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Summarizing the properties of electrostatic fields we have learned so far, they

satisfy the laws of electrostatics shown in the margin and, in addition, Laws of

electrostatics:

∇ · E = ρ/ǫo
∇×E = 0

E = −∇V as a consequence of ∇×E = 0.

• Using these relations, we can re-write Gauss’s law as

∇ ·E = −∇ · (∇V ) =
ρ

ǫo
,

from which it follows that

∇2V = −
ρ

ǫo
, (Poisson’s eqn)

where

∇2V ≡
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

is known as Laplacian of V . Poisson’s eqn:

∇2V = −
ρ

ǫo

Laplace’s eqn:

∇2V = 0

– A special case of Poisson’s equation corresponding to having

ρ(x, y, z) = 0

everywhere in the region of interest is

∇2V = 0. (Laplace’s eqn)
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Focusing our attention first on Laplace’s equation, we note that the equation

can be used in charge free-regions to determine the electrostatic potential

V (x, y, z) by matching it to specified potentials at boundaries as illustrated

in the following examples:

z

x

y

z = d = 2 m

V (d) = −3 V

V (0) = 0

z = 0
V (z) =?

z

V (z)

V (z) = Az + B

Example 1: Consider a pair of parallel conducting metallic plates of infinite extents
in x and y directions but separated in z direction by a finite distance of d = 2
m (as shown in the margin). The conducting plates have non-zero surface charge
densities (to be determined in Example 2), which are known to be responsible for
an electrostatic field E = ẑEz measured in between the plates. Each plate has
some unique and constant electrostatic potential V since neither E(r) nor V (r)
can dependent the coordinates x or y given the geometry of the problem.

Using Laplace’s equation determine V (z) and E(z) between the plates if the potential
of the plate at z = 0 is 0 (the ground), while the potential of the plate at z = d
is −3 V.

Solution: Since the potential function V = V (z) between the plates is only dependent
on z, it follows that Laplace’s equation simplifies as

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂2V

∂z2
= 0.

This equation can be satisfied by

V (z) = Az +B

where A and B are constants to be determined. Now applying the given boundary
conditions, we first notice that (at the lower plate)

V (0) = (Az +B)|z=0 = B = 0.
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Applying the second boundary condition (at the top plate) we find

V (2) = (Az + 0)|z=2 = 2A = −3V ⇒ A = −
3

2

V

m
.

The upshot is, potential function

V (z) = −
3

2
z, for 0 < z < 2m.

Finally, we determine the electric field between the plates as

E = −∇V = −∇(−
3

2
z) = ẑ

∂

∂z
(
3

2
z) = ẑ

3

2

V

m
.

z

x

y

z = d = 2 m

V (d) = −3 V

V (0) = 0

z = 0
V (z) =?

z

V (z)

V (z) = −
3

2
z

−3

0

E = −∇(−
3

2
z) =

3

2
ẑ

Example 2: In Example 1 what are the surface charge densities of the metallic plates
located at z = 0 and z = 2 m surfaces?

Solution: Since the electric field

E = ẑ
3

2

V

m
in between the plates, comparing this field with the field

E = ẑ
ρs
ǫo

of a pair of parallel surfaces carrying surface charge densities ρs and −ρs (at
z = 0 and z = 2 m), we find that

ρs =
3

2
ǫo

on the surface at z = 0. The surface at z = 2 m has ρs = −3
2
ǫo.

3



Notice that our solution with equal and opposite charge densities on the parallel
surfaces implies that electrostatic fields are zero within the conducting plates
where the fields due to two charged surfaces are canceling out. This conclusion is
consistent with having constant electrostatic potentials within conducting regions
as will be discussed in the next lecture.

z

x

Vo = 0
+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-

Vp =?
E

+
E

− = 0

3 m

Example 3: A pair of copper blocks separated by a distance d = 3 m in x direction
hold surface charge densities of ρs = ±2 C/m2 on surfaces facing one another as
shown in the margin. The blocks are assigned constant potentials Vo = 0 and Vp

(see figure). What is the potential difference Vp?

Solution: Let D+ = x̂ǫoEx denote the displacement vector in between the blocks, and
let D

− = 0 denote the displacement vector within the block with a surface at
x = 0. Then the boundary condition equation used at x = 0 implies that

x̂ · (D+ −D
−) = ǫoEx = 2

C

m2
⇒ Ex =

2

ǫo
.

In that case, potential difference between the blocks is

V = Exd =
2

ǫo
3 =

6

ǫo
.

Since the block on the left is at a higher potential (electric field vectors point
from high to low potential) assigned as Vo = 0, we must have

Vp = −
6

ǫo
.
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Poisson’s equation

∇2V = −
ρ

ǫo
is used in regions where the charge density ρ(r) is non-zero. The following

example illustrates a possible use of Poisson’s equation.

−ρ1 < 0

z

x

−W1

E1x(x)

ρ1W1

2ǫo

x

ρ2 > 0

W2

E2x(x)

ρ2W2

2ǫo

x

−W1

W2

Ex(x)

−
ρ1W1

ǫo

x

W2−W1

E
+-

Example 4: An infinite charged slab of width W1, located over −W1 < x < 0, has a
negative volumetric charge density of −ρ1 C/m3, ρ1 > 0. A second slab of width
W2 and positive charge density ρ2 is located over 0 < x < W2 as shown in the
margin. The electric field of this static charge configuration under the constraint
W1ρ1 = W2ρ2 was computed in an earlier section as

E =

{

−x̂ρ1(x+W1)
ǫo

, for −W1 < x < 0

x̂ρ2(x−W2)
ǫo

, for 0 < x < W2

and is depicted in the margin. Determine the electrostatic potential in the re-
gion and the potential difference V21 ≡ V (W2) − V (−W1) satisfying Poisson’s
equation.

Solution: This is a one dimensional geometry where E and potential V depend only on
coordinate x. Therefore, Poisson’s equation ∇2V = −ρ/ǫo takes the simplified
form

d2V

dx2
= −

ρ(x)

ǫo
.

Integral of this equation over x yields in the left dV
dx

= −Ex, which implies, given
the electric field result from above,

dV

dx
=

{

ρ1(x+W1)
ǫo

, for −W1 < x < 0

−ρ2(x−W2)
ǫo

, for 0 < x < W2
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Integrating dV
dx

once more (i.e., finding suitable anti-derivatives with integration
constants), we find

V (x) =

{

ρ1(x+W1)
2

2ǫo
+ V1, for −W1 < x < 0

−ρ2(x−W2)
2

2ǫo
+ V2, for 0 < x < W2

where the integration constants included on each line have been selected so that
V2 = V (W2), V1 = V (−W1).

Requiring a unique potential value at x = 0 (we can only associate a single potential
energy level with each position in space) compatible with this expression for V (x),
we obtain

ρ1(0 +W1)
2

2ǫo
+ V1 = −

ρ2(0−W2)
2

2ǫo
+ V2,

from which

V21 = V2 − V1 =
ρ2W

2
2 + ρ1W

2
1

2ǫo
=

ρ2W2(W1 +W2)

2ǫo
=

ρ1W1(W1 +W2)

2ǫo
.

Note that the equation above can be solved for W1, W2, and W2 + W1 in terms of
V12, ρ2, and ρ1, providing useful formulas for diode design (see ECE 440). We
can also get useful specific formulae for V1 and V2 by imposing V (0) = 0, i.e.,
choosing x = 0 to be the reference point.

V1

V (x)
V2

−ρ1 < 0

z

x

−W1

ρ2 > 0

W2

Ex(x)

−
ρ1W1

ǫo

x

W2−W1

E
+-

−W1

W2 x

• The solution of Poisson’s equation

∇2V = −
ρ

ǫo
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with an arbitrary ρ existing over a finite region in space can be obtained

as

x

y

z
r− r

′
ρ(r′)

r
′

r

O

V (r) =

∫

ρ(r′)

4πǫo|r− r′|
d3r′

where d3r′ ≡ dx′dy′dz′ and the 3D integral on the right over the primed

coordinates is performed over the entire region where the charge density

is non-zero.

– Verification: The solution above can be verified by combining a

number of results we have seen earlier on:

1. In Lecture 5 we learned that the electric potential V (r) of a

point charge e at the origin is

V (r) =
e

4πǫo|r|
.

Clearly, this singular result is a solution of Poisson’s equa-

tion above (and the stated boundary condition) for a charge

density input of

ρ(r) = eδ(r).

2. Using ECE 210-like terminology and notation, the above re-

sult can be represented as

δ(r) → Poisson’s Eqn →
1

4πǫo|r|
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identifying the output on the right as 3D “impulse response”

of the linear and shift-invariant (LSI) system represented

by Poisson’s equation.

3. Because of shift-invariance, we have

δ(r− r
′) → Poisson’s Eqn →

1

4πǫo|r− r′|
,

meaning that a shifted impulse causes a shifted impulse re-

sponse.

The shifted impulse response is usually called “Green’s

function” G(r, r′) in EM theory.

4. Because of linearity, we are allowed to use superpositioning

arguments like
∫

ρ(r′)δ(r−r
′)d3r′ = ρ(r) → Poisson’s Eqn →

∫

ρ(r′)
1

4πǫo|r− r′|
d3r′ = V (r),

which concludes our verification of the electrostatic1 potential

solution. Note how we made use of the sifting property of the

impulse (from ECE 210) in above calculation.

1Also, in quasi-statics we use ρ(r′, t) to obtain V (r, t) over regions small compared to λ = c/f , with f
the highest frequency in ρ(r′, t).
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• As an application of the general solution of Poisson’s equation, namely

∇2V = −
ρ

ǫo
⇒ V (r) =

∫

ρ(r′)

4πǫo|r− r′|
d3r′,

we next provide an outline of the proof of Helmholtz theorem (see

Lecture 4) which states that any vector field F(x, y, z) that vanishes in

the limit r =
√

x2 + y2 + z2 → ∞ can be reconstructed uniquely from

its divergence and curl:

– First, with no loss of generality, we write

F = −∇V +∇×A

in terms of scalar and vector fields V (x, y, z) and A(x, y, z) to be

identified as follows2:

– Taking first the divergence of F (and using ∇ · ∇ × A = 0), we

find that

∇ · F = −∇2V ⇒ V (r) =

∫

∇′ · F(r′)

4π|r− r′|
d3r′

in analogy with Poisson’s equation (with ∇′·F(r′) replacing ρ(r′)/ǫo
where ∇′ is “del” in (x′, y′, z′)-space).

2This is possible because of the vector identity −∇2
G = ∇× (∇×G)−∇(∇ ·G) — call −∇2

G ≡ F,
which, according to this identity, is equal to the curl of a vector ∇×G ≡ A (with ∇·A = ∇·∇×G = 0),
minus the gradient of a scalar ∇ ·G ≡ V , as claimed. The challenge is in figuring out the underlying G

for a given F, which is what Helmholtz theorem is all about.
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– Likewise, the curl of F (with ∇ × ∇V = 0) leads us to, with a

divergence-free 3
A, to

∇×F = ∇×∇×A = ∇(∇·A)−∇2
A = −∇2

A ⇒ A(r) =

∫

∇′ × F(r′)

4π|r− r′|
d3r′

once again in analogy with Poisson’s equation4.

These results validate Helmholtz theorem for fields F vanishing at infin-

ity, since, evidently, V and A needed to reconstruct F can be uniquely

specified in terms of ∇ · F and ∇× F, respectively.

3To confirm ∇ ·A = 0 directly, use the identity ∇ · (αG) = α∇ ·G+G · ∇α to expand A(r) as

∇·

∫

∇′ × F(r′)

4π|r− r′|
d3r′ =

∫

∇′ × F(r′)

4π
·∇

1

|r− r′|
d3r′ = −

∫

∇′ × F(r′)

4π
·∇′

1

|r− r′|
d3r′ =

∫

∇′ · (∇′ × F(r′))

4π|r− r′|
d3r′ = 0,

after also using integration by parts for an integrand that vanishes as |r| → ∞ and a symmetry relation
∇|r− r

′|−1 = −∇′|r− r
′|−1 which is easy to confirm.

4While the vector field A identified above is divergence-free, ∇×A in the F = −∇V +∇×A expansion
can also be replaced with ∇×A

′ so long as A′ = A+∇Ψ since ∇×∇Ψ is unconditionally zero independent
of the choice of Ψ. Note it is possible to specify Ψ so that ∇ ·A′ = ∇ · ∇Ψ = ∇2Ψ 6= 0 in which case A

′

will be a divergent solution of the ∇ × F equation above! The additive term ∇Ψ in A
′ is analogous to

allowing a constant number to be added to V ! The freedom to specify Ψ and thus ∇ ·A′ at will is known
as gauge freedom and any choice of Ψ making ∇ ·A′ = 0 is known as Coulomb’s gauge.
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