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With this lecture we start our study of the full set of Maxwell’s equations

shown in the margin by first restricting our attention to homogeneous and

non-conducting media with constant ǫ and µ and zero σ.

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×H = J +
∂D

∂t
.

• Our first objective is to show that non-trivial (i.e., non-zero) time-

varying field solutions of these equations can be obtained even in the

absence of ρ and J.

– We already know static ρ and J to be the source of static electric

and magnetic fields.

– We will come to understand that time varying ρ and J, which

necessarily obey the continuity equation

∂ρ

∂t
+∇ · J = 0,

constitute the source of time-varying electromagnetic fields.

Despite these intimate connections between the sources ρ and J and

the fields

D = ǫE and B = µH,

non-trivial field solutions can exist in source-free media as we will see

shortly.
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• Such field solutions in fact represent electromagnetic waves, a familiar

example of which is light.

• Another example is radiowaves that we use when we communicate

using wireless devices such as radios, cell-phones, WiFi, etc.

• Different types of electromagnetic waves are distinguished by their os-

cillation frequencies, and include

– radiowaves,

– microwaves,

– infrared,

– light,

– ultraviolet,

– X-rays, and gamma rays,

going across the electromagnetic spectrum from low to high fre-

quencies.

We are well aware that these types of electromagnetic waves can travel

across empty regions of space — e.g., from sun to Earth — transporting

energy and heat as well as momentum.

– Next, we will discover their general properties by examining Maxwell’s

equations under the restriction ρ = J = 0.
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• In source-free and homogeneous regions where ρ = J = 0 and ǫ and

µ are constant, we can simplify Maxwell’s equations as shown in the

margin.

∇ ·E = 0

∇ ·H = 0

∇×E = −µ
∂H

∂t

∇×H = ǫ
∂E

∂t
.

– If there are non-trivial solutions of these equations, namely E(r, t) 6=
0 and H(r, t) 6= 0, they evidently need to be divergence-free.

– They also have to be “curly” according to the last two equations:

Faraday’s and Ampere’s laws.

• Next we will make use of vector identity

∇× (∇×E) = ∇(∇ ·E)−∇2
E

which should be familiar from an earlier homework problem.

– Since the electric field E is divergence-free in the absence of sources,

this identity simplifies as

∇× (∇× E) = −∇2
E

where in the right side ∇2
E is the Laplacian of E.

– Using this result we can express the curl of Faraday’s law as

∇× [∇× E = −µ
∂H

∂t
] ⇒ −∇2

E = −µ
∂

∂t
∇×H,

which combines with the Ampere’s law to produce

∇2
E = µǫ

∂2
E

∂t2
,
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which can be written explicitly as 3D vector

wave

equation
∂2
E

∂x2
+

∂2
E

∂y2
+

∂2
E

∂z2
= µǫ

∂2
E

∂t2
.

Recall that our objective is to see whether a non-trivial time-varying solution

of Maxwell’s equations can exist in source-free media.

Our objective at this stage is not finding a general solution; it is instead

identifying a simple example of a non-trivial time-varying E(r, t), if we can.

For example, can a field solution

E(r, t) = x̂Ex(z, t)

that only depends on z and t and “polarized” in x-direction exist? If it can

exist, what would be the properties of this x-polarized solution?

• To find out, we note that with E = x̂Ex(z, t), the above “wave equation”

is reduced to 1D scalar

wave

equation

∂2Ex

∂z2
= µǫ

∂2Ex

∂t2
,

an equation that is known as a 1D scalar wave equation, as opposed

to the 3D vector wave equation above.

– Now, by substitution, we can easily show that

Ex = cos(ω(t−√
µǫz)),
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satisfies the 1D wave equation and represents an x-polarized time-

periodic field solution with an oscillation frequency ω.

– 1D wave equation can also be satisfied by

Ex = cos(ω(t +
√
µǫz)).

Let us jointly refer to these solutions as

Ex = cos(ω(t∓ z

v
)),

where

v ≡ 1√
µǫ

has the dimensions of m/s (i.e., velocity) and the algebraic signs ∓
distinguish between the “travel directions” of these possible “wave solu-

tions” as elaborated later on.

• Let us next find out the magnetic field intensity H that accompanies

the x-polarized electric field wave solution

E = x̂ cos(ω(t∓ z

v
)).

– Since the curl of E is

∇×E =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex 0 0

∣

∣

∣

∣

∣

∣

∣

= ŷ
∂Ex

∂z
= ±ŷ sin(ω(t∓ z

v
))
ω

v
,
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Faraday’s law

∇×E = −µ
∂H

∂t
requires that H should satisfy

−µ
∂H

∂t
= ±ŷ sin(ω(t∓ z

v
))
ω

v
.

Finding the time-dependent anti-derivative (and remembering v =

1/
√
µǫ), we obtain

H = ±ŷ

√

ǫ

µ
cos(ω(t∓ z

v
)).

• The results above, namely our x-polarized non-trivial field solutions of

Maxwell’s equations in source-free homogeneous space, can be repre-

sented more compactly as

x

y

z

H

E = x̂f(t −
z

v
)

E × H

x

yz

H
E = x̂f(t +

z

v
)

E × HE = x̂f(t∓ z

v
) and H = ±ŷ

f(t∓ z
v
)

η
,

where

f(t) ≡ cos(ωt) = Re{ejωt} =
ejωt + e−jωt

2
is the field waveform,

η ≡
√

µ

ǫ

is known as intrinsic impedance (and measured in units of ohms).
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• Since Maxwell’s equations with constant µ and ǫ are linear and time-

invariant (LTI), the field solutions above can be further generalized by

using their weighted and time-shifted superpositions such as

f(t) =
∑

n

An cos(ωnt + θn)

and

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

having frequency dependent weighting factors An and F (ω). And since

according to Fourier analysis all practical signals f(t) can be synthe-

sized in these forms, it follows that the field solutions above are valid

with arbitrary waveforms f(t). d’Alembert

wave

solutions
Solutions

E, H ∝ f(t∓ z

v
)

of the 1D scalar wave equation with arbitrary f(t) are known as d’Alembert

wave solutions.

• d’Alembert solution

E, H ∝ f(t− z

v
)

describes electromagnetic waves traveling in +z direction, whereas so-

lution

E, H ∝ f(t +
z

v
)
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describes electromagnetic waves traveling in −z direction (see margin).

In each case the travel speed is

v =
1√
µǫ

−−−−−−→
free space

1√
µoǫo

≡ c ≈ 3× 108 m/s.

• H solution can be obtained from E by dividing it with η and rotating

it by 90◦ so that vector E×H points in direction the waves travel.

• E can be obtained from H by multiplying it with η and rotating it by

90◦ so that vector E × H — called Poynting vector — once again

points in direction the waves travel.

t

Ex(t, z) = △(t −
z

c
)Ex(t, 0) = △(t)

z

Ex(t, z) = △(t −
z

c
)

Ex(0, z) = △(−
z

c
)

z

c
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In each case the intrinsic impedance is

η =

√

µ

ǫ

−−−−−−→
free space

√

µo

ǫo
≡ ηo ≈ 120π ohms.

Transformation rules above also hold for y-polarized wave solutions

E = ŷf(t∓ z

v
) and H = ∓x̂

f(t∓ z
v)

η
.

Question: What about z-polarized waves

E = ẑf(t∓ z

v
),

can they exist?

Answer: No, z-polarized waves ẑf(t∓ z
v
) traveling in ±z direction cannot

exist because they would violate the divergence-free condition ∇·E = 0.
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