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• Mathematically, we can generate a curl-free vector field E(x, y, z) as

E = −(
∂V

∂x
,
∂V

∂y
,
∂V

∂z
),

by taking the gradient of any scalar function V (r) = V (x, y, z). The

gradient of V (x, y, z) is defined to be the vector

∇V ≡ (
∂V

∂x
,
∂V

∂y
,
∂V

∂z
),

pointing in the direction of increasing V ; in abbreviated notation, curl-

free fields E can be indicated as

E = −∇V.

– Verification: Curl of vector ∇V is

∇× (∇V ) =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∣

∣

∣

∣

∣

∣

∣

= x̂0− ŷ0− ẑ0 = 0.

– If E = −∇V represents an electrostatic field, then V is called

the electrostatic potential.

◦ Simple dimensional analysis indicates that units of electro-

static potential must be volts (V).

1



– The prescription E = −∇V , including the minus sign (optional,

but taken by convention in electrostatics), ensures that electro-

static field E points from regions of “high potential” to “low po-

tential” as illustrated in the next example. Electrostatic fields E

point from regions of

“high V ” to “low V ”

Example 1: Given an electrostatic potential

V (x, y, z) = x2 − 6yV

in a certain region of space, determine the corresponding electrostatic field E =
−∇V in the same region.

Solution: The electrostatic field is

E = −∇(x2 − 6y) = −(
∂

∂x
,
∂

∂y
,
∂

∂z
)(x2 − 6y) = (−2x, 6, 0) = −x̂ 2x+ ŷ6V/m.

Note that this field is directed from regions of high potential to low potential. Also note
that electric field vectors are perpendicular everywhere to “equipotential” contours.
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Light colors indicate “high V ”
dark colors “low V ”

Given an electrostatic potential V (x, y, z), finding the corresponding elec-

trostatic field E(x, y, z) is a straightforward procedure (taking the negative

gradient) as already illustrated in Example 1.

The reverse operation of finding V (x, y, z) from a given E(x, y, z) can be

accomplished by performing a vector line integral

∫ o

p

E · dl
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in 3D space, since, as shown below, such integrals are “path independent” for

curl-free fields E = −∇V .

• The vector line integral
∫ o

p

E · dl

over an integration path C extending from a point p = (xp, yp, zp) in

3D space to some other point o = (xo, yo, zo) is defined to be x

y

z

o = (xo, yo, zo)

p = (xp, yp, zp)

Ej

∆ljC

C ′

– the limiting value of the sum of dot products Ej·∆lj computed over

all sub-elements of path C having incremental lengths |∆lj| and

unit vectors ∆lj/|∆lj| directed from p towards o — the limiting

value is obtained as all |∆lj| approach zero (i.e., with increasingly

finer subdivision of C into |∆lj| elements).

• Computation of the integral (see example below) involves the use of

infinitesimal displacement vectors

dl = x̂dx + ŷdy + ẑdz = (dx, dy, dz)

and vector dot product

E · dl = (Ex, Ey, Ez) · (dx, dy, dz) = Exdx + Eydy + Ezdz.

The integral
∫ o

p

E · dl =

∫ o

p

(Exdx + Eydy + Ezdz)
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will in general be path dependent except for when E is curl-free. Curl-free: path-independent
line integrals

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

z

Cu

Cl

“Curly”: path-dependent line
integrals
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Example 2: The field E = x̂y ± ŷx is curl-free with the + sign, but not with − as
verified below by computing ∇ × E. Calculate the line integral of E (for both
signs, ±) from a point o = (0, 0, 0) to point p = (1, 1, 0) for two different paths
C going through points u = (0, 1, 0) and l = (1, 0, 0), respectively (see margin).

Solution: First we note that

∇× (x̂y ± ŷx) =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y ±x 0

∣

∣

∣

∣

∣

∣

= ẑ(±1− 1)

which confirms that E = x̂y ± ŷx is curl-free with with + sign, but not with −.
In either case, the integral to be performed is

∫ p

o

E · dl =

∫ p

o

(Exdx+ Eydy + Ezdz) =

∫ p

o

(y dx± x dy).

For the first path Cu going through u = (0, 1, 0), we have
∫ p

o

(y dx± x dy) =

∫

1

y=0

(±x) dy|x=0 +

∫

1

x=0

y dx|y=1 = 0 + 1 = 1.

For the second path Cl going through l = (1, 0, 0), we have
∫ p

o

(y dx± x dy) =

∫

1

x=0

y dx|y=0 ±

∫

1

y=0

x dy|x=1 = 0± 1 = ±1.

Clearly, the result shows that the line integral
∫ p

o
E · dl is path independent for

E = x̂y + ŷx which is curl-free, and path dependent for E = x̂y − ŷx in which
case ∇× E 6= 0.
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• The mathematical reason why curl-free fields have path-independent

line integrals is because in those occasions the integrals can be written

in terms of exact differentials:

– for curl-free E = x̂y + ŷx we have E · dl as an exact differential

ydx + xdy = d(xy) of the function xy, in which case
∫ p

o E · dl =

xy|po = (1 · 1− 0 · 0) = 1 over all paths.

– for E = x̂y − ŷx with ∇ × E = −2ẑ 6= 0, on the other hand,

E · dl = ydx− xdy does not form an exact differential −dV , and

thus there is no path-independent integral −V |po, nor an underlying

potential function V .

E·dl is guaranteed to be an exact differential if E = −∇V = (−∂V
∂x ,−

∂V
∂y ,−

∂V
∂z ),

since in that case the differential of V (x, y, z), namely

dV ≡
∂V

∂x
dx+

∂V

∂y
dy+

∂V

∂z
dz, is precisely −Exdx−Eydy−Ezdz = −E·dl.

– In that case x

y

z

Vo = 0

Vp =
∫ o

p
E · dl

E(r)

dl

∫ o

p

E · dl = −

∫ o

p

dV =

∫ p

o

dV = Vp − Vo

is independent of integration path; thus, if we we call o the “ground”,

and set Vo = 0, then

Vp =

∫ o

p

E · dl

denotes the potential drop from (any) point p to ground o.
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• The physical reason why this integral formula for potential Vp works

with any integration path is the principle of energy conservation:

x

y

z Vp =
∫ o

p
E · dl

dl

Vo = 0

As long as E is curl-free, line
integral is path-independent and
produces the voltage drop from 
point p to "ground" o.

E(r)

– integral
∫ o

p E · dl, namely the “voltage drop” from p to o, repre-

sents the work done per unit charge by the field E in moving

charges from location p to location o1, so if the line integral were

path-dependent (in reaching from p to o) there would be ways

of creating net energy by making a charge q follow special closed

paths within the electrostatic field E, in violation of the general

principle of energy conservation (that permits energy conversion

but not creation or destruction).

1Either to increase the kinetic energy of the charge if charge transport from p to o is unimpeded (as
for a test charge accelerating between a pair of capacitor plates) or else in pushing the charge against
frictional forces (as through a resistive wire) both at the expense of the energy stored in the field. On the
other hand, work done (i.e., the voltage drop) by the field would be negative if charges q > 0 were moved
from p to o against the local electric field (as within a battery), in which case there would be a positive
voltage rise from p to o representing energy gain for the field per unit charge transported from p to o.
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x

y

z
Vp = −

∫ p

o
E · dl

o
X

Y

Z

A voltmeter with its (+/red)
probe contacting point p and
its (-/black) probe contact-
ing point o would display (by
analog or digital means) the
numerical value of

Vp =

∫

o

p

E · dl

with the integration path
consisting of the path defined
by the probe wires. The volt-
meter reading would be inde-
pendent of the path config-
uration when the field E is
electrostatic.

For the voltmeter not to per-
turb the field it is probing,
its input impedance need to
be much greater than the
impedance between points p
and o.

Example 3: Given that Vo = V (0, 0, 0) = 0 and

E = 2xx̂+ 3zŷ + 3(y + 1)ẑ
V

m
,

determine the electrostatic potential Vp = V (X, Y, Z) at point p = (X, Y, Z) in
volts.

Solution: Assuming that the field is curl-free (it is), so that any integration path can
be used, we find that

Vp =

∫ o

p

E · dl = −

∫ p

o

E · dl = −

∫ p

o

(2x dx+ 3z dy + 3(y + 1) dz)

= −

∫ X

0

2x dx|y,z=0 −

∫ Y

0

3z dy|x=X,z=0 −

∫ Z

0

3(y + 1) dz|x=X,y=Y

= −X2 − 0− 3(Y + 1)Z.

This implies
V (x, y, x) = −x2 − 3(y + 1)z V.

Note that

−∇(−x2 − 3(y + 1)z) = ∇(x2 + 3(y + 1)z)

= x̂2x+ ŷ3z + ẑ3(y + 1)

yields the original field E, which is an indication that E is indeed curl-free.
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Alternate Solution — Exact Differential Method: Note that

E · dl = (2xx̂+ 3zŷ + 3(y + 1)ẑ) · (x̂dx+ ŷdy + ẑdz)

= 2xdx+ 3zdy + 3(y + 1)dz = 2xdx+ 3(ydz + zdy) + 3dz

= d(x2 + 3yz + 3z) = −dV.

Therefore
V (x, y, z) = −x2 − 3yz − 3z + C,

where the integration constant C should chosen so that V (0, 0, 0) = 0. The result
is

V (x, y, z) = −x2 − 3(y + 1)z

as before.
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e
x

y

z

z = r

Or else (exact differential
method):

E·dl = (
e

4πǫor2
r̂)·r̂dr = d(

−e

4πǫor
) = −dV

leading to

V (r) =
e

4πǫor

(using an integration con-
stant of zero).

Example 5: According to Coulomb’s law electrostatic field of a proton with charge
Q = e (where −e is electronic charge) located at the origin is given as

E =
e

4πǫor2
r̂,

where

r =
√

x2 + y2 + z2 and r̂ =
(x, y, z)

r
.

Determine the electrostatic potential field V established by charge Q = e with
the provision that V → 0 as r → ∞ (i.e., ground at infinity).

Solution: Field E and its potential V will exhibit spherical symmetry in this problem.
Therefore, with no loss of generality, we can calculate the line integral from a
point p at a distance r from the origin to a point o at ∞ (the specified ground)
along, say, the z-axis. Approaching the problem that way, the potential drop
from r to ∞ is

V (r) =

∫ ∞

z=r

e

4πǫoz2
ẑ · ẑdz

= −
e

4πǫoz
|∞r =

e

4πǫor
.

• To convert electrostatic potential Vp (in volts) at any point p to poten-

tial energy of a charge q brought to the same point, it is sufficient to

multiply Vp with q (or just the sign of q, depending on which energy

units we want to use — see the next example).
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Example 6: In view of Example 5, what are the potential energies of a proton e and
an electron −e placed at distance r = a away from the proton at the origin,
where distance

a ≡
4πǫo
e2

~
2

me

= 0.529× 10−10 m

stands for Bohr radius — it is the mean distance of the ground state electron in
a hydrogen atom from the center of the atom. Recall that e = 1.602× 10−19 C
and ǫo ≈ 10−9/36π F/m.

Solution: Let’s first evaluate the potential V (r) at r = a:

V (a) =
e

4πǫoa
≈

(1.6× 10−19)36π × 109

4π × 0.53× 10−10
=

9× 1.6

0.53
= 27.2V.

For the proton, potential energy in Joules is calculated by multiplying V (a) = 27.2
V with q = e = 1.602 × 10−19 C. However, by referring to 1.602 × 10−19 J of
energy as 1 eV (electron-volt), it is more convenient to refer to potential energy
eV (a) of the proton at r = a as

eV (a) = 27.2 eV.

Likewise, for a particle with charge q = −e, i.e., an electron, potential energy at the
same location is

−eV (a) = −27.2 eV.
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