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Parallel-plate capacitor: Consider a pair of conducting plates with surface
areas A separated by some distance d in free space (see margin). z

x

y
−Q

d

A

Q

A

The plates are initially charge neutral, but then some amount of electrons

are transferred from one plate to the other so that the plates acquire equal

and opposite charges Q and −Q, distributed with surface densities of ±Q
A on

plate surfaces facing one another (as shown in the margin).

• That way, in steady state and for d ≪
√
A, a field configuration con-

fined mainly to the region between the plates is acquired, satisfying the

condition that static field inside a conductor should be zero. A weak

“fringing field” can be ignored if d ≪
√
A and thus the geometry well

approximates the case with infinite plates.

– A constant displacement field

D = x̂
Q

A

satisfies the normal boundary condition at the left plate boundary

as well as Gauss’s law ∇ ·D = 0 in the region between the plates.

The corresponding electrostatic field is

E =
D

ǫo
= x̂

Q

ǫoA
,

and the voltage drop from (positive charged) left plate to (negative
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charged) right plate is

V =

∫ (d,0,0)

(0,0,0)

E · dl =
∫ d

x=0

Q

ǫoA
dx =

d

ǫoA
Q.

The last result can be expressed as a linear charge-voltage relation

Q = CV

with

C ≡ ǫo
A

d
representing the capacitance of the parallel conducting plate ar-

rangement that we call parallel plate capacitor.

• By differentiating Q = CV we obtain the charging rate of the capacitor

as

z

x

y
−Q

d

A

Q

A

I = C
dV

dt

V (t)+         -

I =
dQ

dt
= C

dV

dt
which is only possible, for ideal capacitors, if the capacitor plates are

externally connected to a circuit supplying a current as shown on the

right where the direction of I = dQ
dt

is in the direction of voltage drop V

across the capacitor, from the positively charged plate to the negatively

charged plate as shown.

– In lossy capacitors when the medium between the plates is con-

ducting, the charging rate of the capacitor plate will be smaller as
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given by
dQ

dt
= C

dV

dt
= I −GV,

where G stands for the conductance of the capacitor (derived later
in this lecture) and I the external current flowing into the non-
ideal capacitor.
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d

Q

I = GV (t) + C
dV

dt

V (t)
+         -

+
+
+
+
+
+
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-
-
-
-
-
-
-
-
-

J = σE

E

C

x

R =
1

G

– Therefore, for non-ideal capacitors the external current

I = C
dV

dt
+GV,

meaning that part of I goes into changing stored charge Q =

CV of capacitor plates and the rest to conduct a GV amount of

leakage current of the capacitor plates, and the equivalent circuit

of the non-ideal capacitor then contains a “shunt resistance” R = 1
G

accompanying C as shown in the margin.

• Returning to the IV -relation

I = C
dV

dt

of the ideal capacitor, this IV -relation was obtained from the QV -

relation above quasi-statically assuming that
√
A ≪ λ = c/f , where f

is the highest frequency of V (t). The power absorbed by the capacitor

is then calculated as

P = V I = V C
dV

dt
=

d

dt
(
1

2
CV 2),
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implying a stored energy of

W =
1

2
CV 2 =

1

2
ǫo|Ex|2Ad

when the capacitor is in a charged state.

• Notice that stored energy is

1

2
ǫoE

2
x =

1

2
ǫoE · E

times the volume Ad occupied by the field E between the capacitor

plates. That suggests that

w =
1

2
ǫoE · E

can be interpreted as stored electrostatic energy per unit volume in

general.

– Also both capacitance C and stored energies W and w would have

ǫ replacing ǫo in dielectric media.

A capacitor with a perfect dielectric between its plates will hold its charge

and stored energy indefinitely. However, if the dielectric is imperfect and

has a finite conductivity σ, charge will be transported from the positive to

negative plate by a volumetric current density

J = σE,
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which will result in a quasi-static discharge of the capacitor and the loss of

the stored energy W to Ohmic dissipation in the imperfect dielectric.

Just as capacitance C characterizes the energy and charge storage “ca-

pacity” of the capacitor, we can define a conductance G that relates the

quasi-static discharge current I in between the plates of a capacitor to po-

tential drop V :

• Discharge current I is the product of current density

−Q

d

Q

I = GV (t) + C
dV

dt
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System above behaves like a resis-

tor R = 1/G for

ω ≪ G

C
=

1

RC
=

σ

ǫ

and like a capacitor C in the com-

plementary frequency band. To

obtain capacitor behavior at low

frequencies make sure that σ is

sufficiently small.

Alternatively, with large σ the

system becomes a good electri-

cal connector, a resistor R with

a small resistance R ∝ 1/σ.

Jx = σEx

in A/m2 units and the plate area A. Since Ex =
V
d , we obtain a linear

current-voltage relation

I = GV

with conductance

G ≡ σ
A

d
for the parallel plate capacitor.

– Notice that G = σ
ǫ
C, a relation that will hold true for other types

of capacitors that we will be examining.

– Also,

R ≡ 1

G
=

d

Aσ
is the corresponding resistance that scales inversely with con-

ductivity σ of the material — large σ materials will have small
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resistance, but for a given σ, R increases with length d and de-

creases with increasing cross-sectional area A. Simple conductivity

models and J will be discussed next lecture.

Coaxial Cable: When we study guided wave propagation later in the course

we will learn about coaxial cables.

ℓ

ab
r

z

• A coax cable consists of two conducting regions — a central cylindrical

conductor with a cross-sectional radius a, enclosed by a conducting

pipe of a radius b > a (see margin), with some dielectric ǫ filling in

the space. We will next calculate the capacitance and conductance of

a coax segment of some length ℓ.

• For ℓ ≫ b, field E can be assumed to point out radially away from

the inner conductor with radius a to the outer conductor with radius b.

In that case Gauss’s law in integral form can be utilized to determine

the radial field Er. Considering a cylindrical integration surface with a

radius r > a centered about the inner conductor, we re-write Gauss’s

law

ǫ

∮

s

E · dS = QV

as

ǫEr2πrℓ = Q

where Q is the total charge distributed over the inner conductor and ǫ

the permittivity of the dielectric separating the two conductors.
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– It follows that

Er =
Q

2πǫℓr
,

and voltage drop from inner to outer conductor is

V =

∫ b

r=a

Erdr =

∫ b

r=a

Q

2πǫℓr
dr =

Q

2πℓǫ

∫ b

r=a

dr

r
=

Q

2πℓǫ
ln

b

a
.

Clearly, once again Q = CV , with

C =
2π

ln b
a

ℓǫ

representing the capacitance of the coax segment of length l.

• The capacitance of the coax per unit length is

C =
2π

ln b
a

ǫ.

– Conductance of the coax per unit length can likewise be shown

to be

G =
2π

ln b
a

σ.

This result is a consequence of the general relation G = σ
ǫ
C men-

tioned earlier.

– Per length parameters C and G of the coax will play an important

role when we study guided wave propagation in coaxial transmis-

sion lines with lengths for which quasi-static approximation may

be violated.
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Diode junctions: In Example 4 in Lecture 7 we derived the expression

for potential drop V across a charged region of a total width of W1 + W2,

such that in region 1 where −W1 < x < 0 the charge density ρ = −ρ1 is

negative, while in region 2 where 0 < x < W2 the charge density ρ = ρ2
is positive, with the additional constraint that the entire region is charge

neutral, meaning that ρ1W1 = ρ2W2.

V1

V (x)
V2

−ρ1 < 0

z
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−
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+-
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W2 x

By solving Poisson’s equation for this charge density configuration (see

margin) encountered in junction regions of semiconductor diodes (described

in detail ECE 440) we had established that the voltage drop from x = W2

to x = −W1 across the junction is given by

V =
ρ2W2(W1 +W2)

2ǫo
=

ρ1W1(W1 +W2)

2ǫo
.

The above equation implies that

W1 =
2ǫoV

(W1 +W2)ρ1
and W2 =

2ǫoV

(W1 +W2)ρ2
⇒ W1+W2 =

√

2ǫoV
ρ1 + ρ2
ρ1ρ2

.

Using the expressions above for junction voltage V and width W1 +W2,

we will next derive an expression for small signal capacitance of the diode

junction:

• In region 2 where x > 0, the junction holds a total positive charge of

Q = ρ2W2A per cross-sectional area A.

• Therefore, substituting Q
A

for ρ2W2 in the expression for V above, and
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also using the W1 +W2 ∝
√
V expression derived above, we obtain

V =
ρ2W2(W1 +W2)

2ǫo
=

Q
√

2ǫoV
ρ1+ρ2
ρ1ρ2

2ǫoA
,

which can be re-arranged as

Q = A

√

2ǫoρ1ρ2
ρ1 + ρ2

√
V

representing a non-linear charge-voltage relation (for a given charge

profiles satisfying ρ1W1 = ρ2W2).

– In a linear charge-voltage relation Q = CV , the capacitance pa-

rameter C represents the slope Q
V

of a Q vs V curve.
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The slope of any Q vs V curve is given by the derivative dQ
dV , whether or

not the curve is linear. The slope dQ
dV

of a non-linear charge-voltage curve

can be interpreted as a small signal capacitance C. For a diode junction,

differentiating the above equation, we find that

C =
dQ

dV
= A

√

ǫo
2V

ρ1ρ2
(ρ1 + ρ2)

.

Small changes dV in junction voltage will accompany small changes dQ =

CdV in stored charge Q of the junction, but the amount CdV will itself

depend on V because C ∝ V −1/2.
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