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e Summarizing important results from last lecture:

— within a dielectric medium, displacement
D=cE=¢E+P,

and if the permittivity € = €,€, is known, D and E can be calcu-
lated from free surface charge ps or volume charge p in the region
without resorting to P.

— on surfaces separating perfect dielectrics, n- (DT —D™) =0 typ- D"
ically, while n - D™ = p, on a conductor-dielectric interface (with n D-
n pointing from the conductor toward the dielectric).

— Gauss’s law V- D = p (and its integral counterpart) includes only
the free charge density on its right side, which is typically zero in
many practical problems.

— once D and E have been calculated (typically using the boundary
condition equations), polarization P can be obtained as

P=D—¢E

if needed.

These rules will be used in the examples in this section.



Example 1: A perfect dielectric slab having a finite thickness W in the x direction
is surrounded by free space and has a constant electric field E = 182 V/m in
its exterior. Induced polarization of bound charges inside dielectric reduces the
electric field strength inside the slab from 182 V/m to E = 32 V/m. What are
the displacement field D and polarization P outside and inside the slab, and
what are the dielectric constant €, and electric susceptibility y. of the slab?

Solution: Displacement field outside the slab, where € = ¢,, must be

D =¢,E = 218¢, %
m

The outside polarization P is of course zero. Boundary conditions at the interface
of the slab with free space require the continuity of normal component of D and
tangential component of EE — both of these conditions would be satisfied if we
were to take D = #18¢, C/m? also within the dielectric slab. Thus, with E = 3%
V/m inside the slab, the condition D = €44, E within the slab requires that

€slab = 660-

Consequently, the dielectric constant of the slab is

€slab -
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and its electric susceptibility is
Xe =€ — 1 =05.

Finally, since D = ¢,E + P in general, polarization P inside the slab is

P=D—-¢E =1218¢, — ¢,37 = 215¢, %
m

>0




e Our revised definition of displacement D = €E, where € = €,¢,, implies,
when combined with E = —VV and V - D = p, a revised form of
Poisson’s equation

vy = -2
€ 9
— provided that dielectric constant ¢, is independent of position so
that V-D =V - (eE) = €V - E is a valid intermediate step in the
derivation of Poisson’s equation.

— Under the same condition Laplace’s equation V2V = 0 also re-
mains valid.

— Dielectrics where €, is independent of position are said to be ho-
mogeneous.

o In inhomogeneous dielectrics where € varies with position
neither equation is valid, and one has to resort to the full
form of Gauss’s law in field and potential calculations.

In other words, don’t use Laplace’s/Poisson’s equations
in inhomogeneous media.

In the next example we have two homogeneous slabs side-by-side
making up an inhomogeneous configuration. In that case we can
use Laplace/Poisson within the slabs one at a time and then match
the results at the boundary using boundary condition equations
as shown.



Example 2: A pair of infinite conducting plates at z = 0 and z = 2 m carry equal
and opposite surface charge densities of —2¢, C/m? and 2¢, C/m?, respectively.
Determine V(2) if V(0) = 0 and regions 0 < z < 1 mand 1 < z < 2 m are
occupied by perfect dielectrics with permittivities of €, and 2¢,, respectively.

Solution: Given that V(0) = 0, we assume V(z) = Az, for some constant A in the
homogeneous region 0 < z < 1 m, since V(z) = Az satisfies the Laplace’s
equation as well as the boundary condition at z = 0.

This gives V(1) = A at z = 1 m, which then implies that we can take V(z) =
A+ B(z—1) for the second homogeneous region 1 < z < 2 m having a different
permittivity than the region below.

To determine the constants A and B, we will make use of boundary conditions at

z =0 and z = 1 m interfaces:

® In the region 0 < z < 1 m, the electric field E = —V(Az) = —AZ, and,
therefore displacement D = ¢;E = —¢,AZ. Hence, the pertinent boundary
condition 2 - D(0) = py yields

2-D0) = —e,A=—-2, = A=2.

e Just below z = 1 m the displacement is D(17) = —¢,AZ = —2¢,2 as we
found out above. Above z = 1 m, the electric field is E = —V(A 4+ B(z —
1)) = — Bz, and, therefore, D(17) = —2¢,BZ just above z = 1 m. Hence,
the pertinent boundary condition 2 - (D(1%) — D(17) = 0 yields

2 (—26,B% — (—26,2)) = —2¢,B+26,=0 = B=1.




Based on above calculations of constants A and B, the potential solution for the
region 1s
22V 0<z<1
V()= " i
24+ (z-1)V, 1<z<2.

It follows that V' (2) =3 V.

Note that electric fields —22 V/m and —2 V/m in the bottom and top layers point
from high to low potential regions. Electric field E is discontinuous at the bound-
ary at z = 1 m while displacement D is continuous — the continuity of normally
directed D is demanded by boundary condition equations in the absence of sur-
face charge.

Example 3: A pair of infinite conducting plates at z = 0 and z = d are grounded
and have equal potentials, say, V' = 0. The region 0 < z < d is occupied by
free space (i.e., € = €,) except that an infinite charge sheet with a static surface
charge density p; is located at z = d; < d. Determine (a) the electrostatic field
E(z) in regions 0 < z < d; and dy < z < d, and (b) the surface charge densities
pso and pgg at z = 0 and z = d on conductor surfaces if d; = d/2.

Solution: (a) Laplace’s equation for the given geometry requires a linear (in z) poten-
tial solution in regions 0 < z < dy and d; < z < d. Since electrostatic E = —VV/,
we can therefore represent the electric field in these regions as

o —2‘/0/d1, 0<z<d
- +2‘/0/d2, di < z<d

N

N

_
psd:?

d1 ps

E="
/050:?

If ps in Example 3 is a slowly-
varying function of time, then
slowly varying E, py, and ps4 cal-
culated with instantaneous values
of ps would constitute quasi-static
solutions which are valid so long
as d < c¢/f, with f the highest
frequency in p(t).




where V, = V(dy) and dy = d — d;. Hence,

D—cE— —,fGOVO/dl, 0<z<d |
+Z€O‘/O/d2, di < z<d

and Maxwell’s boundary condition equation applied on z = d; surface is

. _ 1 1
2-(D(df) =D(dy)) =ps = Vol o+ =prs
do  dy

Thus

€o d_2 d_l 6_odl_f—d2_€0 d

Substituting V, back into the expression for E, we have

E —2%%, 0<z<d
b g < 2 < d.

V2&<1—1— 1>_1:,03 d1d2 _&dldQ

(b) The surface charge at z = 0 can be found by evaluating 2-D = 2 - ¢,E at z = 0.

Hence,
d — s
pso = 2 - €, E(0) = ——2p5 dy=d/2 — Ps
d 2
Likewise,

. d —2 .
Psd = —~= - EoE(d> = —jps di = d/Q — %




Example 4: Between a pair of infinite conducting plates at 2 = 0 and z = 2 m, the
medium is a perfect dielectric with an inhomogeneous permittivity of

4e,
€(z) = :
(2)=71—
Determine the electric potential V(2) on the top plate if V(0) = 0 and the
surface charge density is p; = 2¢, C/m? on the bottom plate at z = 0. Note
that Laplace’s equation cannot be used in this problem since the medium is
inhomogeneous.

Solution: Consider Gauss’s law
V- (eE) =p

with p = 0 in the region 0 < z < 2 m. Assuming that E = ZF,(z), because the
geometry is invariant in x and y, we have

V- (E)=0 = 2(EEZ) =0 = eF, = constant.

0z
Thus the product eFE, is invariant with respect to coordinate z, which implies
that
€(0) 2
€(2)Ex(z) = e(0)E(0) = E.(2) = —=E.(0) = E-(0)(1 - )
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after substituting for €(z). To identify F.(0), we apply the bottom boundary
condition Z - D(0) = ps, and obtain
_ 2¢,

D-(0) = e(0)B:(0) = 26 = F:(0) = =2

=

ZA
V(2) ="
(2) = 2,
AHH 2¢,
V(0) =
A Ps = 26,
€ -
Z
A
z=2




To determine V(2), we integrate E = 22(1 — ) V/m from top to bottom plate
(grounded), obtaining

V() = /ZO2E-d1:/ZO 2(1—2)6&




