13 Current sheet, solenoid, vector potential and
current loops
In the following examples we will calculate the magnetic fields B = u,H

established by some simple current configurations by using the integral form
of static Ampere’s law.

Example 1: Consider a uniform surface current density J;, = J;Z A/m flowing on
x = 0 plane (see figure in the margin) — the current sheet extends infinitely in
y and z directions. Determine B and H.

Solution: Since the current sheet extends infinitely in y and z directions we expect B
to depend only on coordinate x. Also, the field should be the superposition of the
fields of an infinite number of current filaments, which suggests, by right-hand-
rule, B = gB(x), where B(z) is an odd function of z. To determine B(x), such
that B(—z) = —B(z), we apply Ampere’s law by computing the circulation of
B around the rectangular path C' shown in the figure in the margin. We expand

j{B-dlzuofc
C

B(x)L+0— B(—z)L + 0 = p,JsL,

from which we obtain

as

OJS A oJS AJS
B(x) = ,u2 = B= y'u sgn(z) and H = y?sgn(x).
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As shown in Example 1 mag-
netic field of a current sheet
is independent of distance
|z| from the current sheet.
Also H changes discontinu-
ously across the current sheet
by an amount J;.



Example 2: Consider a slab of thickness W over —% <z < % which extends in-

finitely in y and z directions and conducts a uniform current density of J = 2.J,
A/m?. Determine H if the current density is zero outside the slab.

Solution: Given the geometric similarities between this problem and Example 1, we
postulate that B = yB(x), where B(z) is an odd function of x, that is B(—z) =
—B(z). To determine B(x) we apply Ampere’s law by computing the circulation
of B around the rectangular path C' shown in the figure in the margin. For

x < %, we expand
% B.dl = ,uolc
c

B(x)L+0—B(—z)L+0 = p,J,2xL = B(x) = p,Jox.

as

For x > %, the expansion gives

|44
B(z)L+0—-B(—2)L+ 0= pu,JWL = B(z)= M0J07-

Hence, we find that

§J,% sgn(z), otherwise.

o {yJ 2] <%
2

Note that the solution plotted in the margin shows no discontinuity at x = i%
or elsewhere. w w T
2 2

The figure in the margin depicts a finite section of an infinite solenoid.
A solenoid can be constructed in practice by winding a long wire into a



multi loop coil as depicted. A solenoid with its loop carrying a current [
in gﬁ direction (as shown), produces effectively a surface current density of
J, = IN¢ A/m, where N is the number density (1/m) of current loops in
the solenoid. In Example 3 we compute the magnetic field of the infinite
solenoid using Ampere’s law.

Example 3: An infinite solenoid having N loops per unit length is stacked in z-
direction, each loop carrying a current of I A in counter-clockwise direction when
viewed from the top (see margin). Determine H.

Solution: Assuming that B = 0 outside the solenoid, and also B is independent of
z within the solenoid, we find that Ampere’s law indicates for the circulation C
shown in the margin

j{ B-dl=u,lc = LB=u,INL.
C
This leads to

B =pu,IN and H=ZIN
for the field within the solenoid.

The assumption of zero magnetic flux density B = 0 for the exterior region is justified
because:

(a) if the exterior field is non-zero, then it must be independent of = and y (follows
from Ampere’s law applied to any exterior path C' with Io = 0), and

(b) the finite interior flux ¥ = p,I/ Nwa® can only be matched with the flux of
the infinitely extended exterior region when the constant exterior flux density
(because of (a)) is vanishingly small.
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e Static electric fields: Curl-free and are governed by
VXE=0, V-D=p where D = ¢E
with € = €,€,.
e Static magnetic fields: Divergence-free and are governed by
V-B=0, VxH=J where B=uH

with p = p,u, — relative permeabilities p, other than unity (for free
space) will be explained later on.

Mathematically, we can generate a divergence-free vector field B(x,y, 2)
as

B=VxA

by taking the curl of any vector field A = A(x,y, z) (just like we can generate
a curl-free E by taking the gradient of any scalar field =V (x, vy, 2)).
Verification: Notice that

0
9r Oy 02
V-VxA = 3(v><A)x+2(v><JAL)QU+3(V><A)Z: o 85 g
Ox Jy 0z vooy oz
A, A, A,

0 (8AZ B 8Ay) 0 (8AZ 04, N 0 ((9Ay 04,
Ox " Oy 0z Oy Ox 0z 0z Ox dy

) =0,

o [f B =V X A represents a magnetostatic field, then A is called mag-
netostatic potential or vector potential.
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— Vector potential A can be used in magnetostatics in similar ways
to how electrostatic potential V' is used in electrostatics.

o In electrostatics we can assign V' = 0 to any point in space
that is convenient in a given problem.

o In magnetostatics we can assign V - A to any scalar that is
convenient in a given problem.

— For example, if we make the assignment!
V-A=0,
then we find that
VxB=VxVxA=V(V-A) - VA =-V*A.
This is a nice and convenient outcome, because, when combined with
VxH=J = VXxB=u,

it produces

V2A — _MOJa
which is the magnetostatic version of Poisson’s equation
vy =L
6O

'With this assignment — known as Coulomb gauge — A acquires the physical meaning of “potential
momentum per unit charge”, just as scalar potential V' is “potential energy per unit charge” (see Konopinski,
Am. J. Phys., 46, 499, 1978).



— In analogy with solution

Vi(r) :/ p(r') ,’dgr’

dme,|lr —

of Poisson’s equation, it has a solution

A(r) :/Md?’r'.

dr|r — 1|

Given any static® current density J(r), the above equation can be used to
obtain the corresponding vector potential A that simultaneously satisfies

V-A=0 and V x A =B.

Once A is available, obtaining B =V x A is then just a matter of taking a
curl.

e Magnetic flux density B of a single current loop I can be calculated
after determining its vector potential as follows:

— For a loop of radius a on z = 0 plane, we can express the corresponding current

density as
(_ylaxla 0)
J(') =16(2)o(\/ 2% +y? — a)——==
/I/2 +y/2

where the ratio on the right is the unit vector ¢E’ :

— Inserting this into the general solution for vector potential, and performing
the integration over z’, we obtain

2Also, in quasi-statics we use J(r’,t) to obtain A(r,t) and B = V x A over regions small compared to
A =c/f, with f the highest frequency in J(r’, ).
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N AW,
A(r) = a /6(\/x’2+y’2—a) (=4, ,0) dx'dy’

4 \/(:E — )2+ (y— )2+ Z2\/:E’2 + 7
OI - /7 /7 0
= L / o(r' —a) (v,7,0) r'dr'dd/
Am Ve =22+ (y = y)? + 22
pol [T (—asing’,acos¢’,0)

T o ), \/(x—acos¢')2+(y—asin¢’)2+z2d¢EjA”C(r)_FgAy(r)'

Given that A, = 0, it can be shown that B =V x A leads to

DA, DA 0A, 0A
—4 B, == B =-—4_ L
Y 0z Ox Oy

From the expected azimuthal symmetry of B about the z-axis, it is sufficient
to evaluate these on, say, y = 0 plane — after some algebra, and dropping the
primes, we find, on y = 0 plane,

woal [T 2 COoS @
B, = dé,
4t /_7T (22 + a2 + 22 — 2ax cos ¢)3/2 ¢
poal [T zZsin ¢
B, = d
Y /_W (22 + a® + 22 — 2ax cos ¢)3/? %
and
B _,uoal/” a — I CoS ¢
Codn J (22 + a2+ 22 —2axcosg)3?

We note that B, = 0 since the B, integrand above is odd in ¢ and the
integration limits are centered about the origin. Hence, the field on y = 0

plane is given as
B=2B,+ 2B,

with B, and B, defined above.

There are no closed form expressions for the B, and B, integrals above for an

arbitrary (z, z).



o However, it can be easily seen that if x = 0 (i.e., along the z-axis), B, = 0
(as symmetry would dictate) and

ILLOCL] T a ,uolaz “““““““““““““““““““
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which is positive and varies with the inverse third power of distance |z|. k kU\lj 2ia \:l J /l ) )
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— Also, B, and B, integrals can be performed numerically. Figure | —-—7/011 110+

in the margin depicts the pattern of B on y = 0 plane for a loop | jjjj j; ; § ;Q;y;i |
of radius @ = 1 computed using Mathematica. ot

MR ; 1 ; / S

e Note that circulation §CB - dl around each closed field line (“linking” W:::ii S ; ; ’ L -

the current loop) equals a fixed value of u,I — this dictates that the SN .

. N

average field strength |B| of a current loop is stronger on shorter field /K*///?//:Q\\ /Zj\3 \\\\\\\
. . o g ) |
lines closer to the current loop than on longer field lines linking the | \i l\\\!;}j%% éi//i//i//i/}
loop further out. As a result |B| can be shown to vary as =2 for large ™ l\:i/f; / Rf«;/ﬁ
r b e AN
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e It can be shown that the equations for magnetic field lines of a current
loop on, say, y = 0 plane, can be expressed as

r = Lsin® 0

in terms of radial distance r from the origin and zenith angle 6
measured from the z axis. Clearly, parameter L in this formula is the
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radial distance of the field line on 6 = 90° plane, and the field line
formula is accurate only for » > a. The Earth’s magnetic field had
such a magnetic dipole topology as shown.

Lorentz force due to the magnetic fields of a pair of current loops — also
known as magnetic dipoles — turns out to be “attractive” when the cur-
rent directions agree (see margin). Bar magnets carrying “equivalent”
current loops of atomic origins interact with one another in exactly the
same way — i.e., as governed by the second term of Lorentz force.

Loops with parall el
currents attract one
anot her
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