

be a wave solution in free space where △( tτ ) is a triangular waveform of duration
τ peaking at t = 0 (defined in ECE 210). We will next provide two different
solutions demonstrating how the wave field B accompanying E can be found.

Solution 1: We recognize the given wave field E as a TEM uniform plane wave travel-
ing in y-direction given the t−y/c dependence of phase. Consequently, we obtain
H by dividing E with η = ηo and rotating it by 90◦ from x̂-direction to co-align
it with E×H vector. As a result,

H = −ẑ
△( t−y/c

τ )

ηo
= −ẑ

△( t−y/c
τ )

√

µo/ǫo
.

Hence,

B = µoH = −ẑ
√
µoǫo△(

t− y/c

τ
) = −ẑ

△( t−y/c
τ

)

c
.
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Solution 2: According to Faraday’s law,

∂B

∂t
= −∇×E = −
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τ
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(
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τ
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−1

cτ
△′(

t− y/c

τ
)

with the help of chain rule of differentiation, where △’(u) ≡ d
du
△(u). Finding

the time-dependent anti derivative, we directly obtain (as before)

B = −ẑ
△( t−y/c

τ )

c
.

Example 2: Consider the Lorentz force

F = q(E+ v ×B)

on a test charge q in the lab where E and B are the plane wave fields considered
in Example 1. Show that electrical force term qE will dominate the magnetic
force term qv ×B unless the particle speed v = |v| is close to the speed of light
c (i.e., test charge is relativistic).

Solution: Since

E = x̂△(
t− y/c

τ
) and B = −ẑ

△( t−y/c
τ )

c
,

it follows that Lorentz force

F = q(E+ v ×B) = q△(
t− y/c

τ
)(x̂− v × ẑ

c
).

3



Clearly, the first term of F proportional to x̂ is dominant, unless v = |v| is close
to c.

Example 3: Consider an x̂-polarized plane TEM wave field in free space propagating
in +z direction such that

E(z, t) = x̂f(t− z

c
), with f(t) = At rect(

t

τ
),

where c = 3 × 108 m/s = 300m/µs is the speed of light in free space, τ = 1µs,

and A = 2
V/m
µs . A plot of f(t) vs t (labelled in µs units is shown in the margin.

Determine the corresponding H(z, t) and make the following plots:

• (a) t-plots at fixed z’s: Ex(0, t) and Ex(z = 600m, t),

• (b) z-plots at fixed t’s: Ex(z, 0) and Ex(z, 2µs).

Solution: (a) t-plots at fixed z’s: Since z/c = 2µs for z = 600 m, it follows that

Ex(600m, t) = 2 (t− 2µs) rect(
t− 2µs

1µs
)

V

m

is a shifted version of

Ex(0, t) = 2 t rect(
t

1µs
)

V

m

already plotted above. A graph showing both waveforms (black for z = 0 and
red for z = 600 m) is in the margin.
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(b) z-plots at fixed t’s: In this case we wish to depict

Ex(z, 0) = 2 (0− z

c
) rect(

0− z/c

1µ
)

V

m

and

Ex(z, 2µs) = 2 (2µ− z

c
) rect(

2µ− z/c

1µ
)

V

m
.

The minus sign in front of z in the first term on the right indicates that the slopes

of the curves to be plotted are negative. Hence, we end up with the descending

ramp waveforms (black for t = 0 and red for t = 2µs) shown in the margin.

• Plane electromagnetic waves discussed above propagate in free-space in

regions of zero ρ and J (per our derivation).

– But what generates such waves?

• The answer must be, far away ρ and J variations (linked by continuity

equation) that we have not considered in our equations so far.

• We will next describe how plane TEM waves can be produced — radi-

ated — by time-varying infinite current sheets by starting from familiar

static and quasi-static solutions:
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• Consider first a static and constant surface current density

Js = x̂Jx A/m

flowing on z = 0 surface as shown graphically in the margin. This

infinite surface current will produce a static magnetic field

x

y

z

H
+

H
−

Js = x̂Jx

H(z) = ∓ŷ
Jx
2

A/m for z ≷ 0

also shown in the margin as we learned in Lecture 13.

– Note that the fields point in opposing directions above and below

the surface current in compliance with the right hand rule and

obey the boundary condition equation for tangential H.

– Also, H is not accompanied by an electric field E since static

currents produce only static magnetic fields.

• What if the surface current Jx varies with time, i.e., Jx = Jx(t). In

that case we have quasi-statically

H(z, t) ≈ ∓ŷ
Jx(t)

2
A/m for z ≷ 0,

but only as an approximation for positions very close to z = 0 sur-

face where propagation time-delay z
v

of d’Alembert solutions can be

neglected1.

1This solution surely cannot be an exact solution since if it were, it would imply instantaneous changes
in H in response Jx at arbitrarily large distances, implying an infinite speed of propagation — we know
that is not true!
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• But the exact field solution of Maxwell’s equations valid for all z is

equally easy to obtain: just replace Jx(t) above with Jx(t ∓ z
v) and

replace ≈ with = so that

H(z, t) = ∓ŷ
Jx(t∓ z

v)

2
A/m for z ≷ 0

complies with plane TEM d’Alembert solutions2 of Maxwell’s equations

in homogeneous and source free regions z ≷ 0.

x

y

z

E
+

H
+

H
−

E
−

Js = x̂Jx(t)

E
+
×H

+

E
−
×H

−

• As always, there is an accompanying E(z, t) that is obtained by multi-

plying H(z, t) with η and replacing its unit vector so that vector E×H

points in the direction of propagation, away from the z = 0 in this case

— hence, as illustrated in the margin,

E(z, t) = −x̂
η

2
Jx(t∓

z

v
)V/m for z ≷ 0.

Since Maxwell’s eqn’s + boundary conditions have unique solutions in given

settings, we are assured that any solution that complies with both (as in this

case) is the solution for the given setting (surface current on z = 0, in this

case) — it was surprisingly easy to solve this radiation problem by starting

from simple static and quasi-static solutions.

2We use Jx(t∓ z

v
) rather than Jx(t± z

v
) for z ≷ 0 because we assume that Jx(t) on z = 0 surface is the

only field source — in that case causality principle dictates that we use only the solutions propagating
away from the source (just like when a pebble drops in a pond, ripples propagate away).
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Conclusion: Evidently, a time varying surface current

Js = x̂f(t) on z = 0 plane

produces plane electromagnetic waves

E
± = −x̂

ηf(t∓ z
v)

2
and H

± = ∓ŷ
f(t∓ z

v)

2
in regions z ≷ 0

propagating away from the z = 0 plane.

Note that:

1. Ex and Hy waveforms are proportional to delayed versions of surface

current Jx(t) at each location z above and below the current sheet, with

the reference directions of E and Js opposing one another.

2. fields E± are continuous on z = 0 surface in compliance with tangential

boundary condition equations.

3. fields H
± exhibit a discontinuity on z = 0 surface that matches the

current density of the same surface, once again in compliance with

tangential boundary condition equations.
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Opposing E and Js vectors on z = 0 plane indicate that the surface is acting

as a source of radiated energy (the energy that feeds the waves radiated away

from the surface) — this interpretation will be discussed in more detail in

the next lecture.
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Example 4: A current sheet on z = 0 surface is described by

Js(t) = x̂f(t), with f(t) = At rect(
t

τ
),

where τ = 1µs and A = 1
A/m
µs . A plot of the current waveform f(t) is plotted in

the margin. Assuming that the current sheet is embedded in free space, construct
the following plots:

• (a) Radiated Hy(z, t = 2µs) vs z,

• (b) Radiated Ex(z, t = 2µs) vs z.

Solution: (a) From the theory developed above, we have using delayed copies of half
the surface current density,

Hy(z, 2µs) = ∓1

2
(2µ∓ z

c
) rect(

2µ∓ z
c

1µ
)

A

m
for z ≷ 0,

as plotted in the margin. Notice that the propagated field waveforms — c ×
2µs=600 m has been covered in 2 µs — are re-scaled and shifted replicas of the
source function f(t).

(b) We have, multiplying Hy with ηo = 120πΩ, and adjusting the signs so that E

and Js are pointing in opposite directions,

Ex(z, 2µs) = −60π(2µ∓ z

c
) rect(

2µ∓ z
c

1µ
)

V

m
for z ≷ 0.

Plots are shown in the margin.
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