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• Given a circular coil with some resistance R and conducting some cur-

rent I, the magnetic flux Ψ produced by I and “linking” the coil itself

— see figure on the right — can be expressed as

Ψ = LI

using a non-negative proportionality constant

L =
Ψ

I

termed the self -inductance of the coil measured in units of Henries

(H=Wb/A)1.
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(a) A one turn coil with current I
generates its own linked magnetic
flux LI as shown, where a non-
negative L is the inductance of
the coil.

(b) An equivalent circuit model 
for the coil expressed in terms of 
lumped resistor R and inductor L 
forming a loop carrying the loop
current I

The emf RI=-LdI/dt of the coil 
appears as a voltage rise across 
the inductor in the ckt model, 
as well as a voltage drop across 
the resistor, both taken in the 
direction of current I. Voltage 
drop V across the inductor in the 
current direction is LdI/dt, as
we learned in our circuit courses.  

• Given Ψ = LI, and its time derivative

dΨ

dt
= L

dI

dt
,

it follows that Faraday’s equation applied to the coil is

E = −
dΨ

dt
= −L

dI

dt
,

indicating a self -emf −LdI
dt

representing a voltage rise around the

coil in the direction of current flow I = E/R — see an equivalent circuit

model for the coil derived from these relations shown on the right.

1As opposed to a mutual inductance M , also measured in Henries, relating the flux linking a coil C to

a current I
o

flowing in a second coil C
o
.
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– The current I and self-emf E are then the solutions of differential

equations

RI = −L
dI

dt
and RE = −L

dE

dt
,

respectively, and exhibit an exponential decay with a time constant

of τ = L/R (just like in LR circuits seen in ckt courses, and in

analogy with time constant τ = RC that governs voltage decays

in RC circuits).

◦ Note that τ = L/R implies that when the inductance L is

large, so is time constant τ , and current decay in the induc-

tor is slow — inductors with large L will behave like slowly

time-varying current sources (just like capacitors behaving like

time-varying voltage sources) as they release their stored en-

ergy (while maintaining a voltage rise −LdI
dt determined by

other elements in their connected circuits).

• For an inductor consisting of n-loops, the emf E measured across all

n-loops is naturally (since n emf’s add up)

Ψ

I

I, E = −L
dI

dt

V (t) = L
dI

dt
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(a) A one turn coil with current I
generates its own linked magnetic
flux LI as shown, where a non-
negative L is the inductance of
the coil.

(b) An equivalent circuit model 
for the coil expressed in terms of 
lumped resistor R and inductor L 
forming a loop carrying the loop
current I

The emf RI=-LdI/dt of the coil 
appears as a voltage rise across 
the inductor in the ckt model, 
as well as a voltage drop across 
the resistor, both taken in the 
direction of current I. Voltage 
drop V across the inductor in the 
current direction is LdI/dt, as
we learned in our circuit courses.  

E = n(−
d

dt
Ψ) = −

d

dt
nΨ ≡ −L

dI

dt

implying an inductance

L ≡
nΨ

I
.
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Example 1: An n-turn coil has a resistance R = 1Ω and inductance of 1µH. If it is

conducting 3 A current at t = 0, determine I(t) for t > 0.

Solution: Current flow in the resistive n-turn coil will be driven by self-emf E = −LdI

dt

matching a voltage drop RI . Hence

RI = −L
dI

dt
↔

dI

dt
+

R

L
I = 0 ⇒ I(t) = I(0)e−

R

L
t = 3e−10

6
t A.

• As illustrated by above example, current I around a resistive loop C

will in general be obtained by solving a differential equation constructed

using the emf of the loop.

– The algebraic I = E
R

solution used last lecture assumed that self-

emf −LdI
dt

produced by the induced current I(t) is small compared

to an externally produced emf.

We continue with typical inductance calculations.
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Inductance of long solenoid: Consider a long solenoid with length ℓ,

cross-sectional area A, and a density of N loops per unit length as examined

in Example 3 of Lecture 12 (see figure in the margin). As determined in

Example 3, the magnetic flux density in the interior of the solenoid is

ℓ

B = ẑB

I

B = µoIN

B = µoINẑ

while n = Nℓ is the number of turns of the solenoid. Thus, the inductance

of the solenoid with n = Nℓ turns is

L =
nΨ

I
=

Nℓ(µoIN)A

I
= N2µoAℓ.

• As we know from our circuit courses, an inductor L such as the solenoid

coil considered above can be used to store energy. An inductor con-

nected to an external circuit with a quasi-static current I develops a

voltage drop V = LdI
dt across its terminals2 and absorbs power at an

instantaneous rate

P = V I = L
dI

dt
I =

d

dt
(
1

2
LI2),

implying a stored energy of

W =
1

2
LI2 =

1

2
N2µoAℓI

2 =
|Bz|

2

2µo
Aℓ =

1

2
µo|Hz|

2Aℓ

in an inductor in a conducting state.

2Assuming a physical size much smaller than a wavelength λ = c/f for the highest frequency in I(t).
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• Notice that the stored energy of the solenoid is

1

2
µo|Hz|

2 =
1

2
µoH ·H

times its volume Aℓ occupied by the field H inside the solenoid. That

suggests that

w =
1

2
µoH ·H

can be interpreted as stored magnetostatic energy per unit volume in

general.

– Also both inductance L and stored energies W and w would have

µ replacing µo in material media with permeabilities

µ = (1 + χm)µo

and magnetic susceptibilities χm, in analogy with the concepts of

permittivity ǫ = (1 + χe)ǫo and electrical susceptibility χe.

◦ Permeability and magnetic susceptibility notions will be ex-

amined in a future lecture.
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Inductance of shorted coax: Consider a coaxial cable of some length ℓ

which is “shorted” at one end (with a wire connecting the inner and outer

conductors), so that a steady current I can flow on the inner conductor of

radius a to return on the interior surface of the outer conductor at radius

b after having circulated through the short. We will next determine the

inductance L of such an inductor after first computing the magnetic flux

density Bφ that will be produced by the inner conductor current I. In Bφ

calculation we will assume ℓ ≫ b so that an “infinite coax” approximation

can be invoked.

ℓ

ab
r

z

Short

B

I

I

Shorted coax circulates
a current I linking a
magnetic flux 
confined to a region
bounded by the outer
conductor of the coax.

Ψ• Expanding the integral form of Ampere’s law∮
C

B · dl = µoIC

as

Bφ2πr = µoI

over a circular integration contour C of a radius r > a, we find that

the magnetic flux density in the interior of the coax cable is

Bφ =
µoI

2πr
.

• Therefore, the magnetic flux linked by the closed current path I (see

figure in the margin) is

Ψ =

∫
S

B · dS = ℓ
µo

2π
I

∫ b

a

dr

r
= ℓ

µo

2π
ln

b

a
I.
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Clearly, we have a linear relation Ψ = LI, with

L ≡
ln b

a

2π
ℓµo,

which is the inductance of a shorted coax of a finite length ℓ.

– The inductance of the coax per unit length is

L =
ln b

a

2π
µo,

which should be contrasted with capacitance per unit length

C =
2π

ln b
a

ǫo

of the same coax configuration.

Notice how L and C are proportional to ǫo and µo, respectively,

having proportionality constants which are inverses of one another.
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Inductance of shorted parallel plates: If a pair of parallel plates of

areas A = Wℓ and separation d were shorted at one end, we would obtain

effectively an inductor with a per length inductance

L =
d

W
µo

that accompanies per length capacitance

C =
W

d
ǫo

of the same parallel plate configuration. This follows from a generalization of

our finding above that the proportionality constants of L and C are arithmetic

inverses of one another.

8


