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Michael Faraday discovered (in 1831, less than 200 years ago) that a chang-

ing current in a wire loop induces current flows in nearby wires — today

we describe this phenomenon as electromagnetic induction: the current

change in the first loop causes the magnetic field produced by the current to

change, and magnetic field change, in turn, is said to induce1 (i.e., produce)

electric fields which drive the currents in nearby wires. Definitions of E and

B have not changed:

recall that

• E is force per unit sta-
tionary charge

• B gives an additional
force v × B per unit
charge in motion with
velocity v in the mea-
surement frame.

• While static electric fields produced by static charge distributions are

unconditionally curl-free, time-varying electric fields produced by cur-

rent distributions with time-varying components are found to have, in

accordance with Faraday’s observations, non-zero curls specified by

∇× E = −
∂B

∂t
Faraday’s law

at all positions r in all reference frames of measurement. Using Stoke’s

theorem, the same constraint can also be expressed in integral form as
∮

C

E · dl = −

∫

S

∂B

∂t
· dS Faraday’s law

for all surfaces S bounded by all closed and directed paths C (with

the direction of C, indicated by an arrow, and direction of vector dS

related by right hand rule).

1Relativistic derivation of static B given in Lecture 12 can be extended to show that Coulomb interactions of charges

in time-varying motions require a description in terms of time-varying B and E — see, e.g., Am. J. Phys.: Tessman, 34,

1048 (1966); Tessman and Finnel, 35, 523 (1967); Kobe, 54, 631 (1986). Thus, the cause of induced E is not really the

time-varying B, but rather the time-varying current J that is also producing the variation in B.
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• The right hand side of the integral form equation above includes the

flux of rate of change of magnetic field B over surface S.

If contour C bounding S is “fixed” (unchanging) in the measurement

frame, then the equation can also be expressed as
∮

C

E · dl = −
d

dt

∫

S

B · dS,

where the right hand side is now expressed in terms of the rate of change

of magnetic flux

Ψ ≡

∫

S

B · dS

linking contour C over any surface S bounded by C.

• This modification (the exchange of the order of integration and time

derivative on the right side) would not be permissible if path C were

moving within the measurement frame or being deformed in time —

but in such cases we could still express Faraday’s integral form equation

with −dΨ
dt

on the right side, provided that we also modify the left side

as in ∮

C

(E + v ×B) · dl = −
d

dt

∫

S

B · dS

where v denotes the velocity of motion or deformation of path C.

S
C

C(∆t)

Ψ(∆t) =
∫
S
B(r, ∆t) · dS +

∫
δS

B(r, ∆t) · dS.

v∆t

dl

Ψ(0) =
∫
S
B(r, 0) · dS, and

Thus,
Ψ(∆t) − Ψ(0)

∆t
=

δS

Hence in limit ∆t → 0

dΨ

dt
=

∫
S

∂B

∂t
· dS −

∫
C
v × B · dl,

since

∫
δS

B(r, ∆t) ·
dS

∆t
=

∫
C
B(r, ∆t) ·

∆tv × dl

∆t

= −

∫

C
(v ×B) · dl

∫
S

B(r, ∆t) − B(r, 0)

∆t
· dS +

∫
δS

B(r, ∆t) ·
dS

∆t
.

because

B · (v × dl) = dl · (B× v),

both representing the volume of

a parallelepiped formed by the vectors

dl, v, and B.

Note that velocity v does not have to be

constant around contour C.

– This is equivalent to the original equation, since, as shown in the margin,
∫

S

∂B

∂t
· dS =

d

dt

∫

S

B · dS+

∮

C

v ×B · dl

when C is changing continuously with velocities v.
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• A physical interpretation of the final equation

∮

C

(E + v ×B) · dl = −
d

dt

∫

S

B · dS
︸ ︷︷ ︸

Integral formFaraday’s Law

E = −
dΨ

dt
Faraday’s eqn.

is as follows: Magnetic field lines con-

tributing to Ψ form links

with path C (bounding S)

like the links in an ordinary

chain — hence, Ψ is said to

be the flux linking path C.

– the circulation integral on the left is the “voltage drop” once

around the directed closed path C, representing the work done

per unit charge (by the Lorentz force ∝ E + v × B) taken a

full circle around C, which was denoted by Michael Faraday with a

symbol E and called the emf (short for electro-motive force, which

is a bad name since E is work, and not force, per unit charge) for

the closed path, equaling the decay rate −dΨ
dt

of its linked mag-

netic flux Ψ (due to all sources of magnetic flux density B in the

region).

C

S

v

B

dS

– if/when path C is occupied by a conducting wire loop of some

total conductance G = 1
R, and a resistance R = 1

G, a current

I = GE = E
R

will flow around the loop in the circulation direction2,

2I = Aσ|E+ v×B| for a homogeneous wire loop with a conductivity σ and cross sectional area A. If
the loop length is L, then the loop conductance is G = Aσ

L
and therefore we find that I = GE , as claimed,

since E =
∮

C
(E+ v ×B) · dl = |E+ v ×B|L around a homogeneous loop.
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driven by the non-zero field E+v×B within the wire accounting

for the non-zero E if/when −dΨ
dt is non-zero.

– in equivalent circuit models of conducting wire loops, Faraday’s

equation, re-written as RI = −dΨ
dt

, is effectively Kirchhoff’s volt-

age law (KVL) applied to the loop, with RI on the left denoting

the (sum of all) voltage drops in the direction of C, while −dΨ
dt

on

the right denoting a voltage rise also in the direction of C.

◦ note that the emf E describes both the voltage drop RI and

voltage rise −dΨ
dt

appearing in the circuit model for the con-

ducting wire loop since E = RI and E = −dΨ
dt are both true.

– in modern parlance (since Maxwell) the term emf and its symbol

E are used to refer to and denote sources of energy, e.g., battery

voltages and magnetic flux rate −dΨ
dt that drive currents I = E

R

around closed circuits3.

• If path C is fixed in the measurement frame, then v = 0, and KVL for

such a stationary loop reads as
∮

C

E · dl = −
dΨ

dt
;

– otherwise, that is if C is in motion, then

C

S

v

B

dS

3see Saslow, Am. J. Phys., 58, 22 (2021), for a discussion of Maxwell’s interpretation of emf and
electrical energy production in batteries. Also see Scanlon et al., Am. J. Phys., 37, 689 (1969) for a
discussion of E =

∮

C
(E+ v×B) · dl vs E = −dΨ

dt
.
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∮

C

(E + v ×B) · dl = −
dΨ

dt

because in that case force per unit charge advected with path C

will be E+v×B according to Lorentz force (note: any additional

velocity vq of a moving charge along C does not contribute because

(vq ×B) · dl = 0 if dl and vq are parallel).

– In either case, if C is a physical conducting path with a total

resistance R, then the emf −dΨ
dt drives a current

C

S

I =
E

R

Think of EMF as the sum of all the "voltage 
rises" around the loop traversed in the 
direction of loop current I that needs to 
match the total "voltage drop" RI around 
the same loop traversed in the same 
direction.

That way, KVL which states that

Sum of voltage rises = Sum of voltage drops,

is fulfilled.
  I =

−dΨ
dt

R

around C in the circulation direction (determined by dl and dS

directions used in accordance with the right-hand-rule).

• The minus sign present in Faraday’s equation, E = −dΨ
dt

, assures that

induced current I produces an induced magnetic field that opposes the

flux change producing the emf — this fact is known as Lenz’s rule

and is in full accord with observations4./newpage

• According to Faraday’s law it appears that magnetic flux variations

−dΨ
dt can produce a non-zero emf independent of how the variations are

produced — the possibilities are:

4Faraday’s law not having the minus sign (or in conflict with Lenz’s rule) would be non-physical, as it
would lead to unbounded growth of induced currents and fields (by aiding rather than opposing the flux
change producing the emf).
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1. Fixed C, but time-varying B,

2. B =const. (in space and time), but time-varying C (rotating or

changing size),

3. An inhomogeneous static B = B(r) in the measurement frame

and C in motion.

• Note that even in the absence of any electric field E in the measurement

frame, a non-zero emf
∮

C

(v ×B) · dl = −
dΨ

dt

can exist because of the motion of C through an inhomogeneous mag-

netic field (if the field is homogeneous then dΨ
dt will be zero, implying

zero E), which will of course appear as an emf

C

S

I =
E

R

v

B

∮

C

E
′ · dl′ = −

dΨ′

dt′

for a second observer moving with C who sees a time varying electric

field E
′ = v ×B in her own frame (in addition to the inhomogeneous

but constant magnetic field B of the first frame appearing as a time-

varying magnetic field B
′)5.

5See Scanlon et. al., Am. J. Phys., 37, 698 (1969), for a discussion of I ′ = E ′

R
for rigid C with resistance

R observed from different reference frames.
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– Thus, having non-zero electric field circulations
∮

C

E
′ · dl′

under time-varying magnetic field conditions appears to be quite

comprehensible after all!

– Magnetic fields B in one frame will morph into electric fields E′ in

other frames because of (near) invariance of Lorentz force between

reference frames.

– Moreover a morphed E
′ can even be non-conservative — i.e., non

curl-free — when B is inhomogeneous in space (or time) as we

have just seen.
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x

y

z
Boe

−t/τ ẑ

C

Example 1: If
B = Boe

−t/τ ẑ,

what is the emf E taken over a stationary circular loop C of radius r = 10 m on
z = 0 plane in counter-clockwise direction (looking down on z = 0 plane)? What
is current I if the loop resistance is R?

Solution: Since counter-clockwise circulation is requested we take dS pointing in ẑ
direction to be consistent with the right hand rule. We then have

Ψ =

∫

S

B · dS = (Boe
−t/τ ẑ) · (π102ẑ) = π102Boe

−t/τ

over the circular surface S. Thus, the emf

E = −
dΨ

dt
= π102

Bo

τ
e−t/τ .

The loop current will be I = E
R in counter-clockwise direction of the computed cir-

culation E , which will be positive and counteract (i.e., strengthen) the weakening
Bz.
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x

y

C

I

2t

2 m/s

2 m

Example 2: Consider the magnetic flux density

B =
µoI

2πr
φ̂

produced by current I flowing along the x axis. What is the emf E of a square
loop C of area 4 m2 moving on xy-plane with edges parallel to x- and y-axes, if
its center is located at y = 2t m as a function of time? Compute the emf E first
as −dΨ

dt and then as
∮

C(v×B) · dl to verify that the same values are obtained.

Solution: Given the described geometry, we have

Ψ(t) =

∫
1

−1

dx

∫
2t+1

2t−1

dy
µoI

2πy
=

µoI

π
ln(

2t+ 1

2t− 1
).

Thus, the emf E is

−
dΨ

dt
= −

µoI

π
(
2t− 1

2t+ 1
)
∂

∂t
(
2t+ 1

2t− 1
) =

µoI

π

4

(2t+ 1)(2t− 1)
=

µoI

π(t2 − 1

4
)
.

Alternatively, since v = 2ŷ m/s, and v ×B = 2µoI
2πr x̂, we find, using dl = ±x̂dx

and ±ŷdy in turns,

E =

∮

C

(v ×B) · dl = 2
µoI

2π(2t− 1)
2− 2

µoI

2π(2t+ 1)
2 =

µoI

π(t2 − 1

4
)

in consistency with the above result.
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Example 3: A conducting loop of a radius r = 0.1 m (see figure in the margin) is
being rotated about the x axis with frequency of f = ω

2π = 60 Hz in a region
with a DC magnetic field of B = 10ẑ T. Determine the induced current in the
loop if the loop resistance is 12Ω.

Solution: The maximum value of the magnetic flux linking the loop should be

Ψo = π(0.1)210 = 0.1πWb.

The time-varying flux linking the rotating loop is therefore

Ψ(t) = Ψo cos(ωt) = 0.1π cos(120πt).

The corresponding emf is

E = −
dΨ

dt
= (120π)0.1π sin(120πt).

Therefore, the induced current around the loop must be

I =
E

R
=

12π2 sin(120πt)

12
= π2 sin(120πt)A.
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R1 = 1 Ω
R2

x

z

3t

2 m

~v = 3x̂ m/s

X X X X X X X

X X X XXXX

C

Moving bar in the presence
of a constant magnetic field
produces an emf and electric
fields in the lab frame that
drive a loop current I.

Example 4 illustrates how the
∮
E · dl part of emf

∮
(E+ v×

B) ·dl caused by a motion v =
3x̂ m/s is zero (with non-zero
static Ez components)!!

Example 4: A conducting bar of resistance R1 = 1Ω ohms is moved in the x-direction
with a velocity v = 3x̂ m/s on a pair of perfect conducting (R = 0) stationary
rails 2 m apart terminated with a load resistance R2 at x = 0, all constituting a
rectangular contour C to be taken counterclockwise. A constant magnetic field
of B = 1ŷ T is linked through contour C such that the flux Ψ = −1 × 2 × 3t
and the emf E = −dΨ/dt = 6 V. Hence, Faraday’s law demands that

∮

C

(E+ v ×B) · dl =

∫ t

b

(E+ v ×B)1 · dl+

∫ b

t

(E)2 · dl = 6

where the two integrals (with b and t referring to bottom and top rail contact
points) correspond to voltage drops across resistors R1 and R2, respectively. But
since ∫ t

b

(v ×B)1 · dl = 3× 1× 2 = 6,

it follows that
∫ t

b

(E)1 · dl+

∫ b

t

(E)2 · dl = 0 ⇒ Ez1 − Ez2 = 0 ⇒ Ez2 = Ez1,

i.e., identical static fields within the moving and stationary bars across the perfect
conducting rails. This may be a surprising claim/result — let’s give two examples
to illustrate how this happens:

1. Let R2 = 2Ω ohms. Then I = 6/3 = 2 A. It follows that voltage drops (E+ v ×B)1 · 2ẑ = 2
V across R1 and (E)2 · (−2ẑ) = 4 V across R2, yielding Ez1 = Ez2 = −2 V/m.

2. Let R2 = ∞ — open ckt load to the moving conductor. Then I = 6/∞ = 0 A. It follows that
(E+ v×B)1 · 2ẑ = 0 V across R1 and (E)2 · (−2ẑ) = 6 V across R2, yielding Ez1 = Ez2 = −3
V/m. Note that in this case the entire emf appears across the open termination (gap in the

loop C and the emf
∫

t

b
(E+ v ×B)1 · dl = 0 across resistor R1).
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Transformers which operate
based on an inductive cou-
pling principle, and electric
dynamos (and motors) which
produce motion induced emfs
(and rotating coils) are stud-
ied in depth in power courses
starting with ECE 330.

Example 5: An infinite solenoid producing a constant −dΨ
dt = 8 V, passes through

small a loop consisting of a 1 Ω resistor on the right and a 3 Ω resistor on the
left, connected in series — see margin plot. What is the current Ic through this
resistor loop, and what voltages would be measured (by a voltmeter) across the
individual resistors?

Solution: The magnetic flux produced by the solenoid will be confined to its interior

as long as dI/dt (and thus dΨ/dt, as specified) is constant and emf E = −dΨ/dt

is non-time varying (see below). In that case, with constant emf E = −dΨ
dt = 8

V of the encircling resistor loop in the setup, the loop current Ic is the ratio of

E and the total loop resistance 4 Ω, i.e., Ic =
E
R = 2 A. Consequently, 1 and 3

Ω resistors will develop 2 and 6 V drops, respectively, in the direction of the 2A

current!! Note that:

• the loop has no battery to support this current flow — it has instead been excited
“inductively”.

• with constant dI/dt, there is zero magnetic field at the locations of the loop wire and
resistors (static E in the solenoid exterior is curl-free!) — thus, the emf of the loop is
not being produced by a time varying local magnetic field; it is rather a consequence of
the time-varying current I(t) in the solenoid (which is also responsible for time-varying
Ψ), with the relation E = −dΨ/dt being “incidental”!

• what a voltmeter measures across the resistors — whether 2 or 6 V — depends on
whether its probes contacting points A and B are placed to the right or to the left of
the solenoid!! That’s because the field E produced by the time-varying current I(t) is
no longer conservative across the system and consequently the line integral of E is path
dependent — we have to be more careful about what we mean by voltage in these new
situations!
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R1 R2

x

y

C

A

B

In the presence of time vary-
ing magnetic flux, voltage of
a path P , defined as

∫

P
(E +

v × B) · dl, will in general be
path dependent!

A voltmeter reads and dis-
plays the voltage of its
own path constituted by the
placement of its own probe
wires contacting the mea-
surement nodes A and B.

Example 6: Consider a square conducting loop of 1 m2 cross sectional area bordered
by R1 = 2Ω and R2 = 1Ω resistors as shown in the margin. The loop is
linked with a magnetic flux Ψ due to time varying magnetic field described as
B = (12− 3t)ẑ T.

• Hence, Ψ = 12− 3t Wb and the emf E = −dΨ/dt = 3 V.

• Loop current I = 3V/3Ω = 1 A in the circulation direction.

• Voltage drop V1 = 2 V across R1 from point A to point B.

• Voltage drop V2 = −1 V across R2 from point A to point B.

• A voltmeter connected from A (positive lead) to B will read 2 V if and only if its
leads form a path identical to the path defined by R1 (from A to B).

• A voltmeter connected from A (positive lead) to B will read -1 V if and only if
its leads form a path identical to the path defined by R2.

• A voltmeter connected from A (positive lead) to B will read 0.5 V if its leads

form a diagonal path from A to B.

– To see this, notice that Faraday’s law applied for the triangular loop in-
cluding the voltmeter and R2 would have an emf of 1.5 V equaling the sum
of voltmeter reading VR and 1 V drop across resistor R2.
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