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Parallel-plate capacitor: Consider a pair of conducting plates with surface
areas A separated by some distance d in free space (see margin). z

The plates are initially charge neutral, but then some amount of electrons
are transferred from one plate to the other so that the plates acquire equal
and opposite charges () and —(@), distributed with surface densities of :t% on
plate surfaces facing one another (as shown in the margin).

e That way, in steady state and for d < VA, a field configuration con- i .
fined mainly to the region between the plates is acquired, satisfying the & 555:-
condition that static field inside a conductor should be zero. A weak
“fringing field” can be ignored if d < v/A and thus the geometry well
approximates the case with infinite plates.

— A constant displacement field

@
D=z—
A
satisfies the normal boundary condition at the left plate boundary
as well as Gauss’s law V - D = 0 in the region between the plates.
The corresponding electrostatic field is
D
E=—=x2x ¢

€ €, A’

and the voltage drop from (positive charged) left plate to (negative



charged) right plate is

(d,0,0) d g
V = / E-dl = ¢ dr = Q.
(0,0,0) 0 €A €, A

The last result can be expressed as a lznear charge-voltage relation

Q=CV
with 4
O = EOE

representing the capacitance of the parallel conducting plate ar-
rangement that we call parallel plate capacitor.

e By differentiating () = C'V we obtain the charging rate of the capacitor
as
,_dQ_ v
dt dt
which is only possible, for ideal capacitors, if the capacitor plates are
externally connected to a circuit supplying a current as shown on the
right where the direction of I = % is in the direction of voltage drop V'
across the capacitor, from the positively charged plate to the negatively

charged plate as shown.

— In lossy capacitors when the medium between the plates is con-
ducting, the charging rate of the capacitor plate will be smaller as
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Dz
where G stands for the conductance of the capacitor (derived later _%j .
in this lecture) and I the external current flowing into the non- %_j
ideal capacitor. éi _________________
— Therefore, for non-ideal capacitors the external current d
dVv
t I=GV(t)+ C%
meaning that part of I goes into changing stored charge ) = —~

C'V of capacitor plates and the rest to conduct a GV amount of
leakage current of the capacitor plates, and the equivalent circuit
of the non-ideal capacitor then contains a “shunt resistance” R = é
accompanying C' as shown in the margin.

e Returning to the I'V-relation

av
I =(C-_
Cdt

of the ideal capacitor, this IV -relation was obtained from the QV-
relation above quasi-statically assuming that VA < A = ¢/f, where f
is the highest frequency of V(¢). The power absorbed by the capacitor
is then calculated as

dv d 1
P=VI=V(0— = —(=CV?*
1% vcdt dt(zCV),
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implying a stored energy of
1 o 1 2
W ==-CV* = —¢,|E,|"Ad
2 2
when the capacitor is in a charged state.

e Notice that stored energy is
1 1
560E§ = ;6B E

times the volume Ad occupied by the field E between the capacitor
plates. That suggests that

1
w = _60E ° E
2

can be interpreted as stored electrostatic energy per unit volume in
general.

— Also both capacitance C' and stored energies W and w would have
e replacing €, in dielectric media.

A capacitor with a perfect dielectric between its plates will hold its charge
and stored energy indefinitely. However, if the dielectric is imperfect and
has a finite conductivity o, charge will be transported from the positive to
negative plate by a volumetric current density

J =0oE,
4



which will result in a quasi-static discharge of the capacitor and the loss of
the stored energy W to Ohmic dissipation in the imperfect dielectric.

Just as capacitance C' characterizes the energy and charge storage “ca-
pacity” of the capacitor, we can define a conductance G that relates the
quasi-static discharge current I in between the plates of a capacitor to po-
tential drop V:

e Discharge current [ is the product of current density

J,=0ok,
in A/m? units and the plate area A. Since E, = %, we obtain a linear
current-voltage relation
I =GV
with conductance
O = A
— 00—
d

for the parallel plate capacitor.

— Notice that G = 2C, a relation that will hold true for other types
of capacitors that we will be examining.

— Also,

1 d
"=G~4

is the corresponding resistance that scales inversely with con-
ductivity o of the material — large o materials will have small
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System above behaves like a resis-

tor R =1/G for

G 1 o
“SCTRCO T
and like a capacitor C' in the com-
plementary frequency band. To
obtain capacitor behavior at low
frequencies make sure that o is
sufficiently small.

Alternatively, with large o the
system becomes a good electri-
cal connector, a resistor R with
a small resistance R < 1/0.



resistance, but for a given o, R increases with length d and de-
creases with increasing cross-sectional area A. Simple conductivity ;[ ¢ fr

models and J will be discussed next lecture.

Ny

Coaxial Cable: When we study guided wave propagation later in the course / ¢
we will learn about coaxial cables.

e A coax cable consists of two conducting regions — a central cylindrical
conductor with a cross-sectional radius a, enclosed by a conducting
pipe of a radius b > a (see margin), with some dielectric € filling in
the space. We will next calculate the capacitance and conductance of
a coax segment of some length /.

e For / > b, field E can be assumed to point out radially away from
the inner conductor with radius a to the outer conductor with radius b.
In that case Gauss’s law in integral form can be utilized to determine
the radial field E,. Considering a cylindrical integration surface with a
radius » > a centered about the inner conductor, we re-write Gauss’s
law

€%E°dS:QV

as
cE,2mrl = Q)

where () is the total charge distributed over the inner conductor and e
the permittivity of the dielectric separating the two conductors.



— It follows that
Q

2melr’
and voltage drop from inner to outer conductor is

b b b
V:/ E.dr = ¢ dr = ¢ @ ¢ lné.
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E, =

=a

Clearly, once again Q = C'V, with

2
C = —Wbﬁe
hla

representing the capacitance of the coax segment of length [.

e The capacitance of the coax per unit length is

— Conductance of the coax per unit length can likewise be shown
to be

This result is a consequence of the general relation G = ZC' men-
tioned earlier.

— Per length parameters C and G of the coax will play an important
role when we study guided wave propagation in coaxial transmis-
sion lines with lengths for which quasi-static approximation may
be violated.



Diode junctions: In Example 4 in Lecture 7 we derived the expression
for potential drop V across a charged region of a total width of W7 + W5,
such that in region 1 where —W; < x < 0 the charge density p = —p; is
negative, while in region 2 where 0 < x < W, the charge density p = p9
is positive, with the additional constraint that the entire region is charge
neutral, meaning that pyW7 = poWh.

By solving Poisson’s equation for this charge density configuration (see
margin) encountered in junction regions of semiconductor diodes (described
in detail ECE 440) we had established that the voltage drop from x = W,

to x = —WWj across the junction is given by
v paWo (W1 + Wo) _ pi Wi (W + Wo)
2€, 2€, '

The above equation implies that

2¢,V and Wo — 2¢,V
(Wi + Wa)py T (W Wa)p

Wi =

= Wi+Wy = \/2€0V
P1P2

Using the expressions above for junction voltage V' and width W7 + W,
we will next derive an expression for small signal capacitance of the diode
junction:

e In region 2 where z > 0, the junction holds a total positive charge of
Q) = poWo A per cross-sectional area A.

e Therefore, substituting % for poWs in the expression for V' above, and

P1 + P2

— Wl

Vi




also using the Wy + Wy ox vV expression derived above, we obtain

_l_
v — ,OQWQ(Wl + WQ) B Q \ QEOVIO;MI?

2¢, 2¢,A ’

which can be re-arranged as

2€,p1P2 JV

=A
“ p1+ P2

representing a non-linear charge-voltage relation (for a given charge
profiles satisfying p1 Wy = paWhs).

— In a linear charge-voltage relation () = C'V, the capacitance pa-
rameter C' represents the slope % of a @ vs V curve.

The slope of any ) vs V curve is given by the derivative %, whether or

not the curve is linear. The slope % of a mon-linear charge-voltage curve

can be interpreted as a small signal capacitance C. For a diode junction,

differentiating the above equation, we find that

O_Q_A\/eo prp2__
dv 2V (p1+ p2)
Small changes dV in junction voltage will accompany small changes d) =

C'dV in stored charge () of the junction, but the amount C'dV will itself
depend on V because C o< V12,
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