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• Summarizing important results from last lecture:

– within a dielectric medium, displacement

D = ǫE = ǫoE +P,

and if the permittivity ǫ = ǫrǫo is known, D and E can be calcu-

lated from free surface charge ρs or volume charge ρ in the region

without resorting to P.

– on surfaces separating perfect dielectrics, n̂ · (D+ −D
−) = 0 typ-

ically, while n̂ ·D+ = ρs on a conductor-dielectric interface (with

n̂ pointing from the conductor toward the dielectric).

n̂
D

+

D
−

– Gauss’s law ∇·D = ρ (and its integral counterpart) includes only

the free charge density on its right side, which is typically zero in

many practical problems.

– once D and E have been calculated (typically using the boundary

condition equations), polarization P can be obtained as

P = D− ǫoE

if needed.

These rules will be used in the examples in this section.
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E = 18x̂ E = 18x̂E = 3x̂

ǫ = ǫo ǫ = ǫoǫ = ǫrǫo

Example 1: A perfect dielectric slab having a finite thickness W in the x direction
is surrounded by free space and has a constant electric field E = 18x̂ V/m in
its exterior. Induced polarization of bound charges inside dielectric reduces the
electric field strength inside the slab from 18x̂ V/m to E = 3x̂ V/m. What are
the displacement field D and polarization P outside and inside the slab, and
what are the dielectric constant ǫr and electric susceptibility χe of the slab?

Solution: Displacement field outside the slab, where ǫ = ǫo, must be

D = ǫoE = x̂18ǫo
C

m2
.

The outside polarization P is of course zero. Boundary conditions at the interface
of the slab with free space require the continuity of normal component of D and
tangential component of E — both of these conditions would be satisfied if we
were to take D = x̂18ǫo C/m2 also within the dielectric slab. Thus, with E = 3x̂
V/m inside the slab, the condition D = ǫslabE within the slab requires that

ǫslab = 6ǫo.

Consequently, the dielectric constant of the slab is

ǫr = 1 + χe =
ǫslab
ǫo

= 6

and its electric susceptibility is

χe = ǫr − 1 = 5.

Finally, since D = ǫoE+P in general, polarization P inside the slab is

P = D− ǫoE = x̂18ǫo − ǫo3x̂ = x̂15ǫo
C

m2
.
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• Our revised definition of displacement D = ǫE, where ǫ = ǫrǫo, implies,

when combined with E = −∇V and ∇ · D = ρ, a revised form of

Poisson’s equation

∇2V = −
ρ

ǫ
,

– provided that dielectric constant ǫr is independent of position so

that ∇ ·D = ∇ · (ǫE) = ǫ∇ ·E is a valid intermediate step in the

derivation of Poisson’s equation.

– Under the same condition Laplace’s equation ∇2V = 0 also re-

mains valid.

– Dielectrics where ǫr is independent of position are said to be ho-

mogeneous.

◦ In inhomogeneous dielectrics where ǫ varies with position

neither equation is valid, and one has to resort to the full

form of Gauss’s law in field and potential calculations.

In other words, don’t use Laplace’s/Poisson’s equations

in inhomogeneous media.

In the next example we have two homogeneous slabs side-by-side

making up an inhomogeneous configuration. In that case we can

use Laplace/Poisson within the slabs one at a time and then match

the results at the boundary using boundary condition equations

as shown.
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V (2) =?

V (0) = 0

ρs = 2ǫo

z

V (z)

V (z) = Az

ρs = −2ǫo

2ǫo

ǫo

z=1

z=2

ǫo

2ǫo V (z) = A + B(z − 1)

Example 2: A pair of infinite conducting plates at z = 0 and z = 2 m carry equal
and opposite surface charge densities of −2ǫo C/m2 and 2ǫo C/m2, respectively.
Determine V (2) if V (0) = 0 and regions 0 < z < 1 m and 1 < z < 2 m are
occupied by perfect dielectrics with permittivities of ǫo and 2ǫo, respectively.

Solution: Given that V (0) = 0, we assume V (z) = Az, for some constant A in the
homogeneous region 0 < z < 1 m, since V (z) = Az satisfies the Laplace’s
equation as well as the boundary condition at z = 0.

This gives V (1) = A at z = 1 m, which then implies that we can take V (z) =
A+B(z− 1) for the second homogeneous region 1 < z < 2 m having a different
permittivity than the region below.

To determine the constants A and B, we will make use of boundary conditions at

z = 0 and z = 1 m interfaces:

• In the region 0 < z < 1 m, the electric field E = −∇(Az) = −Aẑ, and,
therefore displacement D = ǫ1E = −ǫoAẑ. Hence, the pertinent boundary
condition ẑ ·D(0) = ρs yields

ẑ ·D(0) = −ǫoA = −2ǫo ⇒ A = 2.

• Just below z = 1 m the displacement is D(1−) = −ǫoAẑ = −2ǫoẑ as we
found out above. Above z = 1 m, the electric field is E = −∇(A+ B(z −
1)) = −Bẑ, and, therefore, D(1+) = −2ǫoBẑ just above z = 1 m. Hence,
the pertinent boundary condition ẑ · (D(1+)−D(1−) = 0 yields

ẑ · (−2ǫoBẑ − (−2ǫoẑ)) = −2ǫoB + 2ǫo = 0 ⇒ B = 1.
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Based on above calculations of constants A and B, the potential solution for the
region is

V (z) =

{

2z V, 0 < z < 1

2 + (z − 1)V, 1 < z < 2.

It follows that V (2) = 3 V.

Note that electric fields −2ẑ V/m and −ẑ V/m in the bottom and top layers point
from high to low potential regions. Electric field E is discontinuous at the bound-
ary at z = 1 m while displacement D is continuous — the continuity of normally
directed D is demanded by boundary condition equations in the absence of sur-
face charge.

0

z

d

d1 ρs

ρs0 = ?

ρsd = ?

E = ?

E = 0 V = 0

E = 0 V = 0

If ρs in Example 3 is a slowly-

varying function of time, then

slowly varying E, ρs0, and ρsd cal-

culated with instantaneous values

of ρs would constitute quasi-static

solutions which are valid so long

as d ≪ c/f , with f the highest

frequency in ρs(t).

Example 3: A pair of infinite conducting plates at z = 0 and z = d are grounded
and have equal potentials, say, V = 0. The region 0 < z < d is occupied by
free space (i.e., ǫ = ǫo) except that an infinite charge sheet with a static surface
charge density ρs is located at z = d1 < d. Determine (a) the electrostatic field
E(z) in regions 0 < z < d1 and d1 < z < d, and (b) the surface charge densities
ρs0 and ρsd at z = 0 and z = d on conductor surfaces if d1 = d/2.

Solution: (a) Laplace’s equation for the given geometry requires a linear (in z) poten-
tial solution in regions 0 < z < d1 and d1 < z < d. Since electrostatic E = −∇V ,
we can therefore represent the electric field in these regions as

E =

{

−ẑVo/d1, 0 < z < d1

+ẑVo/d2, d1 < z < d
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where Vo ≡ V (d1) and d2 ≡ d− d1. Hence,

D = ǫoE =

{

−ẑǫoVo/d1, 0 < z < d1

+ẑǫoVo/d2, d1 < z < d
,

and Maxwell’s boundary condition equation applied on z = d1 surface is

ẑ · (D(d+1 )−D(d−1 )) = ρs ⇒ ǫoVo

(

1

d2
+

1

d1

)

= ρs.

Thus

Vo =
ρs
ǫo

(

1

d2
+

1

d1

)−1

=
ρs
ǫo

d1d2
d1 + d2

=
ρs
ǫo

d1d2
d

.

Substituting Vo back into the expression for E, we have

E =

{

−ẑ ρs
ǫo

d2
d
, 0 < z < d1

+ẑ ρs
ǫo

d1
d
, d1 < z < d.

(b) The surface charge at z = 0 can be found by evaluating ẑ ·D = ẑ · ǫoE at z = 0.
Hence,

ρs0 = ẑ · ǫoE(0) = −
d2
d
ρs

−−−−−→
d1 = d/2 −

ρs
2
.

Likewise,

ρsd = −ẑ · ǫoE(d) = −
d1
d
ρs

−−−−−→
d1 = d/2 −

ρs
2
.
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V (2) =?

V (0) = 0

ρs = 2ǫo

z

ρs = −2ǫo

2ǫo

ǫo

z=2

ǫ(z) =
4ǫo

4− z

ǫo

2ǫo

Ez(z)

Example 4: Between a pair of infinite conducting plates at z = 0 and z = 2 m, the
medium is a perfect dielectric with an inhomogeneous permittivity of

ǫ(z) =
4ǫo
4− z

.

Determine the electric potential V (2) on the top plate if V (0) = 0 and the
surface charge density is ρs = 2ǫo C/m2 on the bottom plate at z = 0. Note
that Laplace’s equation cannot be used in this problem since the medium is
inhomogeneous.

Solution: Consider Gauss’s law
∇ · (ǫE) = ρ

with ρ = 0 in the region 0 < z < 2 m. Assuming that E = ẑEz(z), because the
geometry is invariant in x and y, we have

∇ · (ǫE) = 0 ⇒
∂

∂z
(ǫEz) = 0 ⇒ ǫEz = constant.

Thus the product ǫEz is invariant with respect to coordinate z, which implies
that

ǫ(z)Ez(z) = ǫ(0)Ez(0) ⇒ Ez(z) =
ǫ(0)

ǫ(z)
Ez(0) = Ez(0)(1−

z

4
)

after substituting for ǫ(z). To identify Ez(0), we apply the bottom boundary
condition ẑ ·D(0) = ρs, and obtain

Dz(0) = ǫ(0)Ez(0) = 2ǫo ⇒ Ez(0) =
2ǫo
ǫ(0)

= 2 V
m.
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To determine V (2), we integrate E = ẑ2(1− z
4
) V/m from top to bottom plate

(grounded), obtaining

V (2) =

∫

0

z=2

E · dl =

∫

0

z=2

2(1−
z

4
)dz

= 2(z −
z2

8
)|02 = −2(2−

4

8
) = −2 ·

3

2
= −3V.

8


