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The enf RI=-Ldl/dt of the coil
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indicating a self-emf —L% representing a voltage rise around the R hauetor Yﬂl tﬁgecg;sriogg{?ss
.. . . . . . as well as a voltage drop across
coil in the direction of current flow I = £/ R — see an equivalent circuit the resistor, both taken in the
. . . . direction of current I. Voltage
model for the coil derived from these relations shown on the right. drop V across the inductor in the
current direction is Ldl/dt, as
we learned in our circuit courses.

'As opposed to a mutual inductance M, also measured in Henries, relating the flux linking a coil C' to
a current [, flowing in a second coil C,,.



— The current I and self-emf &£ are then the solutions of differential
equations

RI = —Lﬂ and RE = —Lﬁ,

dt dt
respectively, and exhibit an exponential decay with a time constant
of 7 = L/R (just like in LR circuits seen in ckt courses, and in
analogy with time constant 7 = RC that governs voltage decays

in RC circuits).

o Note that 7 = L/R implies that when the inductance L is
large, so is time constant 7, and current decay in the induc-
tor is slow — inductors with large L will behave like slowly
time-varying current sources (just like capacitors behaving like
time-varying voltage sources) as they release their stored en-
ergy (while maintaining a voltage rise —L% determined by
other elements in their connected circuits).

e For an inductor consisting of n-loops, the emf £ measured across all
n-loops is naturally (since n emf’s add up)
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(a) Aone turn coil with current
generates its own |inked magnetic
flux LI as shown, where a non-
negative L is the inductance of
the coil.
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(b) An equivalent circuit node

for the coil expressed in terns of
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The enf RI=-Ldl/dt of the coi
appears as a voltage rise across
the inductor in the ckt nodel,

as well as a voltage drop across
the resistor, both taken in the
direction of current |I. Voltage
drop V across the inductor in the
current direction is Ldl/dt, as
we learned in our circuit courses.




Example 1: An n-turn coil has a resistance R = 12 and inductance of 1 xH. If it is
conducting 3 A current at t = 0, determine I(t) for ¢ > 0.

Solution: Current flow in the resistive n-turn coil will be driven by self-emf £ = —L%

matching a voltage drop RI. Hence

o d[ d[ R o o —%t o —106¢
RI——L% “ dt—l—Ll—O = I(t)=1(0)e " =3e A.

e As illustrated by above example, current I around a resistive loop C'
will in general be obtained by solving a differential equation constructed

using the emf of the loop.

£ solution used last lecture assumed that self-

— The algebraic I = &
emf —L% produced by the induced current I(¢) is small compared

to an externally produced emf.

We continue with typical inductance calculations.



Inductance of long solenoid: Consider a long solenoid with length £,
cross-sectional area A, and a density of IV loops per unit length as examined
in Example 3 of Lecture 12 (see figure in the margin). As determined in
Example 3, the magnetic flux density in the interior of the solenoid is

B=,IN?

while n = N/ is the number of turns of the solenoid. Thus, the inductance
of the solenoid with n = N/ turns is

¥ Nl(p,IN)A
ST

L = N?u,Al.

e As we know from our circuit courses, an inductor L such as the solenoid
coil considered above can be used to store energy. An inductor con-
nected to an external circuit with a quasi-static current I develops a
voltage drop V = L% across its terminals® and absorbs power at an
instantaneous rate

dl =~ d 1
P=VI=L—I=—(zLI"
dt dt(2 )
implying a stored energy of
1 1 |B.|? 1
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in an inductor in a conducting state.

2 Assuming a physical size much smaller than a wavelength A\ = ¢/ f for the highest frequency in I(t).
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e Notice that the stored energy of the solenoid is

1 1
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times its volume A¢ occupied by the field H inside the solenoid. That

suggests that

1
w = §,u0H -H
can be interpreted as stored magnetostatic energy per unit volume in

general.

— Also both inductance L and stored energies W and w would have
1 replacing p, in material media with permeabilities

= (14 Xm) o

and magnetic susceptibilities x,,, in analogy with the concepts of
permittivity € = (1 + x.)€, and electrical susceptibility xe.

o Permeability and magnetic susceptibility notions will be ex-
amined in a future lecture.



Inductance of shorted coax: Consider a coaxial cable of some length ¢
which is “shorted” at one end (with a wire connecting the inner and outer
conductors), so that a steady current I can flow on the inner conductor of
radius a to return on the interior surface of the outer conductor at radius

b after having circulated through the short. We will next determine the
inductance L of such an inductor after first computing the magnetic flux
density By that will be produced by the inner conductor current I. In By
calculation we will assume ¢ > b so that an “infinite coax” approximation
can be invoked.

e Expanding the integral form of Ampere’s law

%B-dl:uolg
C

By2mr = pol

as

over a circular integration contour C' of a radius » > a, we find that
the magnetic flux density in the interior of the coax cable is

orr’

By

e Therefore, the magnetic flux linked by the closed current path I (see
figure in the margin) is
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a current | linking a
magnetic flux\y
confined to a region
bounded by the outer
conduct or of the coax.
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Clearly, we have a linear relation W = LI, with

I = ln%g
= op He

which is the inductance of a shorted coax of a finite length £.

— The inductance of the coax per unit length is

In g
E - 27T /’L07
which should be contrasted with capacitance per unit length
2T
C= In 50

of the same coax configuration.

Notice how £ and C are proportional to €, and u,, respectively,
having proportionality constants which are inverses of one another.



Inductance of shorted parallel plates: If a pair of parallel plates of
areas A = W/{ and separation d were shorted at one end, we would obtain
effectively an inductor with a per length inductance

d

L=—pu,

wH
that accompanies per length capacitance
W

C=—¢
d

of the same parallel plate configuration. This follows from a generalization of
our finding above that the proportionality constants of £ and C are arithmetic
inverses of one another.



