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In the following examples we will calculate the magnetic fields B = µoH

established by some simple current configurations by using the integral form

of static Ampere’s law. z

Js = ẑJs

x

y

L

W

B = ŷB(x)
B

B(x) =
µoJs

2

C

As shown in Example 1 mag-

netic field of a current sheet

is independent of distance

|x| from the current sheet.

Also H changes discontinu-

ously across the current sheet

by an amount J
s
.

Example 1: Consider a uniform surface current density Js = Jsẑ A/m flowing on
x = 0 plane (see figure in the margin) — the current sheet extends infinitely in
y and z directions. Determine B and H.

Solution: Since the current sheet extends infinitely in y and z directions we expect B
to depend only on coordinate x. Also, the field should be the superposition of the
fields of an infinite number of current filaments, which suggests, by right-hand-
rule, B = ŷB(x), where B(x) is an odd function of x. To determine B(x), such
that B(−x) = −B(x), we apply Ampere’s law by computing the circulation of
B around the rectangular path C shown in the figure in the margin. We expand

∮

C

B · dl = µoIC

as
B(x)L+ 0−B(−x)L+ 0 = µoJsL,

from which we obtain

B(x) =
µoJs
2

⇒ B = ŷ
µoJs
2

sgn(x) and H = ŷ
Js
2

sgn(x).
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Example 2: Consider a slab of thickness W over −W
2

< x < W
2

which extends in-
finitely in y and z directions and conducts a uniform current density of J = ẑJo
A/m2. Determine H if the current density is zero outside the slab.

Solution: Given the geometric similarities between this problem and Example 1, we
postulate that B = ŷB(x), where B(x) is an odd function of x, that is B(−x) =
−B(x). To determine B(x) we apply Ampere’s law by computing the circulation
of B around the rectangular path C shown in the figure in the margin. For
x < W

2
, we expand

∮

C

B · dl = µoIC

as
B(x)L+ 0− B(−x)L+ 0 = µoJo2xL ⇒ B(x) = µoJox.

For x ≥ W
2

, the expansion gives

B(x)L+ 0−B(−x)L+ 0 = µoJoWL ⇒ B(x) = µoJo
W

2
.

Hence, we find that

H =

{

ŷJox, |x| < W
2

ŷJo
W
2

sgn(x), otherwise.

Note that the solution plotted in the margin shows no discontinuity at x = ±W
2

or elsewhere.
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B = ŷB(x)B
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The figure in the margin depicts a finite section of an infinite solenoid.

A solenoid can be constructed in practice by winding a long wire into a
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multi loop coil as depicted. A solenoid with its loop carrying a current I

in φ̂ direction (as shown), produces effectively a surface current density of

Js = INφ̂ A/m, where N is the number density (1/m) of current loops in

the solenoid. In Example 3 we compute the magnetic field of the infinite

solenoid using Ampere’s law.
L

B = ẑB

C

I

Infinite solenoid
with N loops per
unit length carrying
I amps per loop

B = µoIN

Example 3: An infinite solenoid having N loops per unit length is stacked in z-
direction, each loop carrying a current of I A in counter-clockwise direction when
viewed from the top (see margin). Determine H.

Solution: Assuming that B = 0 outside the solenoid, and also B is independent of
z within the solenoid, we find that Ampere’s law indicates for the circulation C
shown in the margin

∮

C

B · dl = µoIC ⇒ LB = µoINL.

This leads to
B = µoIN and H = ẑIN

for the field within the solenoid.

The assumption of zero magnetic flux density B = 0 for the exterior region is justified

because:

(a) if the exterior field is non-zero, then it must be independent of x and y (follows
from Ampere’s law applied to any exterior path C with IC = 0), and

(b) the finite interior flux Ψ = µoINπa2 can only be matched with the flux of
the infinitely extended exterior region when the constant exterior flux density
(because of (a)) is vanishingly small.
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• Static electric fields: Curl-free and are governed by

∇× E = 0, ∇ ·D = ρ where D = ǫE

with ǫ = ǫrǫo.

• Static magnetic fields: Divergence-free and are governed by

∇ ·B = 0, ∇×H = J where B = µH

with µ = µrµo — relative permeabilities µr other than unity (for free

space) will be explained later on.

Mathematically, we can generate a divergence-free vector field B(x, y, z)

as

B = ∇×A

by taking the curl of any vector field A = A(x, y, z) (just like we can generate

a curl-free E by taking the gradient of any scalar field −V (x, y, z)).

Verification: Notice that

∇ · ∇ ×A =
∂

∂x
(∇×A)x +

∂

∂y
(∇×A)y +

∂

∂z
(∇×A)z =

∣

∣

∣

∣

∣

∣

∣
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∂
∂y
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∂z

∂
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∂
∂y

∂
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Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

=
∂

∂x
(
∂Az

∂y
−

∂Ay

∂z
)−

∂

∂y
(
∂Az

∂x
−

∂Ax

∂z
) +

∂

∂z
(
∂Ay

∂x
−

∂Ax

∂y
) = 0.

• If B = ∇×A represents a magnetostatic field, then A is called mag-

netostatic potential or vector potential.
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– Vector potential A can be used in magnetostatics in similar ways

to how electrostatic potential V is used in electrostatics.

◦ In electrostatics we can assign V = 0 to any point in space

that is convenient in a given problem.

◦ In magnetostatics we can assign ∇ · A to any scalar that is

convenient in a given problem.

– For example, if we make the assignment1

∇ ·A = 0,

then we find that

∇×B = ∇×∇×A = ∇(∇ ·A)−∇2
A = −∇2

A.

This is a nice and convenient outcome, because, when combined with

∇×H = J ⇒ ∇×B = µoJ,

it produces

∇2
A = −µoJ,

which is the magnetostatic version of Poisson’s equation

∇2V = −
ρ

ǫo
.

1With this assignment — known as Coulomb gauge — A acquires the physical meaning of “potential
momentum per unit charge”, just as scalar potential V is “potential energy per unit charge” (see Konopinski,
Am. J. Phys., 46, 499, 1978).
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– In analogy with solution

V (r) =

∫

ρ(r′)

4πǫo|r− r′|
d3r′

of Poisson’s equation, it has a solution

A(r) =

∫

µoJ(r
′)

4π|r− r′|
d3r′.

Given any static2 current density J(r), the above equation can be used to

obtain the corresponding vector potential A that simultaneously satisfies x

y

z
r− r

′
J(r′)

r
′

r

O

∇ ·A = 0 and ∇×A = B.

Once A is available, obtaining B = ∇×A is then just a matter of taking a

curl.

• Magnetic flux density B of a single current loop I can be calculated

after determining its vector potential as follows:

– For a loop of radius a on z = 0 plane, we can express the corresponding current
density as

J(r′) = Iδ(z′)δ(
√

x′2 + y′2 − a)
(−y′, x′, 0)
√

x′2 + y′2

where the ratio on the right is the unit vector φ̂′.

– Inserting this into the general solution for vector potential, and performing
the integration over z′, we obtain

I
x

y
z

Jφ = Iδ(z)δ(
√

x2 + y2
− a)

a

2Also, in quasi-statics we use J(r′, t) to obtain A(r, t) and B = ∇×A over regions small compared to
λ = c/f , with f the highest frequency in J(r′, t).
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A(r) =
µoI

4π

∫

δ(
√

x′2 + y′2 − a)
(−y′, x′, 0)

√

(x− x′)2 + (y − y′)2 + z2
√

x′2 + y′2
dx′dy′

=
µoI

4π

∫

δ(r′ − a)
(−y′, x′, 0)

√

(x− x′)2 + (y − y′)2 + z2r′
r′dr′dφ′

=
µoI

4π

∫ π

−π

(−a sinφ′, a cosφ′, 0)
√

(x− a cosφ′)2 + (y − a sinφ′)2 + z2
dφ′ ≡ x̂Ax(r) + ŷAy(r).

– Given that Az = 0, it can be shown that B = ∇×A leads to

Bx = −
∂Ay

∂z
, By =

∂Ax

∂z
, Bz =

∂Ay

∂x
−

∂Ax

∂y
.

– From the expected azimuthal symmetry of B about the z-axis, it is sufficient
to evaluate these on, say, y = 0 plane — after some algebra, and dropping the
primes, we find, on y = 0 plane,

Bx =
µoaI

4π

∫ π

−π

z cosφ

(x2 + a2 + z2 − 2ax cosφ)3/2
dφ,

By =
µoaI

4π

∫ π

−π

z sinφ

(x2 + a2 + z2 − 2ax cosφ)3/2
dφ,

and

Bz =
µoaI

4π

∫ π

−π

a− x cosφ

(x2 + a2 + z2 − 2ax cosφ)3/2
dφ.

– We note that By = 0 since the By integrand above is odd in φ and the
integration limits are centered about the origin. Hence, the field on y = 0
plane is given as

B = x̂Bx + ẑBz

with Bx and Bz defined above.

– There are no closed form expressions for the Bx and Bz integrals above for an

arbitrary (x, z).
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◦ However, it can be easily seen that if x = 0 (i.e., along the z-axis), Bx = 0
(as symmetry would dictate) and

Bz =
µoaI

4π

∫ π

−π

a

(a2 + z2)3/2
dφ =

µoIa
2

2(a2 + z2)3/2
.

For |z| ≫ a,

Bz ≈
µoIa

2

2|z|3
,

which is positive and varies with the inverse third power of distance |z|.

– Also, Bx and Bz integrals can be performed numerically. Figure

in the margin depicts the pattern of B̂ on y = 0 plane for a loop

of radius a = 1 computed using Mathematica.

I
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• Note that circulation
∮

C B · dl around each closed field line (“linking”

the current loop) equals a fixed value of µoI — this dictates that the

average field strength |B| of a current loop is stronger on shorter field

lines closer to the current loop than on longer field lines linking the

loop further out. As a result |B| can be shown to vary as r−3 for large

r.
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• It can be shown that the equations for magnetic field lines of a current

loop on, say, y = 0 plane, can be expressed as

r = L sin2 θ

in terms of radial distance r from the origin and zenith angle θ

measured from the z axis. Clearly, parameter L in this formula is the
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radial distance of the field line on θ = 90o plane, and the field line

formula is accurate only for r ≫ a. The Earth’s magnetic field had

such a magnetic dipole topology as shown.

• Lorentz force due to the magnetic fields of a pair of current loops — also

known as magnetic dipoles — turns out to be “attractive” when the cur-

rent directions agree (see margin). Bar magnets carrying “equivalent”

current loops of atomic origins interact with one another in exactly the

same way — i.e., as governed by the second term of Lorentz force.

qv × B
qv × B

Loops with parallel
currents attract one
another 

I

I

B ∝ I
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