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• Consider the microscopic-form Maxwell’s equations

∇ ·D = ρ Gauss’s law

∇ ·B = 0

∇×E = −
∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
, Ampere’s law

where

D = ǫoE

B = µoH.

• Direct applications of these equations in material media containing a

colossal number of bound charges is impractical.

• Macroscopic-form Maxwell’s equations suitable for material media are

obtained by first expressing ρ and J above as the macroscopic quantities

ρ = ρf −∇ ·P

and

J = Jf +
∂P

∂t
+∇×M

where
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– subscripts f indicate charge and current density contributions due

to free charge carriers,

– the term −∇ ·P denotes the bound charge density,

– the term ∂P
∂t

denotes the polarization current density due to

oscillating dipoles (already discussed in Lecture 11), and

– ∇×M is a “magnetization current density” also due to bound

charges, an effect that we will discuss and clarify later in this

section.

Using these expressions in Gauss’s and Ampere’s laws

∇ · ǫoE = ρ Gauss’s law

∇× µ−1

o B = J +
∂ǫoE

∂t
, Ampere’s law

we obtain

∇ · (ǫoE +P) = ρf Gauss’s law

∇× (µ−1

o B−M) = Jf +
∂

∂t
(ǫoE +P), Ampere’s law.

Now, re-define D and H as

D = ǫeE +P = ǫE

and

H = µ−1

o B−M = µ−1B,

2



respectively, and drop the subscripts f which will no longer be needed.

Using these new definitions, the full set of Maxwell’s equations now

read as (the same form as before)

∇ ·D = ρ Gauss’s law

∇ ·B = 0

∇×E = −
∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
, Ampere’s law

with

D = ǫE

B = µH,

where ρ and J are understood to be due to free charge carriers only.

• We had already seen many aspects of the above procedure for obtaining

the macroscopic form field equations earlier on (e.g., in Lectures 8 and

11).

– In particular we were already familiar with the revised definition

of D = ǫE along with the concept of medium permittivity ǫ.

– The new feature above that requires further discussions is the rela-

tion B = µH along with the concept of medium permeability

µ. The details of this relation are connected to the concept of

“magnetization current” which we discuss next.
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• Just like “free charge” density and currents, “bound charge” densities

and currents also have to satisfy the continuity equation

∂ρ

∂t
+∇ · J = 0.

– This equation is automatically satisfied if we substitute

ρ = ρb = −∇ ·P

and

J = Jb =
∂P

∂t

in it.

Verification:

∂ρb

∂t
+∇ · Jb =

∂

∂t
(−∇ ·P) +∇ ·

∂P

∂t
= 0

since the order of time derivative and divergence can be exchanged

on the right.

– But the same equation is also satisfied if we take

Jb =
∂P

∂t
+∇×M

for any vector field M simply because vector ∇×M is divergence

free.
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Consequently, it is not sufficient to represent bound currents in mate-

rial media as simply ∂P
∂t

, if bound carriers can also conduct divergence-

free currents due to closed-loop orbits.

– In fact, electrons “orbiting” atomic nuclei certainly produce such

divergence-free current loops at microscopic scales — we account

for such currents at macroscopic scales by including a magnetiza-

tion current term ∇×M in Jb.

– Also, bound charge motions within nucleons1 — proton and neu-

trons — produce magnetization currents ∇×M.

– Even bare electrons can produce magnetization currents ∇ × M

because of their intrinsic spin2.

Once ∇×M is included in Jb, it follows from Ampere’s law that

H = µ−1

o B−M

where M is referred to as magnetization field.

1Physical models of nucleons involve bound charge carriers known as quarks which cannot be observed

in a free state.
2All elementary charge carriers carry an intrinsic magnetization proportional to charge-to-mass ratio

q

m
and a “spin angular momentum” having quantized values of ±~

2
N.m.s in any measurement direction.

Using Heisenberg’s uncertainty principle, ∆p∆r ≥ ~

2
, we can interpret the spin angular momentum of

an elementary particle as the lower bound of ∆p∆r, the product of quantum uncertainties in particle

momentum and position. There is no classical interpretation of spin angular momentum for point particles.

5



• To get a physical picture about magnetization M and the physical

origin of H = µ−1
o B − M consider a solenoid wound around some

cylindrical shaped material as shown in the margin. We know that

with a solenoid current Io, we would have Ho = NIoẑ in the interior

of a solenoid with N loops per unit length aligned with the z-axis,

and a corresponding magnetic flux density Bo = µoNIoẑ when the

solenoid core is free space. This will be modified to some B = Bo +

µoM when a material core is introduced into the same space, where

µoM stands for the (additional) macroscopic (space averaged) magnetic

flux density produced by microscopic current loops localized within the

atoms constituting the core.

Bo = µoIoN

Io

inside the solenoid
but outside the cylindrical
magnetic core

Within the core, stacks of
atomic loop currents are 
effective solenoids giving 
rise to an additional
magnetic flux density of
an average magnitude  

µoAlIlNl = µoM

that adds to Bo

– If there are Na =
1

∆x∆y∆z
atoms per unit volume in the core, with

∆x separations in x direction and so forth, loop currents Il of a

stack of atoms with ∆z separations in z would produce an effective

solenoid an internal z-directed magnetic flux density of µo
Il
∆z
ẑ and

zero exterior field.

– Since one such atomic stack solenoid with a loop area of Al will be

found for every ∆x∆y cross-sectional area of the core, a macro-

scopic average magnetic flux density produced by these atomic

solenoids would be calculated as (this calculation is similar to

finding the average polarization field in a dielectric as discussed in

Lecture 8) Al

∆x∆y
× µo

Il
∆z
ẑ = µoNaIlAlẑ ≡ µoM, with M = Nam,

m ≡ IlAlẑ.
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◦ Here m is the magnetic dipole moment of each current loop

(analogous to electric dipole p = qr), M is the magnetization

field vector (analogous to P = Nap), which is a simple product

of m per magnetized atom and the atomic number density Na

in the core.

– Superposing the magnetic flux densities of µoM andBo, we obtain

B = Bo+µoM for the core region, or for any region of space having

a non-zero magnetization M, which then leads to the general result

H = µ−1
o B−M, which is further discussed below.

– Notice, whether the flux density B = Bo+µoM inside the material

medium is stronger or weaker in magnitude than Bo depends on

the direction of M, which, in turn, depends on the algebraic sign

of microscopic loop currents Il introduced above.

◦ Negative Il is found in diamagnetic materials where |B| <

|Bo|, while positive Il in paramagnetic and ferromagnetic

materials where |B| > |Bo|, as discussed below.

– Also, the expression H = µ−1
o B − M leads to H = µ−1

o B = Ho

in the exterior region where M = 0, indicating that while fields B

and Boif the interior and exterior are different, H is the same in

both regions (analogous with D in dielectrics).
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• Lab measurements — e.g., inductances L measured for coils wound

around magnetic materials3 — show that for a large class of materials

M ≡ µ−1

o B−H

varies linearly with H (which is of course possible only when B also

varies linearly with H).

– In that case we write

M = χmH,

where χm is a dimensionless parameter called magnetic suscep-

tibility, and obtain a relation Magnetic

susceptibility

and

permeability

B = µo(1 + χm)H = µH,

where

µ = µo(1 + χm)

is called the permeability of the medium.

3Recall from Lecture 15 that L ∝ µ when inductors are wound around materials with permeability µ.
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• For a large class of materials with M ∝ H, it is observed that |χm| ≪ 1.

In that case, the material is called

– Diamagnetic if χm < 0:

◦ Diamagnetism occurs when an applied magnetic field induces

electron orbital angular momentum in a collection of atoms

having no net permanent magnetization M — in such materi-

als electron clouds around atomic nuclei spin up in accordance

with Lenz’s to generate magnetic fields opposing the applied

magnetic field so as to keep B = µH smaller than µoH. This

happens in materials that we ordinarily think of being non-

magnetic (wood, glass, water, etc.). Diamagnetic materials

are in fact very weakly repulsed by permanent magnets since

µ ≈ µo in all diamagnetic materials.

– Paramagnetic if χm > 0:

◦ Paramagnetism occurs in materials composed of atoms hav-

ing permanent magnetic dipole moments due to electron spin

angular momentum — magnetic dipoles of such atoms co-

align with the applied magnetic field due to v × B related

torques, leading to M pointing in the applied B direction4.

This happens for atoms with unfilled inner electron shells, be-

cause in filled shells electron spins are opposite (due to Pauli

4In these materials the described paramagnetism overcomes the diamagnetic tendency of the material

caused by the orbital angular momenta of its electrons around atomic nuclei.
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exclusion principle) and cancel one another. Unfilled outer

shells do not usually give rise to paramagnetism because in-

teractions between adjacent atoms in that case give rise to

opposite spins of their outer shell electrons. Paramagnetic

materials are very weakly attracted to permanent magnets

(e.g., aluminum, lithium, tungsten).

• In a small class of materials known as ferromagnets — iron, nickel,

and cobalt, which are metals with atoms having unfilled inner elec-

tron shells, and their various alloys — M can arise spontaneously (be-

cause permanent magnetic dipole moments of nearby atoms produced

by electron spins become co-aligned as a consequence of conduction

electrons moving through the lattice) and turns out to be a non-linear

function of present and past values of H, in which case experimentally

obtained relations, denoted as

B = B(H),

need to be used in Maxwell’s equations. It is even possible to have

non-zero B in such materials with zero H — permanent magnets have

that property.

• First principles modeling of χm or the B = B(H) relation requires

quantum mechanics (classical models turn out to be not accurate enough).

Overall, the models give rise to frequency dependent results, involving

loss as well as resonance features (also exhibited in Lorentz-Drude mod-
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els of χe examined in Lecture 11) relevant for applications including

various magnetic imaging techniques.
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