3 Gauss’s law and static charge densities

We continue with examples illustrating the use of Gauss’s law in macroscopic
field calculations:

Example 1: Point charges () are distributed over x = 0 plane with an average surface
charge density of p, C/m?. Determine the macroscopic electric field E of this
charge distribution using Gauss’s law.

Solution: First, invoking Coulomb’s law, we convince ourselves that the field produced
by surface charge density ps C/m? on o = 0 plane will be of the form E = 2E,(z)
where E,(z) is an odd function of x because y- and z-components of the field will
cancel out due to the symmetry of the charge distribution. In that case we can
apply Gauss’s law over a cylindrical integration surface S having circular caps of
area A parallel to x = 0, and obtain

j{D dS=Qv = el (v)A— e b (—1)A = Aps,
S

which leads, with E,(—x) = —E,(x), to
E.(z)= 2'0—8 for = > 0.

€o

Hence, in vector form

E = £2’08 sgn(x),

o

where sgn(x) is the signum function, equal to £1 for x = 0.

Note that the macroscopic field calculated above is discontinuous at x = 0 plane
containing the surface charge ps, and points away from the same surface on both
sides.
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Example 2: Point charges () are distributed throughout an infinite slab of width W

located over —% <z < % with an average charge density of p C/m3. Determine
the macroscopic electric field E of the charged slab inside and outside.

Solution: Symmetry arguments based on Coulomb’s law once again indicates that we
expect a solution of the form E = 2E,(z) where E,(z) is an odd function of z.

In that case, applying Gauss’s law with a cylindrical surface S having circular caps
of area A parallel to x = 0 extending between —z and = < %, we obtain

% D-dS=Qv = €eF.(2)A—¢eE.(—x)A=p2zA,
S

which leads, with E,(—x) = —E,(x), to

W
Ez(x):@ for 0 <z < —.

€o 2
For x > %,
%D - dS =Qv = FE(0)A— e E.(—x)A=AWp,
S
leading to
w
E.(x) = '0260 for x > CR
These results can be combined as
—32r, forx < -¥
E=1E,(z) = 2%, for -0 <z<¥
ig?/, for x > %
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Note that the field solution depicted in the margin in terms of F,(x) plot is a con-
tinuous function of x as opposed to the discontinuous E,(x) solution obtained in
Example 1 for the macroscopic field of a surface charge.

e In future calculations of electrostatic fields, we can use our previous
results, namely

— Coulomb field

E=r of a point charge @,
Ame, r?
— Field \
E=r of constant line density A,
2mELT
— Field
E = i‘zp—ssgn(x) of constant surface density ps,
€o

— Field

x
E = #2 of constant volume density p
€o
as building blocks — that is, the above field equations can be super-
posed to determine the field structure of charge distributions p(z,y, 2)
that can be expressed as superpositions of simpler charge distributions
with known field structures. Some examples...
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Example 3: Consider a pair of surface charges ps > 0 and —p, C/m? of equal mag-
nitudes placed on x = —% and z = % surfaces. Determine the electric field of

this charge distribution depicted in the margin.

Solution: The field of charge density p, C/m? on z = —% plane should be

~ Ps !
E, =12— + —
- ZUQGOSgn(x 9 )s

pointing away from the discontinuity surface at # = —=- on both sides. Likewise,

the field of charge density —p, C/m? on x = % plane should be

. Ps w
E._=—-1—s ——),
x2€0 gn(z 5 )
pointing toward x = % surface from both sides. Superposing the two fields, we
find that
gl for — W << W P x
E=E,+E_={ &’ 2 27 = 3 rect(—
" {0, otherwise, €o ( W)

as depicted in the margin.

Note that the field lines of our solution point from positive charges on one surface to
the negative charges resting on the other surface — this field has the structure
of fields encountered in parallel plate capacitors that we will be studying soon.
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Example 4: An infinite charged slab of width W7, located over —W; < x < 0, has
a negative volumetric charge density of —p; C/m?, p; > 0. A second slab of
width W5 and positive charge density po is located over 0 < x < W5 as shown
in the margin. Compute the electric field of this static charge configuration if

Wip1 = Wapso, implying that the entire system is charge neutral (i.e., a net charge
of zero).

Solution: We note that the field of slab W; can be written as

Fo for v < —W;
N W
_ ~ p1(z+—t
E, = —xM, for — Wi <xz<0
—ipé—zvl, for x > 0

as depicted in the margin. Likewise, the field of slab W5 is

—ip;ZVQ, for x <0
B, — 56—
2= 1——=, forO0<z<Ws
55”5—?/2, for x > Ws.

Note that field strengths plgvl and pi% showing up in the expressions for E; and Es
are equal because of the charge neutrahty condition Wip; = Wops.

Consequently, when we superpose E; and E,, the fields cancel out outside the region
—W; < x < Ws, so that the total field becomes (as depicted in the margin)

et o W <2 < 0

E=E, +E,={ 22" (,0<z <,

€o )

0, otherwise.

—p1 <0

p2 >0
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Gauss’ Law in terms of

e Charge density formalism which we find convenient to use for macro- charge density:

scopic field calculations can also be “adjusted” to describe the distri-
butions of isolated point charges via the use of impulses or delta

functions in space. %D -dS = / pdV
S 1%
— For example

plx,y,2) = Q(x — x,)0(y — y,)0(2 — 2,)

can be regarded as a 3D volumetric charge density function rep-
resenting a point charge () located at a coordinate

r=(2,Y,2) = (T, Yo, 20) = To.

o This is justified because we can regard d(x — x,) to be zero
everywhere except at * = x,. By extension, the product

5<$ T C170>5(y o y0>5(Z o Zo)

3D i mpul se here

is zero everywhere except at r = r, = (x,, Yo, 2o) — therefore where poi nt charge
) ) Qis localized over
the density function p(z,y, z) defined above behaves correctly a region of zero

to indicate the absence of charges everywhere with the ex- vol urre

ception of r,. Furthermore, the area property of the impulse
implies that the volume integral of the charge density yields

/pdV:///Q5(x—xo)é(y—yo)g(z_%)dxdydz:Q

as it should.



o Notice that the shifted impulses d(x

m—l

T,), etc.,
units in order to maintain dimensional consistency in the
above expression.

— Another example is
p(x,y,2) = ps(y, 2)0(z — z,)

representing a surface charge density of p,(y, z) C/m? on x = z,
plane.

must have P(T,y,2) = ps(y, 2)0(x — x,)

ps >

Example 5: Figure in the margin depicts (for the d = 1) the E-field of a pair of
charges +@) located at (0,0, ig) derived from

S 52) | —Qr+g2)
Are,|r — 4213 Ame,|r + %2|3
d d
sy Yy~ T 9 3 +

e |(z,y, 2= 5P Iz, y,er )

Determine the electric flux f E - dS across the entire xy-plane using dS =
—Zzdxdy.

Solution: Because of linearity, the flux we want to calculate equals the sum of the flux
due to charge @ at (0,0, %) above xy-plane and the flux due to charge —(@) at

(0,0, — g) above xy-plane.
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Since by Gauss’s law fs E-dS = EQ for any S surrounding (), we can, by symmetry,

infer that Q
/x y (—zdzdy) = 2

when only charge () is considered — the logic here is, half of flux § E-dS =
emanating from charge @) should go up and the remaining half should go down
crossing the xy-plane in downward direction. Likewise, since fs E.-dS = 6? for
any S surrounding —@), again by symmetry, we can infer

/ E . (—zZdzdy) = @
wy

2€,

due to charge —() only — the logic in this case is, half of flux Q “entering” charge
—( is “coming from” above crossing the xy-plane in downward direction.

Thus, by superposition, we find total

/ E . (—zZdzdy) =
zy

Q @ Q
2%, 26 e

The above result can be confirmed directly by evaluating the integral

_d d
/ E(z,y,0) - (~2dzdy) = 47?6 | (j 5’__))|3 |((5’yy’ ))‘3] (—zdady)
xy o ) ’
_ _Qd r
- 4weo/ o ENEIEE

Just before the last step we have replaced dxdy by rdrd¢, where r = /2% + 42, and
carried out the ¢ integration before completing the r integration as a last step (which
you should verify).




