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PREFACE

This book presents a unified macroscopic theory of electromagnetic
waves in accordance with the principle of special relativity from the
point of view of the form invariance of the Maxwell equations and the
constitutive relations. Great emphasis is placed on the fundamental
importance of the k vector in electromagnetic wave theory. We intro-
duce a fundamental unit Ko = 2π meter−1 for the spatial frequency,
which is cycle per meter in spatial variation. This is similar to the
fundamental unit for temporal frequency Hz, which is cycle per sec-
ond in time variation. The unit Ko is directly proportional to the unit
Hz; one Ko in spatial frequency corresponds to 300 MHz in temporal
frequency.

This is a textbook on electromagnetic wave theory, and topics
essential to the understanding of electromagnetic waves are selected
and presented. Chapter 1 presents fundamental laws and equations
for electromagnetic theory. Chapter 2 is devoted to the treatment of
transmission line theory. Electromagnetic waves in media are stud-
ied in Chapter 3 with the kDB system developed to study waves
in anisotropic and bianisotropic media. Chapter 4 presents a detailed
treatment of reflection, transmission, guidance, and resonance of elec-
tromagnetic waves. Starting with Čerenkov radiation, we study radia-
tion and antenna theory in Chapter 5. Chapter 6 then elaborates on
the various theorems and limiting cases of Maxwell’s theory important
to the study of electromagnetic wave behavior. Scattering by spheres,
cylinders, rough surfaces, and volume inhomogeneities are treated in
Chapter 7. In Chapter 8, we present Maxwell’s theory from the point
of view of Lorentz covariance in accordance with the principle of spe-
cial relativity. The problem section at the end of each section provides
useful exercise and applications.

The various topics in the book can be taught independently, and
the material is organized in the order of increasing complexity in math-
ematical techniques and conceptual abstraction and sophistication.
This book has been used in several undergraduate and graduate courses
that I have been teaching at the Massachusetts Institute of Technology.

– v –
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The first version of the book was published in 1975 by Wiley
Interscience, New York, entitled Theory of Electromagnetic Waves,
which was based on my 1968 Ph.D. thesis, where the concept of bian-
isotropic media was introduced. The book was expanded and published
in 1986 with the present title and its second edition appeared in 1990.
Since 1998, it has been published by EMW Publishing Company, Mas-
sachusetts. The development of the various concepts in the book relies
heavily on published work. I have not attempted the task of referring
to all relevant publications. The list of books and journal articles in the
Reference Section at the end of the book is at best representative and
by no means exhaustive. Some of the results contained in the book are
taken from many of my research projects, which have been supported
by grants and contracts from the National Science Foundation, the
National Aeronautics and Space Administration, the Office of Naval
Research, the Army Research Office, the Jet Propulsion Laboratory of
the California Institute of Technology, the MIT Lincoln Laboratory,
the Schlumberger-Doll Research Center, the Digital Equipment Cor-
poration, the IBM Corporation, and the funding support associated
with the award of the S. T. Li prize for the year 2000.

During the writing and preparation of the book, many people
helped. In particular, I would like to acknowledge Chi On Ao for for-
mulating the TEX macros, and Zhen Wu for editing the text and con-
structing the index. Over the years, many of my teaching and research
assistants provided useful suggestions and proofreading, notably Le-
ung Tsang, Michael Zuniga, Weng Chew, Tarek Habashy, Robert Shin,
Shun-Lien Chuang, Jay Kyoon Lee, Apo Sezginer, Soon Yun Poh, Eric
Yang, Michael Tsuk, Hsiu Chi Han, Yan Zhang, Henning Braunisch,
Bae-Ian Wu, Xudong Chen, and Baile Zhang. I would like to express
my gratitude to them and to the students whose enthusiastic response
and feedback continuously give me joy and satisfaction in teaching.

J. A. Kong

Cambridge, Massachusetts
December 2007
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1.1 Maxwell’s Theory 3

1.1 Maxwell’s Theory

A. Maxwell’s Equations

The laws of electricity and magnetism were established in 1873 by
James Clerk Maxwell (1831–1879). In three-dimensional vector nota-
tion, the Maxwell equations are

∇×H =
∂

∂t
D + J (1.1.1)

∇× E = − ∂

∂t
B (1.1.2)

∇ ·D = ρ (1.1.3)

∇ ·B = 0 (1.1.4)

where E, B, H, D, J, and ρ are real functions of position and time.

E = electric field strength (volts/m)

B = magnetic flux density (webers/m2)

H = magnetic field strength (amperes/m)

D = electric displacement (coulombs/m2)

J = electric current density (amperes/m2)

ρ = electric charge density (coulombs/m3)

Equation (1.1.1) is Ampère’s law or the generalized Ampère circuit law.
Equation (1.1.2) is Faraday’s law or Faraday’s magnetic induction law.
Equation (1.1.3) is Coulomb’s law or Gauss’ law for electric fields.
Equation (1.1.4) is Gauss’ law or Gauss’ law for magnetic fields.
We generally refer to E and D as electric fields, and H and B
as magnetic fields.

Maxwell’s contribution to the laws of electricity and magnetism is
the term ∂D/∂t , which is called the displacement current. The addi-
tion of the displacement current to the electric current density J (r, t)
in the original Ampère’s law has at least three major consequences.
First, in a capacitor which is an open circuit for direct current, the
displacement current insures the continuity of alternating currents in
electric circuits. Secondly, the continuity law

∇ · J = − ∂

∂t
ρ (1.1.5)
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follows from (1.1.1) and (1.1.3) by making use of the vector identity
∇ · (∇ × H) = 0 . It is the displacement term that guarantees the
conservation of electric current and charge densities. Eq. (1.1.5) states
that the electric current and charge densities are conserved at all time.
Thirdly, Faraday’s law in (1.1.2) states that surrounding a time-varying
magnetic field, electric fields are produced, and are also time-varying.
With the displacement term in (1.1.1), Ampère’s law states that around
time-varying electric fields, time-varying magnetic fields are produced.
This interrelationship between the time-varying electric and magnetic
fields constitutes the foundation of electromagnetic wave theory and
led Maxwell to the prediction of electromagnetic waves.

In developing his theory for the electromagnetic fields in space
and time, Maxwell conceived of a substance filling the whole space
called aether. In the aether, the electric fields D and E are related
by a dielectric permittivity εo , and the magnetic fields B and H are
related by a magnetic permeability µo .

D = εoE (1.1.6a)
B = µoH (1.1.6b)

where
εo ≈ 8.85× 10−12 farad/meter

µo= 4π × 10−7 henry/meter

where the numerical values for εo and µo are expressed in MKS units.
We now call (1.1.6) the constitutive relations for free space.

With Equations (1.1.1)–(1.1.6), Maxwell’s theory of electromag-
netic fields is completely expressed. Originally written in Cartesian
component form, Maxwell’s equations were cast in the current vector
form by Oliver Heaviside (1850–1925). In 1888, Heinrich Rudolf Hertz
(1857–1894) demonstrated the generation of radio waves and experi-
mentally verified Maxwell’s theory. Since then, electromagnetic theory
has played a central role in the development of radio, television, wire-
less communications, radar, microwave heating, remote sensing, and
numerous other practical applications. The special theory of relativity
developed by Albert Einstein (1879–1955) in 1905 further asserted the
rigorousness and elegance of Maxwell’s theory. As a well-established
scientific discipline, this sophisticated theoretical structure embodies
many principles and concepts which serve as fundamental rules of na-
ture and vital links for all scientific disciplines.
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James Clerk Maxwell (13 June 1831 – 5 November 1879)
James Clerk Maxwell attended University of Edinburgh (1847–1850),

and studied under William Hopkins at Cambridge University (1850–1854).
He was a fellow of Trinity (1855–1856), Professor of Natural Philosophy at
Marischal College of the University of Aberdeen (1856–1860), and at King’s
College (1860–1865). He was the first Cavendish Professor of Experimental
Physics at Cambridge University to build and direct the Cavendish Labora-
tory (1871–1879). He published four books and about 100 papers starting at
age 14, including ‘On Faraday’s Lines of Forces’ in 1855, ‘On Physical Lines
of Force’ in 1861, and ‘A Dynamical Theory of the Electromagnetic Field’ in
1864. In 1865, at age 33, he retired to his country home estate to write his
monumental book A Treatise of Electricity and Magnetism (Constable and
Company, London, 1873; Dover Publications, New York, 1006 pages, 1954).

Michael Faraday (22 September 1791 – 25 August 1867)
Faraday became an assistant to Sir Humphry Davy at the Royal Institu-

tion on 1 March 1813. In September 1821, his experimentation demonstrated
electro-magnetic rotation, initiated the concept of electric motor. In August
1831, he discovered electro-magnetic induction, and that magnetism produced
electricity through movement, the principle behind the electric transformer
and generator. He became professor of chemistry in 1833. Faraday published
many of his results in the three-volume Experimental Researches in Electricity
(1839–1855).

Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855)
Gauss studied mathematics at the University of Göttingen from 1795 to

1798, and received his doctoral degree from the University of Helmstedt in
1799. In 1807 he took the position of director of the Göttingen Observatory.
In 1832 he presented a systematic use of absolute units (length, mass, time)
to measure nonmechanical quantities. From 1831 to 1837 he worked closely
with Wilhelm Eduard Weber (24 October 1804 – 23 June 1891) on terrestrial
magnetism and organized a system of stations for systematic observations.

André-Marie Ampère (20 January 1775 – 10 June 1836)
Ampère was appointed professor at Bourg Ecole Centrale in 1802, at

the Ecole Polytechnique in 1809, and at Université de France in 1826. In
September 1820, Ampère showed that two parallel conductors attract each
other if they carry currents that flow in the same direction and repel if the
currents flow in opposite directions. In 1823–1826, he completed his memoir on
the ‘Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced
from Experience’.

Charles-Augustin de Coulomb (14 June 1736 – 23 August 1806)
Coulomb worked in the Corps du Génie until he retired in 1791. In 1777

he invented the torsion balance, which enabled him to establish the funda-
mental laws of electricity by measuring the force between two small spheres
charged with electricity. Between 1785 and 1791, he published seven treatises
on electricity and magnetism.
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B. Vector Analysis

A vector A has a magnitude and a direction, which can be represented
graphically by a straight-line element of length proportional to the
magnitude of A and with an arrow pointing in the direction of A . In
a Cartesian coordinate system (also called the rectangular coordinate
system), we write in terms of the three Cartesian components Ax, Ay ,
and Az [Fig. 1.1.1].

A

x̂

ŷ

ẑ

Ax

Ay

Az

x

y

z

Figure 1.1.1 Projection of A in rectangular coordinate system.

A = x̂Ax + ŷAy + ẑAz

where Ax, Ay, Az are the projections of A onto the x, y, z axes. We
denote the directions of the x, y, z axes with x̂, ŷ, ẑ each of them
has unit magnitude with the scalar product x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1 .
They are called the unit vectors. Furthermore x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0 .
We use a hat instead of an overbar to represent the vector with unit
magnitude.

Rene Descartes (31 March 1596 – 11 February 1650)
Rene Descartes originated the Cartesian coordinates and founded an-

alytic geometry. His philosophy is called Cartesianism (from Cartesius, the
Latin form of his name), with the famous statement ‘I think, therefore I am.’
He preached universal doubt; only one thing cannot be doubted: doubt itself.
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Vector Addition and Subtraction
Two vectors A and B , when they are not in the same direction or in

opposite directions, determine a plane. In Cartesian components, we write

A = x̂Ax + ŷAy + ẑAz

B = x̂Bx + ŷBy + ẑBz

It follows that

A±B = x̂(Ax ±Bx) + ŷ(Ay ±By) + ẑ(Az ±Bz)

Scalar Dot Product
The scalar or dot product of two vectors A and B , denoted by A ·B ,

is a scalar number,

A ·B = AxBx + AyBy + AzBz

Vector Cross Product
The vector or cross product of two vectors A and B , denoted by A×B ,

is a vector. In terms of their Cartesian components,

A×B = x̂(AyBz −AzBy) + ŷ(AzBx −AxBz) + ẑ(AxBy −AyBx)

=

∣∣∣∣∣
x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣
For the three orthogonal unit vectors x̂, ŷ, and ẑ it is seen that x̂ =
ŷ × ẑ, ŷ = ẑ × x̂, ẑ = x̂× ŷ.

The direction of A×B follows the right-hand rule, i.e., when the fingers
of the right hand rotate from A to B , the thumb of the right hand points in
the direction of A×B . Thus the vector A×B is perpendicular to both A
and B and the plane containing A and B . It is seen that for A = x̂Ax+ŷAy

and B = x̂Bx + ŷBy both in the xy -plane, A×B = ẑ(AxBy −AyBx) is in
the ẑ direction perpendicular to both A and B .

Division by a vector is not defined; thus B/A and 1/A are meaningless
expressions. If none of the operations of addition, subtraction, dot product,
or cross product is imposed on A and B , the entity AB is called a dyad.
In the language of tensor analysis, a dyad is a tensor of second rank, while
all vectors are tensors of first rank.
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Operation of Three Vectors
For three vectors A , B , and C , we have

C · (A×B) = A · (B × C) = B · (C ×A) (1.1.7)

=

∣∣∣∣∣
Cx Cy Cz

Ax Ay Az

Bx By Bz

∣∣∣∣∣ =

∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣ =

∣∣∣∣∣
Bx By Bz

Cx Cy Cz

Ax Ay Az

∣∣∣∣∣
C × (A×B) = x̂ [Cy (AxBy −AyBx)− Cz(AzBx −AxBz)]

+ ŷ [Cz(AyBz −AzBy)− Cx(AxBy −AzBy)]
+ ẑ [Cx(AzBx −AxBz)− Cy(AxBy −AyBx)]

= (x̂Ax + ŷAy + ẑAz)(CxBx + CyBy + CzBz)
− (CxAx + CyAy + CzAz)(x̂Bx + ŷBy + ẑBz)

= A(C ·B)− (C ·A)B (1.1.8)

Notice that the vector C × (A × B) is perpendicular to C and lies in the
plane determined by A and B .

Operation with the del Operator
The del operator ∇ is a vector differential operator written as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

The following can be proved in Cartesian coordinates or in vector form:

∇ · (E ×H) = H · (∇× E)− E · (∇×H) (1.1.9)

∇ · (∇×A) = 0 (1.1.10)

∇× (∇Φ) = 0 (1.1.11)

∇× (∇× E) = ∇(∇ · E)−∇2E (1.1.12)

where

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.1.13)

is the Laplacian operator in the rectangular coordinate system.

Pierre-Simon Laplace (28 March 1749 – 5 March 1827)
Pierre-Simon Laplace was appointed to a chair of mathematics at the

École Militaire in Paris at the age of 19. During the French Revolution he
helped to establish the metric system. The Laplace equation ∇2 ·Φ = 0 was
published in 1813.
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Gradient of a Scalar

When the del operator operates on a scalar function Φ(x, y, z), the result is a vector

∇Φ = x̂
∂

∂x
Φ + ŷ

∂

∂y
Φ + ẑ

∂

∂z
Φ (1.1.14)

called the gradient of Φ(x, y, z). The differential form of the gradient of Φ as defined
states that

∇Φ = x̂ lim
∆x→0

∆Φ

∆x
+ ŷ lim

∆y→0

∆Φ

∆y
+ ẑ lim

∆z→0

∆Φ

∆z

= x̂ lim
∆x→0

1

∆x

[(
Φ(x +

∆x

2
, y, z)− Φ(x− ∆x

2
, y, z)

)]

+ ŷ lim
∆y→0

1

∆y

[(
Φ(x, y +

∆y

2
, z)− Φ(x, y − ∆y

2
, z)

)]

+ ẑ lim
∆z→0

1

∆z

[(
Φ(x, y, z +

∆z

2
)− Φ(x, y, z − ∆z

2
)

)]
(1.1.15)

When Φ(x, y, z) = Φ(x) is a function of x only, ∇Φ(x) is a vector pointing in the
direction of increasing x with the magnitude equal to the slope of the function at
x.

EXAMPLE 1.1.1 Electric field vector as gradient of a potential function.
When there is no time variation, we may write the electric field vector E as

E = −∇Φ (E1.1.1.1)

and call Φ a potential function. As the gradient ∇Φ points in the direction of
increasing potential Φ, the electric field E points from high potential towards low
potential, similar to water flowing from a high altitude to lower ground.

Giving the potential of a point charge Q is

Φ =
Q

4πr

the electric field is

E = − ∂

∂r
Φ =

Q

4πr2

Thus the electric field points from high potential to low potential.

— END OF EXAMPLE 1.1.1 —
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Divergence of a Vector

The divergence of a vector function is a scalar, defined as

∇ ·D =
(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (x̂Dx + ŷDy + ẑDz)

=
∂

∂x
Dx +

∂

∂y
Dy +

∂

∂z
Dz (1.1.16)

x

y

z

∆x

∆y

∆z

(x0, y0, z0)

Figure 1.1.2 Differential volume ∆x∆y∆z.

Consider a differential volume with sides ∆x,∆y,∆z centered around a
point (x0, y0, z0) [Fig. 1.1.2]. The divergence as defined states that

∇·D=lim
∆x→0
∆y→0
∆z→0

1
∆x∆y∆z

{
∆y∆z

[
Dx(x0+

∆x

2
, y0, z0)−Dx(x0−

∆x

2
, y0, z0)

]

+ ∆z∆x

[
Dy(x0, y0 +

∆y

z
, z0)−Dy (x0, y0−

∆y

z
, z0)

]

+ ∆x∆y

[
Dz(x0, y0, z0 +

∆z

2
)−Dz(x0, y0, z0 −

∆z

2
)
]}
(1.1.17)
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Gauss Theorem or Divergence Theorem

The first term in the braces is equal to the field component Dx at the
surface at x = x0 + ∆x

2 multiplied by the surface area ∆y∆z . We define a
surface normal vector dS pointing outward of the volume such that at the
surface at x = x0 + ∆x

2 , dS = x̂∆y∆z and at the surface at x = x0 − ∆x
2 ,

dS = −x̂∆y∆z . Then the negative sign in the second term is due to D dot
multiplied by dS . All six terms account for the six differential areas bounding
the differential volume ∆V = ∆x∆y∆z with a surface normal dS . We thus
express the divergence of D as

∇ ·D = lim
∆V→0

1
∆V
©
∫∫

dS ·D (1.1.18)

Applying (1.1.18) to a large volume V containing an infinite number of such
infinitesimal differential volumes [Fig. 1.1.3], we note that integrating the di-
vergence over the volume surfaces shared by adjacent differential volumes will
have no contribution because the surface normals point in opposite directions
and thus cancel. The result is the divergence theorem or Gauss theorem

V

S

Figure 1.1.3 Derivation of divergence theorem.

∫∫∫
V

dV ∇ ·D =©
∫∫

S

dS ·D (1.1.19)

The divergence theorem states that the volume integral of the divergence of
the vector field D is equal to the total outward flux D through the surface
S enclosing the volume.
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Curl of a Vector
The curl of a vector field H is a vector defined as

∇×H=
(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
×H =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣
= x̂

(
∂

∂y
Hz −

∂

∂z
Hy

)
+ ŷ

(
∂

∂z
Hx −

∂

∂x
Hz

)
+ ẑ

(
∂

∂x
Hy −

∂

∂y
Hx

)
(1.1.20)

Consider a differential volume of sides ∆x,∆y,∆z centered around a point
(x0, y0, z0) . In the Cartesian coordinate system, the differential form of the
curl of H as defined states that

∇×H = lim
∆x→0
∆y→0
∆z→0

{
1

∆x

[
x̂×

(
H(x0 +

∆x

2
, y0, z0)−H(x0 −

∆x

2
, y0, z0)

)]

+
1

∆y

[
ŷ ×

(
H(x0, y0 +

∆y

2
, z0)−H(x0, y0 −

∆y

2
, z0)

)]

+
1

∆z

[
ẑ ×

(
H(x0, y0, z0 +

∆z

2
)−H(x0, y0, z0 −

∆z

2
)
)]}

= lim
∆x→0
∆y→0
∆z→0

1
∆x∆y∆z

×
{
x̂

[
∆x∆z

(
Hz(x0, y0 +

∆y

2
, z0)−Hz(x0, y0 −

∆y

2
, z0)

)

−∆x∆y

(
Hy(x0, y0, z0 +

∆z

2
)−Hy(x0, y0, z0 −

∆z

2
)
)]

+ ŷ

[
∆x∆y

(
Hx(x0, y0, z0 +

∆z

2
)−Hx(x0, y0, z0 −

∆z

2
)
)

−∆y∆z

(
Hz(x0 +

∆x

2
, y0, z0)−Hz(x0 −

∆x

2
, y0, z0)

)]

+ ẑ

[
∆y∆z

(
Hy(x0 +

∆x

2
, y0, z0)−Hy(x0 −

∆x

2
, y0, z0)

)

−∆x∆z

(
Hx(x0, y0 +

∆y

2
, z0)−Hx(x0, y0 −

∆y

2
, z0)

)]}
(1.1.21)
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Stokes Theorem
The ẑ component of (1.1.21) is

ẑ · (∇×H) = (∇×H)z =
∂

∂x
Hy −

∂

∂y
Hx

= lim
∆x→0
∆y→0

1
∆x∆y

{
∆y

[
Hy(x0 +

∆x

2
, y0, z0)−Hy(x0 −

∆x

2
, y0, z0)

]

−∆x

[
Hx(x0, y0 +

∆y

2
, z0)−Hx(x0, y0 −

∆y

2
, z0)

]}

The first term in the bracket is equal to the component Hy at x = x0 + ∆x
2

multiplied by the differential length ∆y . We define a vector differential length
dl [Fig. 1.1.4] such that for the side ∆y at x = x0 + ∆x

2 , dl = ŷdy ; for
the side ∆x at y0 + ∆y

2 , dl = −x̂dx ; for the side ∆y at x = x0 − ∆x
2 ,

dl = −ŷdy ; and for the side ∆x at y = y0 − ∆y
2 , dl = x̂dx . If we use

the fingers of the right hand to trace the direction of dl along the loop, the
right-hand thumb points in the surface normal direction ẑ . Thus

ẑ

C

∆y

∆x

(x0, y0)

dl = −x̂dx

dl = ŷdy

Figure 1.1.4 Derivation of ẑ-component of the curl of a vector field.

ẑ · (∇×H) = lim
∆x→0
∆y→0

1
∆S

∮
C

dl ·H (1.1.22)

where C denotes the contour circulating the area ∆S = ∆x∆y . Similar
results are derivable for the x̂ and ŷ components of ∇×H . For a differential
area ∆S with a surface normal in the direction of ŝ , we have

ŝ · (∇×H) = lim
∆S→0

1
∆S

∮
C

dl ·H (1.1.23)
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We now apply (1.1.21) to an open surface S , subdivide into N differential
areas [Fig. 1.1.5]. For a differential area ∆Sj bounded by a contour Cj and
with a surface normal ŝj , we have ∆Sj = ŝj∆Sj and

∆Sj · (∇×H)j =
∮
Cj

dl ·H

Adding the contributions of all N differential areas [Fig. 1.1.5], we find

lim
∆Sj→0
N→∞

N∑
j=1

∆Sj · (∇×H)j =
∮
C

dl ·H

C

C

∆S

C
S

Figure 1.1.5 Derivation of Stokes’ theorem.

Since the common part of the contours in two adjacent elements is traversed
in opposite directions by the two contours, the net contribution of all the
common parts in the interior sums to zero and only the contribution from the
external contour C bounding the open surface S remains in the line integral
on the right-hand side. The left-hand side becomes a surface integral, and the
result is Stokes’ theorem:∫∫

dS · (∇×H) =
∮
C

dl ·H (1.1.24)

Stokes’ theorem states that the surface integral of the curl of the vector field
H over an open surface S is equal to the closed line integral of the vector
along the contour enclosing the open surface.

George Gabriel Stokes (13 August 1819 – 1 February 1903) was appointed
Lucasian Professor of Mathematics at Cambridge University in 1849. His
mathematical and physical papers were published in 5 volumes, the first 3 of
which Stokes edited himself in 1880, 1883 and 1891. The last 2 were edited
by Joseph Larmor in 1887 and 1891.
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Maxwell Equations in Integral Form

Applying Stokes theorem to the Ampére’s law and Faraday’s law and
applying the divergence theorem to Gauss’ and continuity laws, we find

∮
C

dl ·H =
∫∫

dS · J +
∫∫

dS · ∂
∂t

D (1.1.25)

∮
C

dl · E = −
∫∫

dS · ∂
∂t

B (1.1.26)

©
∫∫

S

dS ·D =
∫∫∫

V

dV ∇ ·D =
∫∫∫

V

dV ρ (1.1.27)

©
∫∫

S

dS ·B =
∫∫∫

V

dV ∇ ·B = 0 (1.1.28)

©
∫∫

S

dS · J = −
∫∫∫

V

dV
∂

∂t
ρ (1.1.29)

These are the integral form of Maxwell equations.

Oliver Heaviside (18 May 1850 – 3 February 1925)

The year after the publication of Maxwell’s Treatise of Electricity and
Magnetism in 1873, Heaviside resigned from his job at age 24 and devoted
all his time to the study of Maxwell’s theory. Despite of the criticism from
all the disbelievers, he remained the faithful decipher and declared himself a
Maxwellian. He refuted the quaternion notation initiated by Hamilton and
Tait and developed the vector notation to cast Maxwell’s equation into the
form as we show in this book.
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Cylindrical and Spherical Coordinate Systems
In addition to the rectangular coordinates with unit vectors x̂, ŷ, ẑ , the

cylindrical coordinate system with unit vectors ρ̂, φ̂, ẑ , and the spherical co-
ordinate system with unit vectors ρ̂, θ̂, φ̂ are often used in this book.

In a general orthogonal coordinate system, we use ûi (i = 1, 2, 3) to
denote the three basis vectors, dli = hidui to denote a differential length,
where hi is called a metric coefficient. The basis vectors are perpendicular to
one another ûi · ûj = 0 for i �= j but they are not necessarily of unit length.
In Table 1.1.1 we summarize the basis vectors and the metric coefficients for
the rectangular (or Cartesian), cylindrical, and spherical coordinate systems.

Orthogonal
Coordinate System

Rectangular
Coordinates

(x, y, z)

Cylindrical
Coordinates

(ρ, φ, z)

Spherical
Coordinates

(r, θ, φ)
Base Vectors
(û1, û2, û3) x̂, ŷ, ẑ ρ̂, φ̂, ẑ r̂, θ̂, φ̂

Metric Coefficients
(h1, h2, h3) 1, 1, 1 1, ρ, 1 1, r, r sin θ

Differential Volume
(h1h2h3du1du2du3) dxdydz ρdρdφdz r2 sin θdrdθdφ

Table 1.1.1 Orthogonal coordinate systems.

In terms of the general orthogonal coordinate system, the gradient, the
divergence, the curl, and the Laplacian operators are defined as

∇Φ = û1
∂Φ

h1∂u1
+ û2

∂Φ
h2∂u2

+ û3
∂Φ

h3∂u3

∇ ·D =
1

h1h2h3

[
∂

∂u1
(h2h3D1) +

∂

∂u2
(h3h1D2) +

∂

∂u3
(h1h2D3)

]

∇×H =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

h1H1 h2H2 h3H3

∣∣∣∣∣∣∣
∇2Φ = ∇ · ∇Φ

=
1

h1h2h3

[
∂

∂u1
h2h3

∂Φ
h1∂u1

+
∂

∂u2
h3h1

∂Φ
h2∂u2

+
∂

∂u3
h1h2

∂Φ
h3∂u3

]
Identifying the metrics h1, h2, h3 with those as listed in Table 1.1.1, we
readily obtain the expressions in cylindrical and spherical coordinates.
In the cylindrical coordinate system [Fig. 1.1.6],

Vector differential length dl = ρ̂dρ + φ̂ρdφ + ẑdz

Differential area dS = ρ̂ρdφdz + φ̂dρdz + ẑρdρdφ

Differential volume dV = ρdρdφdz
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x

y

φ

dz

ρ dφdz

dρdz

ρ dρdφ

dφ

z

ρ

Figure 1.1.6 Cylindrical coordinate system.

∇Φ = ρ̂
∂Φ
∂ρ

+ φ̂
1
ρ

∂Φ
∂φ

+ ẑ
∂Φ
∂z

∇ ·D =
1
ρ

∂

∂ρ
(ρDρ) +

1
ρ

∂

∂φ
Dφ +

∂

∂z
Dz

∇×H =
1
ρ

∣∣∣∣∣∣∣∣
ρ̂ ρφ̂ ẑ

∂
∂ρ

∂
∂φ

∂
∂z

Hρ ρHφ Hz

∣∣∣∣∣∣∣∣
∇2Φ = ∇ · ∇Φ

=
1
ρ

∂

∂ρ

[
ρ
∂Φ
∂ρ

]
+

1
ρ2

∂2Φ
∂φ2

+
∂2Φ
∂z2

In the spherical coordinate system [Fig. 1.1.7],

Vector differential length dl = r̂dr + θ̂rdθ + φ̂r sin θdφ

Differential area dS = r̂r2 sin θdθdφ + θ̂r sin θdrdφ + φ̂rdrdθ

Differential volume dV = r2 sin θdrdθdφ
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θ

r
φ

dφ

r sin θx

y

z

dθ

dr

Figure 1.1.7 Spherical coordinate system.

∇Φ = r̂
∂Φ
∂r

+ θ̂
1
r

∂Φ
∂θ

+ φ̂
1

r sin θ

∂Φ
∂φ

∇ ·D =
1
r2

∂

∂r
(r2Dr) +

1
r sin θ

∂

∂θ
(sin θDθ) +

1
r sin θ

∂

∂φ
Dφ

∇×H =
1

r2 sin θ

∣∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂
∂r

∂
∂θ

∂
∂φ

Hr rHθ r sin θHφ

∣∣∣∣∣∣∣∣
∇2Φ = ∇ · ∇Φ

=
1
r2

∂

∂r

[
r2 ∂Φ

∂r

]
+

1
r2 sin θ

∂

∂θ

[
sin θ

∂Φ
∂θ

]
+

1
r2 sin2 θ

∂2Φ
∂φ2

=
1
r

∂2

∂r2

[
rΦ

]
+

1
r2 sin θ

∂

∂θ

[
sin θ

∂Φ
∂θ

]
+

1
r2 sin2 θ

∂2Φ
∂φ2

Index Notation
A vector in the Cartesian coordinate system can be represented by its

three components. Thus, Aj with j = 1, 2, 3 represents A1, A2, A3 of the
vector A . The dot product A · B is written as AjBj where the repeated
index j implies summation over j from 1 to 3:

AjBj =
3∑

j=1

AjBj = A1B1 + A2B2 + A3B3
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To express cross products in index notation we need to define a Levi-Cevita
symbol εijk where i, j, k take values from 1 to 3. When any of the two
indices are equal the Levi-Cevita symbol is zero. Otherwise, εijk is either
+1 or −1 . It is +1 if ijk is an even permutation of 1,2,3; −1 if ijk is an
odd permutation of 1,2,3. Thus ε123 = ε231 = ε312 = 1 and ε213 = ε132 =
ε321 = −1 and all others equal to 0. Let C = A× B . In index notation, we
write Ci = εijkAjBk . Thus, C1 = ε123A2B3 + ε132A3B2 = A2B3 − A3B2 .
The dyad AB is AjBk , no summation implied because no index is repeated.
The identities (1.1.7) and (1.1.8) are

CiεijkAjBk = AjεjkiBkCi = BkεkijCiAj

εijkCjεklmAlBm = (εijkεklm)CjAlBm = (δilδjm − δimδlj)CjAlBm

= AiCmBm − ClAlBi

where δij = 1 when i = j and δij = 0 when i �= j .
In index notation, divergence of Dj , ∇ ·Dj , is ∂jDj .
In index notation, ∇ is represented by ∂i and ∇φ by ∂iφ .
In index notation, curl of Hi , ∇×Hi , is written as εijk∂jHk.
The identities (1.1.9)–(1.1.12) are, in index notation

∂i(εijkEjHk) = εijkHk∂iEj + εijkEj∂iHk = Hkεkij∂iEj − Ejεjik∂iHk

∂iεijk∂jAk = −εjik∂i∂jAk = 0

εijk∂j∂kφ = −εikj∂j∂kφ = −εikj∂k∂jφ = 0

εijk∂jεklm∂lEm = (δilδjm − δimδjl)∂j∂lEm = ∂m∂iEm − ∂j∂jEi

Maxwell equations, when written in index notation, take the form:

εijk∂jHk = ∂tDi + Ji

εijk∂jEk = ∂tBi

∂jDj = ρ

∂jBj = −∂tρ

where ∂t denotes partial derivative with respect to time.

Example 1.1.2 Poisson equation and Laplace equation.
In (E1.1.1.1), we wrote the electric field vector as the gradient of a po-

tential function Φ :

E = −∇Φ (E1.1.2.1)

By virtue of (1.1.11), we see that ∇× E = 0 . Thus the above definition for
the electric field is true only when the term ∂B/∂t in Faraday’s law can be
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neglected, i.e., when there is no time variation. We may refer to the above
electric field as the static electric field. Derive an equation for Φ .

Solution:
Coulomb’s law (or Gauss’ law for electricity) in free space is

∇ · E = ρ/εo

In terms of the potential function, we obtain the Poisson equation

∇2Φ = −ρ/εo (E1.1.2.2)

In places where there is no charge density, ρ = 0 , we have the Laplace
equation ∇2Φ = 0 .

End of Example 1.1.2

Siméon Denis Poisson (21 June 1781 – 25 April 1840) studied mathematics at
the Ecole Polytechnique and was student of Pierre-Simon Laplace and Joseph-
Louis Lagrange. His memoir on finite differences was written at age 18. His
well-known contributions include Poisson’s equation in potential theory was
developed in 1829–1835.

Example 1.1.3
The voltage Vab is defined as the integration of E along a line segment

of ' from point a to point b .

Vab =
∫ b

a

d' · E (E1.1.3.1)

Thus Vab is the potential difference between points a and b . For positive
Vab , the electric field vector points from a to b . Point a is at a higher
potential Φa than Φb at point b , Φb < Φa and Vab = Φa − Φb .

End of Example 1.1.3

Example 1.1.4
Maxwell’s equations were originally written in the form of scalar partial

differential equations. Written in terms of all field components, we find that
for Ampère’s law,

∂

∂y
Hz −

∂

∂z
Hy =

∂

∂t
Dx + Jx (E1.1.4.1a)

∂

∂z
Hx −

∂

∂x
Hz =

∂

∂t
Dy + Jy (E1.1.4.1b)

∂

∂x
Hy −

∂

∂y
Hx =

∂

∂t
Dz + Jz (E1.1.4.1c)
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for Faraday’s law,

∂

∂y
Ez −

∂

∂z
Ey = − ∂

∂t
Bx (E1.1.4.2a)

∂

∂z
Ex −

∂

∂x
Ez = − ∂

∂t
By (E1.1.4.2b)

∂

∂x
Ey −

∂

∂y
Ex = − ∂

∂t
Bz (E1.1.4.2c)

for Coulomb’s law

∂

∂x
Dx +

∂

∂y
Dy +

∂

∂z
Dz = ρ (E1.1.4.3)

and for Gauss’ law

∂

∂x
Bx +

∂

∂y
By +

∂

∂z
Bz = 0 (E1.1.4.4)

Taking the sum of ∂(E1.1.4.1a)/∂x , ∂(E1.1.4.1b)/∂y , ∂(E1.1.4.1c)/∂z , and
making use of (E1.1.4.3), we obtain

∂

∂x
Jx +

∂

∂y
Jy +

∂

∂z
Jz = − ∂

∂t
ρ (E1.1.4.5)

which is the continuity law. Given (E1.1.4.5), Coulomb’s law can be derived
from Ampère’s law. Likewise, Gauss’ law can be derived from Faraday’s law,
∇ · B = Const , noticing that no static magnetic monopole is found to exist
and that Const = 0 . Thus (E1.1.4.3) and (E1.1.4.4) are not independent
scalar equations, they can be derived from (E1.1.4.1) and (E1.1.4.2).

End of Example 1.1.4

Problems

P1.1.1
Three vectors A, B , and C drawn in a head-to-tail fashion form the

three sides of a triangle. What is A + B + C and what is A + B − C ?

P1.1.2
Prove |A×B|2 = A2B2 − (A ·B)2 by using C × (A×B) = A(C ·B)−

(C ·A)B.

P1.1.3
A position vector r = x̂

√
2 + ŷ

√
2 + ẑ2 . Determine its spherical compo-

nents r, θ, φ and its cylindrical components ρ, φ, z .
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P1.1.4
Find a unit vector ĉ that is perpendicular to both A = x̂4 + ŷ5 − ẑ3

and B = x̂2− ŷ7− ẑ1.5 .

P1.1.5
Let A = x̂A , and the projection of another vector B on A be Bx =

B cos θAB . What is A ·B in terms of the angle θAB between A and B ?

P1.1.6
Assume A > B and draw a line projecting B on A . The line length h =

B sin θAB , which is also related to A from h2 = |A−B|2− (A−B cos θAB)2

by the cosine law in geometry. Show that A ·B = AB cos θAB

P1.1.7
The direction of A×B follows the right-hand rule, i.e., when the fingers

of the right hand rotate from A to B , the thumb of the right hand points
in the direction of A×B . Thus the vector A×B is perpendicular to both
A and B and the plane containing A and B . Let A = x̂Ax + ŷAy and
B = x̂Bx + ŷBy both in the xy -plane, find A×B .

P1.1.8
Using cos θAB = A ·B/AB , show that |A×B| = |AB sin θAB | .

P1.1.9
For Φ(x) = x2 , and Φ(x) = −x3, what are their gradients?

P1.1.10
The function Φ = x2+2y2 describes a family of ellipses. Find its gradient

and show that ∇Φ is normal to the ellipse and pointing in the directions of
an expanding ellipse.

P1.1.11
Consider the function Φ = x + y . Find the gradient of the function.

P1.1.12
Prove the following identities:

∇ · (E ×H) = H · (∇× E)− E · (∇×H) (1.1.9)

∇ · (∇×A) = 0 (1.1.10)

∇× (∇Φ) = 0 (1.1.11)

∇× (∇× E) = ∇(∇ · E)−∇2E (1.1.12)

P1.1.13
The six terms in (1.1.21) are associated with the six differential surfaces

bounding (x0, y0, z0) . For the first term, the surface normal is in the x̂ di-
rection; we write dS = x̂∆y∆z . For the second term dS = −x̂∆y∆z . For
the third term dS = ŷ∆z∆x , etc. Derive a curl theorem by integrating over
the volume similar to the divergence theorem.
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P1.1.14
What is the result if the surface integral of ∇ × H is carried out over

a closed surface? Compare with Stokes Theorem in (1.1.24) and the curl
theorem in P1.1.13 for the curl integrated over a volume V enclosed by a
surface S .

P1.1.15
For the vector A = ρ̂ρ2 + ẑ2z , verify the divergence theorem for the

circular cylindrical region enclosed by ρ = 5, z = 0 , and z = 3 .

P1.1.16
Prove that [A× (∇×B)]i = Aj∂iBj − [(A · ∇)B]i .

P1.1.17
Prove that ∇(A ·B) = (A ·∇)B+(B ·∇)A+A× (∇×B)+B× (∇×A).

P1.1.18
Show that ∇(A ·A) = 2(A · ∇)A + 2A× (∇×A) .

P1.1.19
Express static electric field vector as the gradient of a potential function

Φ =
C√

x2 + y2 + z2

and find the electric field of a charge q from Maxwell equations.
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1.2 Electromagnetic Waves

A. Wave Equation and Wave Solution

The Maxwell equations in differential form are valid at all times
for every point in space. First we shall investigate solutions to the
Maxwell equations in regions devoid of source, namely in regions where
J = 0 and ρ = 0 . This of course does not mean that there is no source
anywhere in all space. Sources must exist outside the regions of interest
in order to produce fields in these regions. Thus in source-free regions
in free space, the Maxwell equations become

∇×H = εo
∂

∂t
E (1.2.1)

∇× E = −µo
∂

∂t
H (1.2.2)

∇ · E = 0 (1.2.3)

∇ ·H = 0 (1.2.4)

To derive an equation for the vector field E , we take curl of (1.2.2),
substitute (1.2.1)

∇×∇× E = −µo
∂

∂t
∇×H = −µoεo

∂2

∂t2
E (1.2.5)

and make use of the vector identity ∇ × ∇ × E = ∇∇ · E − ∇2E .
Noticing from (1.2.3) that ∇ · E = 0 , we have

∇2E − µoεo
∂2

∂t2
E = 0 (1.2.6)

This is known as the Helmholtz wave equation. Solutions to the wave
equation (1.2.6) that satisfy all Maxwell equations are electromagnetic
waves.

Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September
1894) was a professor of anatomy and physiology at the University of Bonn in
1858, then became a professor of physics at the University of Berlin in 1871,
and the first director of the Physico-Technical Institute of Berlin in 1888.
His 3-volume Handbook of Physiological Optics appeared between 1856 and
1867.
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Wave Solution
We shall now study a solution to (1.2.6) assuming Ey = Ez = 0 .

Let Ex be a function only of z and t and independent of x and y .
The electric field vector can be written as

E = x̂Ex(z, t)

The wave equation it satisfies follows from (1.2.6) which becomes

∂2

∂z2
Ex − µoεo

∂2

∂t2
Ex = 0 (1.2.7)

The simplest solution to (1.2.7) takes the form

E = x̂Ex(z, t) = x̂E0 cos(kz − ωt) (1.2.8)

Substituting (1.2.8) in (1.2.7) we find that the following equation,
called the dispersion relation, must be satisfied:

k2 = ω2µoεo (1.2.9)

The dispersion relation provides an important connection between the
spatial frequency k and the temporal frequency ω .

There are two points of view useful in the study of a space-time
varying quantity such as Ex(z, t) . The temporal view point is to exam-
ine the time variation at fixed points in space. The spatial view point
is to examine spatial variation at fixed times, a process that amounts
to taking a series of pictures.

From the temporal view point, we first fix our attention on one
particular point in space, say z = 0 . We then have the electric field
Ex(z = 0, t) = E0 cosωt . Plotted as a function of time in Fig. 1.2.1,
we find that the waveform repeats itself in time as ωt = 2mπ for any
integer m. The period is defined as the time T for which ωT = 2π .
The number of periods in a time of one second is the frequency f
defined as f = 1/T , which gives

f =
ω

2π
(1.2.10)
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ωt

Ex(z = 0, t) = E0 cosωt

π

2π

3π

ωT =

Figure 1.2.1 Electric field strength as a function of ωt at z = 0.

1 1 1

t t t

sec sec sec

Ex = E0 cos 2πfot Ex = E0 cos 4πfot Ex = E0 cos 6πfot

b. f = 2fo = 2Hz c. f = 3fo = 3Hza. f = 1fo = 1Hz

Figure 1.2.2 Electric field strength vs. t for different frequencies ω.

The unit for frequency f is Hertz (Hz) with 1 Hz = 1 s−1 , which is
equal to the number of cycles per second. Since ω = 2πf , ω is the
angular frequency of the wave.

In this book, we often refer to ω as the frequency, simply because
ω is more commonly encountered than f . The temporal frequency ω
characterizes the variation of the wave in time. We plot in Fig. 1.2.2a
Ex(z = 0, t) as a function of t instead of ωt . Let there be one period
within the time interval of 1 second. Thus, f = fo = 1 Hz , and we let
ω = ωo = 2π rad/s. In Fig. 1.2.2b, we plot ω = 2ωo ; there are two
periods in a time interval of one second and the period in time is 0.5
seconds. In Fig. 1.2.2c, ω = 3ωo and there are three periods in one
second.
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B. Unit for Spatial Frequency k

To examine wave behavior from the spatial view point, let ωt = 0 .
The electric field becomes

Ex(z, t = 0) = E0 cos kz (1.2.11)

The electric field thus varies periodically in space. We plot Ex(z, t = 0)
as a function of kz in Fig. 1.2.3. The waveform repeats itself periodi-
cally in space when kz = 2mπ for integer values of m. The period of
one spatial variation is the wavelength λ defined as the distance for
which kλ = 2π . The number of spatial variations per unit distance is

π

2π

3π

kz

kλ =

Ez(z, t = 0) = E0 cos kz

Figure 1.2.3 Electric field strength as a function of kz at t = 0.

k =
2π
λ

(1.2.12)

We call k the spatial frequency, which characterizes the spatial vari-
ations of the field strength, similar to the temporal frequency which
characterized the temporal variations of the field strength. The spatial
frequency is also called the wavenumber as it is equal to the number
of wavelengths in a distance of 2π and has the dimension of inverse
length.

Let me define for the spatial frequency k a fundamental unit Ko :

1 Ko = 2π rad/m (1.2.13)

Similar to the unit Hz which is cycles per second in temporal variation,
Ko is cycles per meter in spatial variation. For a wave that has a spatial
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z z z

1 1 1m m m

Ex = E0 cos 1koz Ex = E0 cos 2koz Ex = E0 cos 3koz

a. k = 1ko = 1Ko b. k = 2ko = 2Ko c. k = 3ko = 3Ko

Figure 1.2.4 Electric field strength vs. distance z with different spatial
frequency k.

frequency of one period of spatial variation in one meter distance, we
have k = 1 Ko . An electromagnetic wave in free space with k = 3 Ko

has three spatial variations in a distance of one meter.
We plot in Fig. 1.2.4a Ex(z, t = 0) as a function of z instead of

kz . There is one cycle of spatial variation within the wavelength of
1 meter. Since Ko = 2π rad/m , we have k = 1 Ko = 2π rad/m . In
Fig. 1.2.4b, we plot k = 2 Ko ; there are two variations in a spatial
distance of one meter and the wavelength is 0.5 meters. In Fig. 1.2.4c,
k = 3 Ko and there are three variations in one meter.

From the dispersion relation for electromagnetic waves (1.2.9), we
see that the spatial frequency and the temporal frequency are related
by the velocity of light. Thus for a spatial frequency of 1 Ko , the
corresponding temporal frequency is f = 300 MHz . With k expressed
in unit Ko , we find

f = 3× 108 k Hz ; λ = 1/k m (1.2.14)

Within the spatial frequency range of 0.01 Ko to 100 Ko electromag-
netic waves are used for microwave heating, radar, navigation, and
carrying signals from radio, television, and satellite communications.
The visible light has a spatial frequency band between 1.4 × 106 ∼
2.6×106 Ko . In Fig. 1.2.5 we illustrate the electromagnetic wave spec-
trum according to the spatial frequency in Ko and corresponding wave-
length in meters, frequency in Hz, and energy in electron-volts (eV).
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Figure 1.2.5 Electromagnetic wave spectrum.
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In this book I shall place great emphasis on the use of k , which is
of more fundamental importance in electromagnetic wave theory than
both of the more popular concepts of wavelength λ and frequency f .
The corresponding values of wavelength λ and frequency f are, for
k = AKo ,

λ = 2π/k = 2π/(AKo) =
1
A

m; f = ck/2π = cAKo/2π = 3×108AHz

The photon energy in electron-volts (eV) is calculated from

h̄ω = (h̄cAKo/q) eV ≈ 1.24× 10−6A eV = h̄ck/q eV

where q = 1.6 × 10−19 coulombs is the electron charge, and h̄ =
1.05 × 10−34 Joule-second is Planck’s constant h = 6.626 × 10−34 J-
sec divided by 2π .

Max Karl Ernst Ludwig Planck (23 April 1858 – 4 October 1947)
Max Planck entered the University of Munich in 1874. He taught at

the University of Munich in 1880–1885, Kiel 1885–1889. After the death of
Kirchhoff in 1887, Planck succeeded his chair of theoretical physics at the
University of Berlin in 1889 until his retirement in 1927. In 1900 he announced
a formula now known as Planck’s radiation formula and introduced the quanta
of energy.

Example 1.2.1 Operating frequencies of common devices:

Device Temporal frequency (Hz) Spatial frequency (Ko)
AM Radio 535 – 1605 kHz 0.00178 – 0.00535 Ko

Shortwave Radio 3 – 30 MHz 0.01 – 0.1 Ko

FM Radio 88 – 108 MHz 0.293 – 0.36 Ko

Airport ILS 108 – 112 MHz 0.35 – 0.373 Ko

Commercial Television
Channels 2-4 54 – 72 MHz 0.18 – 0.24 Ko

Channels 5-6 76 – 88 MHz 0.253 – 0.293 Ko

Channels 7-13 174 – 216 MHz 0.58 – 0.72 Ko

Channels 14-83 470 – 890 MHz 1.57 – 2.97 Ko

Microwave Oven 2.45 GHz 8.17 Ko

Communication Satellite
Downlink 3.70 – 4.20 GHz 12.3 – 14 Ko

Uplink 5.925 – 6.425 GHz 19.75 – 21.4 Ko

End of Example 1.2.1
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Phase Velocity and Phase Delay

In Figs. 1.2.6b and 1.2.6c we plot Ex(z, t) at two progressive times
ωt = π/2 and ωt = π . We observe that the electric field vector at A
appears to be propagating along the ẑ direction as time progresses.
The velocity of propagation Vp is determined from kz−ωt = constant
which gives

Vp =
dz

dt
=

ω

k
(1.2.15)

We call Vp the phase velocity. By virtue of the dispersion relation
(1.2.9), we see that Vp = (µoεo)−1/2 , which is equal to the velocity of
light in free space c .

Ex = E0 cos kz Ex = E0 sin kz Ex = −E0 cos kz

a. ωt = 0 b. ωt =
π

2
c. ωt = π

kz kz kz

A

A

A

Ex Ex Ex

π π π

2π 2π 2π

3π 3π 3π

Figure 1.2.6 Electric field strength vs. kz at different times.

The spatial frequency k is, according to the dispersion relation,
directly related to the temporal frequency ω by the phase delay

Λp =
k

ω
=
√
µoεo (1.2.16)

which determines how much time it takes for the wave to propagate a
unit distance. In free space Λp = 10−8/3 s/m or it takes 3.33 nanosec-
onds for an electromagnetic wave to travel the distance of one meter.
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EXAMPLE 1.2.2 Electric field vector E and magnetic field vector H.

A wave equation similar to (1.2.6) can be derived for the magnetic field vector
H. Wave solutions for E and H can be written as

E = x̂Ex(z, t) = x̂E0 cos(kz − ωt) (E1.2.2.1)

H = ŷHy(z, t) = ŷH0 cos(kz − ωt) (E1.2.2.2)

It is seen that E and H satisfy (1.2.3) and (1.2.4). From (1.2.1), we find

∇×H =

∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

0 Hy 0

∣∣∣∣∣∣∣∣
= x̂ kH0 sin(kz − ωt)

= εo
∂

∂t
E = x̂ ωεoE0 sin(kz − ωt)

z
Magnetic

Field H

Electric Field E

Figure E1.2.2.1 Electric and magnetic fields of an electromagnetic wave.

The magnitudes E0 and H0 are related by E0/H0 = k/ωεo =
√

µo/εo = η,

where η =
√

µo/εo is called the free-space impedance. The same result is obtained
by substituting (E1.2.2.1) and (E1.2.2.2) into (1.2.2). The electromagnetic wave
is propagating in the positive ẑ direction. The field vectors of the electromagnetic
wave are transversal to the direction of propagation and lie in the xy-plane, on
which the phase kz−ωt of the wave is a constant. Since the phase front of the wave
is the xy-plane, we call the electromagnetic wave as represented by (E1.2.2.1) and
(E1.2.2.2) a plane wave.

— END OF EXAMPLE 1.2.2 —



1.2 Electromagnetic Waves 33

C. Polarization

The polarization of a wave is conventionally defined by the time vari-
ation of the tip of the electric field vector E at a fixed point in space.
If the tip moves along a straight line, the wave is linearly polarized.
When the locus of the tip is a circle, the wave is circularly polarized.
For an elliptically polarized wave, the tip of E describes an ellipse.
If the right-hand thumb points in the direction of propagation while
the fingers point in the direction of the tip motion, the wave is de-
fined as right-hand polarized. The wave is left-hand polarized when it
is described by the left-hand thumb and fingers.

Consider the following wave solution:

E(z, t) = x̂Ex + ŷEy

= x̂ cos(kz − ωt) + ŷA cos(kz − ωt + ψ) (1.2.17)

with A > 0 . The wave propagates in the +ẑ direction. From the
temporal view point,

E(t) = x̂ cos(ωt) + ŷA cos(ωt− ψ)

We now study polarization for the following special cases:
Case 1) ψ = 2mπ , where m = 0, 1, 2, ... is an integer. We have

E(t) = x̂ cos(ωt) + ŷA cos(ωt)

The tip of the electric field vector moves along a line as shown in
Fig. 1.2.7a. The wave is linearly polarized.
Case 2) ψ = (2m + 1)π , we have

E(t) = x̂ cos(ωt)− ŷA cos(ωt)

The tip of the electric field vector moves along a line as shown in
Fig. 1.2.7b. The wave is linearly polarized.
Case 3) ψ = π/2 and A = 1 , we have

E(t) = x̂ cos(ωt) + ŷ sin(ωt) (1.2.18)

It can be seen that while the x component is at its maximum the y
component is zero. As time progresses, the y component increases and
the x component decreases. The tip of E rotates from the positive Ex
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Figure 1.2.7 Polarizations.
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axis to the positive Ey axis [Fig. 1.2.7c]. Elimination of t from the x
and y components in (1.2.18) yields a circle of radius 1 , E2

x+ E2
y = 1 .

Thus the wave is right-hand circularly polarized.
Case 4) ψ = −π/2 and A = 1 , we have

E(t) = x̂ cos(ωt)− ŷ sin(ωt) (1.2.19)

As time progresses, the y component increases and the x compo-
nent decreases. The tip of E rotates from the positive Ex axis to
the negative Ey axis. Thus the wave is left-hand circularly polarized
[Fig. 1.2.7d].
Case 5) ψ = ±π/2 , we have

E(t) = x̂ cos(ωt)± ŷA sin(ωt) (1.2.20)

The wave is right-hand elliptically polarized for ψ = π/2 [Fig. 1.2.7e]
and left-hand elliptically polarized for ψ = −π/2 [Fig. 1.2.7f].

A

ψ

1
2 1 22

Figure 1.2.8 Polarizations for various values of ψ and A.

The above discussion can be summarized in Fig. 1.2.8 where we
illustrate the polarization for different values of A and ψ . On the
horizontal axis, ψ = 0, or π, the wave is linearly polarized. If A = 1
and ψ = π/2, the wave is right-hand circularly polarized. For A = 1
and ψ = −π/2, the wave is left-hand circularly polarized. Otherwise
the wave is elliptically polarized. The polarization is right-handed if
the phase difference is between zero and π, and left-handed if ψ is
between π and 2π.
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Example 1.2.3 Polarization from the spatial view point.
Wave polarization can be viewed by either taking a series of still pictures

at several fixed times, called the spatial view point or by making observations
at a fixed point in space, called the temporal view point. The definition of
polarization so far has been discussed from the temporal view point. Let us
now look at polarization from the spatial view point.

x

y

z

z = zo E|t=to

E|t=t+k̂

Figure E1.2.3.1 Spatial view of polarization.

Consider the right-hand circularly polarized wave with ψ = π/2 and
A = 1 in case 3), setting t = 0 in wave solution (1.2.17), we have

E(z, t = 0) = x̂ cos(kz)− ŷ sin(kz) = x̂Ex(z)− ŷEy(z)

This is a left-handed helix as shown below.

Ex = E0 cos
(2π

λ
z
)

Ey = E0 sin
(2π

λ
z
)

The parametric equation of a helix is

x = R cos
(

2π
p
z

)
y = R sin

(
2π
p
z

)
r

where p is the pitch of the helix. Thus, the locus of the tip point of the electric
field vector measured along the z axis is a left-handed helix with the pitch
p = λ. The helix advances along +ẑ without rotating. At z = z0 = 3λ/4 ,
electric field vector is at E|t=to when to = 0 , it is shown as E|t=t+ when
t+ = π/4ω .

End of Example 1.2.3
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Poincaré Sphere and Stokes Parameters
We now use the ellipse as shown in Fig. 1.2.9 to illustrate all polariza-
tion states by introducing two parameters: polarization angle α and
orientation angle β . We let the major axis of the ellipse be e1 and
the minor axis e2 ≤ e1 . The shape of the ellipse can be specified by
the ellipticity angle α defined as

tanα = ±e2

e1
(1.2.21)

where the plus sign corresponds to right-hand polarization for which
0 ≤ α ≤ π/4 and the negative sign to left-hand polarization for which
−π/4 ≤ α ≤ 0. We see that for linearly polarized wave α = 0 . For as
is evident from the defining equation for Fig. 1.2.9.

Ex

α

Ey

e1

e2

Figure 1.2.9 Elliptical polarization.

E(t) = x̂ cosωt + ŷA sinωt (1.2.22)

For right-hand circularly polarized waves, α = −π/4 and e2 = e1 ,
for left-hand circularly polarized waves, α = −π/4 and e2 = e1 . For
right-hand polarization, α ≥ 0 , for left-hand polarization, α ≤ 0 .

The orientation angle β is introduced with Fig. 1.2.10 by rotating
the ellipse in Fig. 1.2.9. The major axis of the ellipse is rotated and
makes the angle β with the Ex axis with 0 ≤ β ≤ π. Thus for a
linearly polarized wave along the Ey− axis, β = π/2 .

Instead of the planar representation of polarization states as shown
in Fig. 1.2.8, we shall now discuss representation of polarization states
with a sphere called Poincaré sphere as shown in Fig. 1.2.11. The radius
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E x

E y

e 1

e 2

Figure 1.2.10 Elliptical polarization.

of the sphere is I , and the three axes are Q, U, V as shown below:

Q = I cos 2α cos 2β

U = I cos 2α sin 2β

V = I sin 2α

Q

V

U

Figure 1.2.11 Poincare sphere.

We see that I2 = Q2 + U2 + V 2. When the wave is right-hand cir-
cularly polarized Q = U = 0, V = I , as α = π/4. When the
wave is left-hand circularly polarized, Q = U = 0, V = −I , as α =
−π/4. When the wave is linearly polarized, V = 0, as α = 0. With a
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rigorous mathematical derivation, I,Q, U, V can be derived from ex
and ey , and they are called Stokes parameters, which are useful in
characterizing polarized as well as unpolarized electromagnetic waves.

Jules Henri Poincaré (29 April 1854 – 17 July 1912)
Henri Poincaré entered the Ecole Polytechnique in 1873, graduating in

1875, and received his doctorate in mathematics from the University of Paris
in 1879. In 1886 he was appointed to a chair of mathematical physics and
probability at the Sorbonne and also at the Ecole Polytechnique. In 1894, he
published the first of his six papers on algebraic topology.

Example 1.2.4
To facilitate a mathematical discussion of polarization, we decompose

the E vector of a wave into two components perpendicular to the direction
of propagation. For a specific point in space, we write

E(t) = x̂Ex + ŷEy = x̂ex cos(ωt− ψx) + ŷey cos(ωt− ψy) (E1.2.4.1)

where x̂ , ŷ , and the direction of propagation are mutually perpendicular
and thus form an orthogonal system. We assume the amplitudes ey and ex
are both positive. The locus of the tip E(t) is determined by eliminating the
time t dependence between the two components Ex and Ey .

In general, a polarized wave has elliptical polarization; that is, when time
is eliminated from the two components of E , the resultant equation describes
an ellipse. Consider the case ψx = ψ0, ψy −ψx = ±π/2 in (E1.2.4.1) and let
ex = e1 > e2 = ey. We have

E
′
(t) = x̂′E′

x + ŷ′E′
y = x̂′e1 cos(ωt− ψ0) + ŷ′e2 sin(ωt− ψ0) (E1.2.4.2)

with e1 denoting the major axis and e2 the minor axis, we write

tanα =
e2

e1
(E1.2.4.3)

where −π/4 ≤ α ≤ π/4 .
The general polarization states are more popularly described with the

Poincaré sphere as discussed below. Consider the elliptical polarization as
given by (E1.2.4.1), which describes a tilted ellipse as plotted in Fig. 1.2.10.
The major axis of the ellipse described in (E1.2.4.2) is rotated and makes the
angle β with the Eh axis with 0 ≤ β ≤ π. We call β the orientation angle.

In view of (E1.2.4.2) and Fig. 1.2.9, we have from coordinate transfor-
mation

E′
x = Ex cosβ + Ey sinβ

E′
y = −Ex sinβ + Ey cosβ
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leading to

e1 cos(ωt− ψ0) = Ex cosβ + Ey sinβ (E1.2.4.4a)
e2 sin(ωt− ψ0) = −Ex sinβ + Ey cosβ (E1.2.4.4b)

Substituting the components Eh and Ev of (E1.2.4.1) in (E1.2.4.4) and
comparing the coefficients of cosωt and sinωt , we obtain

e1 cosψ0 = ex cosψx cosβ + ey cosψy sinβ (E1.2.4.5a)
e1 sinψ0 = ex sinψx cosβ + ey sinψy sinβ (E1.2.4.5b)
e2 cosψ0 = −ex sinψx sinβ + ey sinψy cosβ (E1.2.4.5c)
e2 sinψ0 = ex cosψx sinβ − ey cosψy cosβ (E1.2.4.5d)

Eliminating ψ0 from (E1.2.4.5a) and (E1.2.4.5b) , we find

e2
1 = e2

x cos2 β + e2
y sin2 β + exey sin 2β cosψ (E1.2.4.6a)

Similarly from (E1.2.4.5c) and (E1.2.4.5d) , we have

e2
2 = e2

x sin2 β + e2
y cos2 β − ehev sin 2β cosψ (E1.2.4.6b)

Multiplying (E1.2.4.5a) by (E1.2.4.5c), (E1.2.4.5b) by (E1.2.4.5d) and then
adding, we again eliminate ψ0 and obtain

e1e2 = exey sinψ (E1.2.4.6c)

Finally we multiply (E1.2.4.5a) by (E1.2.4.5d) and subtract from the prod-
uct of (E1.2.4.5b) and (E1.2.4.5c) , which yields

2exey cosψ = (e2
x − e2

y) tan 2β (E1.2.4.6d)

Equation (E1.2.4.6) will be used in the following discussion on Stokes param-
eters and the Poincaré sphere.

To facilitate the discussion of various polarization states of electromag-
netic waves, the four Stokes parameters pertaining to E(t) given in (E1.2.4.1)
are defined as follows :

I =
1
η

(
e2
x + e2

y

)
(E1.2.4.7a)

Q =
1
η

(
e2
x − e2

y

)
(E1.2.4.7b)

U =
2
η
exey cosψ (E1.2.4.7c)

V =
2
η
exey sinψ (E1.2.4.7d)
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Notice that I2 = Q2 + U2 + V 2.
Adding (E1.2.4.6a) and (E1.2.4.6b) yields e2

1 + e2
2 = e2

x + e2
y = ηI .

Making use of (E1.2.4.3), we have

e2
1 = ηI cos2 α (E1.2.4.8)

Subtracting (E1.2.4.6b) from (E1.2.4.6a) and making use of (E1.2.4.6d) , we
find e2

1 − e2
2 = (e2

x − e2
y)/ cos 2β . Making use of (E1.2.4.3) and (E1.2.4.8) ,

we find

Q =
1
η
(e2

x − e2
y) = I cos 2α cos 2β (E1.2.4.9a)

In terms of I , we find from (E1.2.4.7c) , (E1.2.4.6d) and (E1.2.4.9a)

U = I cos 2α sin 2β (E1.2.4.9b)

and from (E1.2.4.7d) , (E1.2.4.6c) and (E1.2.4.8)

V = I sin 2α (E1.2.4.9c)

Equation (E1.2.4.9) suggests a simple geometrical representation of all states
of polarization by recognizing that Q, U, and V can be regarded as the
rectangular components of a point on a sphere with radius I , known as the
Poincaré sphere. We define, in the spherical coordinate system, θ = π/2−2α
and φ = 2β. As seen from (E1.2.4.3), positive α is for right-hand polariza-
tion which is represented by points on the upper hemisphere. On the lower
hemisphere, the points correspond to left-hand polarization. The north pole
represents right-hand circular polarization and the south pole represents left-
hand circular polarization. The sphere is called the Poincaré sphere. Fig. 1.2.8
is seen to be a planar projection of the Poincaré sphere with the plane and
the sphere touching each other at Q = I. The equator is mapped into the
horizontal axis.

End of Example 1.2.4

Example 1.2.5 Partial polarization.
Radiation from many natural and man-made sources consists of field

components that fluctuate with time. We write

Eh = eh(t) cos
(
ωt− ψh(t)

)
Ev = ev(t) cos

(
ωt− ψv(t)

)
The wave is quasi-monochromatic when eh(t), ev(t), ψh(t), and ψv(t) are
slowly varying compared with cosωt. The Stokes parameters are defined by
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a time-average procedure over a large time interval T , denoted with the
brackets <> :

<E2
h(t)>=

1
T

∫ T

0

dt [Eh(t)]2

The Stokes parameters are

I = Ih + Iv =
1
η

(
<E2

h> + <E2
v >

)
Q = Ih − Iv =

1
η

(
<E2

h> − <E2
v >

)
= I <cos 2α cos 2β>

U =
2
η
<EhEv cosψ>= I <cos 2α sin 2β>

V =
2
η
<EhEv sinψ>= I <sin 2α>

For completely unpolarized waves, Eh and Ev are uncorrelated and we have
I = total Poynting power and Q = U = V = 0. For completely polarized
waves we have I2 = Q2 + U2 + V 2. For partially polarized waves it can be
shown that I2 ≥ Q2 +U2 + V 2 [Example 1.2A.2]. With the Poincaré sphere
of radius I , the partially polarized waves correspond to points inside the
sphere.

In concluding this section on wave polarization, we remark that the po-
larization is defined according to the time variations of the E vector. As we
shall see in Chapter 3, it is imperative that we define polarization in terms of
D when anisotropic and bianisotropic media are involved. This is because in
isotropic media E is perpendicular to k , k · E = 0, while in non-isotropic
media k ·D = 0. This also suggests that wave polarization can be defined in
terms of the field vector B .

End of Example 1.2.5

Problems

P1.2.1
Electromagnetic waves satisfy all of the Maxwell equations. Consider, in

free space, the following electric field vectors:

E1 = x̂ cos(ωt− kz)

E2 = ẑ cos(ωt− kz)

E3 = (x̂ + ẑ) cos(ωt + ky)

E4 = (x̂ + ẑ) cos
(
ωt + k|x + z|/

√
2
)
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Do these electric field vectors satisfy the wave equation and all Maxwell equa-
tions? Which of the four fields qualify as electromagnetic waves? For those
not qualified as electromagnetic waves, state which of the Maxwell equations
are violated.

P1.2.2

The electric field vector

E = x̂E0 cos(kz − ωt)

represents an electromagnetic wave propagating in the +ẑ direction. What
is the expression if the wave is propagating in the −ẑ direction?

P1.2.3

An electromagnetic wave has spatial frequency ko = 100 Ko. Determine
the wavelength in meters and the temporal frequency in GHz.

Determine the spatial frequency in unit of Ko for a laser light at wave-
length λ = 0.6328µm .

Determine the spatial frequency in unit of Ko for a microwave oven at
frequency 2.4 GHz.

P1.2.4

The known spectrum of electromagnetic waves covers a wide range of
frequencies. Electromagnetic phenomena are all described by Maxwell’s equa-
tions and, by convention, are generally classified according to wavelengths or
frequencies. Radio waves, television signals, radar beams, visible light, X rays,
and gamma rays are examples of electromagnetic waves.
(a) Give in meters the wavelengths corresponding to the following frequen-

cies:
(i) 60 Hz
(ii) AM radio (535–1605 kHz)
(iii) FM radio (88–108 MHz)
(iv) Visible light (∼ 1014 Hz)
(v) X-rays (∼ 1018 Hz)

(b) Give in Hertz the temporal frequencies corresponding to the wavelengths:
(i) 1 km, (ii) 1 m, (iii) 1 mm, (iv) 1 µm , (v) 1 Å.

(c) Give in Ko the spatial frequencies corresponding to the wavelengths in
(b).

(d) Give in eV the spatial frequencies corresponding to the wavelengths in
(b).

P1.2.5

Consider the electric field amplitude

Ex(z, t) = E0 cos(kz − ωt)

Find the phase velocity vp = ω/k and the group velocity vg = dω/dk .
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P1.2.6
Consider an electromagnetic wave propagating in the ẑ-direction with

E = x̂ex cos(kz − ωt + ψx) + ŷey cos(kz − ωt + ψy)

where ex , ey , ψx , and ψy are all real numbers.
(a) Let ex = 2, ey = 1, ψx = π/2, ψy = π/4. What is the polarization?
(b) Let ex = 1, ey = ψx = 0. This is a linearly polarized wave. Prove that it

can be expressed as the superposition of a right-hand circularly polarized
wave and a left-hand circularly polarized wave.

(c) Let ex = 1, ψx = π/4, ψy = −π/4, ey = 1. This is a circularly polarized
wave. Prove that it can be decomposed into two linearly polarized waves.

P1.2.7
Wave polarization can be viewed by either taking a series of still pictures

at several fixed times, called the spatial view point or by making observations
at a fixed point in space, called the temporal view point. We define polariza-
tion from the temporal view point. Let us now look at polarization from the
spatial view point.

Consider an electromagnetic wave with k = 100 Ko propagating in the
ẑ direction.

E(r, t) = E0[x̂ cos(kz − ωt)− ŷ sin(kz − ωt)]

What are the wavelength and the polarization of this wave?
From the spatial point of view, by taking a picture at t = 0 , the tips of

the electric field vectors form a helix. Is the helix right-handed or left-handed?
What is the pitch of this helix?

Observing at a fixed point in space, show that the tip of the electric field
describes the same polarization as in the temporal view point when the helix
advances without turning.

P1.2.8
For polarized waves

I = Ih + Iv

Q = Ih − Iv = I cos 2α cos 2β

U = I cos 2α sin 2β

V = I sin 2α

Show that when the wave is right-handed circularly polarized Q = U = 0 and
V = I, when it is left-hand circularly polarized, Q = U = 0 and V = −I,
and when the wave is linearly polarized, V = 0.
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1.3 Force, Power, and Energy

A. Lorentz Force Law

The interaction of the electric and magnetic fields with the current
and charge densities are governed by the Lorentz force law

f = ρE + J ×B (1.3.1)

where f is the force density (with unit N/m3) . The Lorentz force
law relates electromagnetism to mechanics. The manifestation of the
electric field vector E and the magnetic field vector B can be demon-
strated with the forces exerted on the charge density ρ and the current
density J . It can thus be used to define the fields E and B .

Hendrik Antoon Lorentz (18 July 1853 – 4 February 1928)
Hendrik Lorentz entered the University of Leyden in 1870, obtained his

B.Sc. degree in 1871, and in 1875, his doctor’s degree for his thesis on the
reflection and refraction of light. Three years later he was appointed to the
Professor of Physics at Leyden. In 1904 he developed the Lorentz transfor-
mation formula that form the basis for the special theory of relativity .

Example 1.3.1 Coulomb’s law.
For static electric fields in the absence of magnetic fields, the Lorentz

force law becomes f = ρE. Acting on a charged particle q , the total force is
F = qE . Assuming that the electric field E is generated by another charged
particle Q situated at the origin, we have

E = r̂
Q

4πεor2

Thus the total force acting on the charged particle q is

F = r̂
qQ

4πεor2

which is proportional to the squared inverse distance. This is the well-known
Coulomb’s law.

End of Example 1.3.1

Issac Newton (25 December 1642 – 20 March 1727)
Newton attended Cambridge University at the age of 19 and entered

Trinity College in 1661. After receiving his B.A. degree in 1664, he returned
to his birth place Woolsthorpe, England. In the next two years, he extended
the binomial theorem, invented calculus, discovered the law of universal grav-
itation, and experimentally proved that white light is composed of all colors,
all these great accomplishments in scientific history before his 25th birthday.
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Example 1.3.2 Cyclotron frequency.
Consider a particle with charge q and mass m moving with velocity

v in a uniform static magnetic field in the −ẑ direction, B = −ẑB0 . In
the absence of electric fields, if the velocity v has no component in the ẑ
direction, the Lorentz force is perpendicular to the direction of the velocity
and the charge particle moves in the x-y plane. Let v = x̂vx + ŷvy , we have

F = qv ×B = −x̂qvyB0 + ŷqvxB0

Equating to Newton’s law

F = m
dv

dt
= x̂m

dvx
dt

+ ŷm
dvy
dt

we find

m
dvx
dt

= −qvyB0 (E1.3.2.1a)

m
dvy
dt

= qvxB0 (E1.3.2.1b)

Eliminating vy from the above two equations, we find

d2vx
dt2

= −ω2
cvx

where

ωc =
qB0

m
(E1.3.2.2)

x

y

v

Figure E1.3.2.1 Cyclotron frequency.
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is called the cyclotron frequency, which is proportional to the magnitude of
the magnetic field and is independent of the velocity of the particle.

The solution to (E1.3.2.1) can be written as

vx =
dx

dt
= v cosωct (E1.3.2.3a)

vy =
dy

dt
= v sinωct (E1.3.2.3b)

To find the trajectory of the particle, we write the solution of (E1.3.2.3) as

x =
v

ωc
sinωct = R sinωct (E1.3.2.4a)

y = − v

ωc
cosωct = −R cosωct (E1.3.2.4b)

The trajectory of the particle is thus a circle with radius

R = (x2 + y2)1/2 =
v

ωc
(E1.3.2.5)

In terms of the applied magnetic field, we find from (E1.3.2.2)

R =
mv

qB0
(E1.3.2.6)

It is seen that the larger the magnetic field, the smaller the radius. If the
charged particle has a velocity component in the ẑ direction, the trajectory
of the particle will follow a helical path.

End of Example 1.3.2

Exercise 1.3.1 Centrifugal force.
In cylindrical coordinate system, ρ is the radial vector and ρ̂ is in the

radial direction. The force acting on the charge in the above example is

F = x̂m
d2x

dt2
+ ŷm

d2y

dt2
= m

d2

dt2
ρ

= mRω2
c (−x̂ sinωct + ŷ cosωct) = −mω2

c (x̂x + ŷy)

= −mρ̂Rω2
c = −ρ̂mv2

R
(Ex1.3.1.1)

which is equal to the negative of the centrifugal force pointing in the ρ̂ di-
rection, whose magnitude is equal to the Lorentz force ρ̂qvBo .

End of Exercise 1.3.1
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Example 1.3.3 Cyclotron.
A cyclotron [Fig. E1.3.3.1] is an accelerator for charged particles. The

a.c. source provides an alternating voltages at the cyclotron frequency and
a charged particle is repeatedly accelerated every time it passes through the
voltage drop.

Uniform B field

a.c. source

Figure E1.3.3.1 Cyclotron.

End of Example 1.3.3

Example 1.3.4 Isotope separation.
To separate the isotope Uranium 235 from Uranium 238, the isotopes are

first vaporized and then ionized by electric discharge. Accelerated through a
voltage drop V , they acquire a kinetic energy qV = mv2/2 . Passing through
[Fig. E1.3.4.1] a uniform magnetic field, the isotopes move along circular paths
of different radii.

Uniform B field

m235m238 +

−
V

Figure E1.3.4.1 Isotope separation.

R235

R238
=

m235v235

m238v238
=

m235

m238

√
m238

m235
=

√
m235

m238

Thus Uranium 235 can be obtained in a collector with a smaller radius.
End of Example 1.3.4
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Example 1.3.5
The two rods attract each other when their currents are in the same

direction and are repulsive when their currents are in the opposite directions.

I1 I2

FF

I1 I2

F F

Figure E1.3.5.1 Attractive and repulsive forces.

End of Example 1.3.5

Example 1.3.6 Linear motor.
In Fig. E1.3.6.1, we show a sliding bar with length l moving perpendic-

ular to a DC magnetic field B = ẑB0 in the ẑ direction. According to the
Lorentz force law, a force

Fm = ŷIl × ẑB0 = x̂IlB0

is produced that moves the sliding bar in the x̂ direction.

sliding bar

Fm

x

y

V

Figure E1.3.6.1 Linear motor.

If a force is applied to move the sliding bar with velocity v = −x̂ , an
induced voltage V = vlB0 will be generated across the resistor.

End of Example 1.3.6
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Example 1.3.7 Magnetic moment and magnetic torque.
A rectangular loop [Figure E1.3.7.1] carrying a static current I is placed

in a static magnetic field B = x̂B0 . The magnetic moment of the current
loop is M = m̂M . Its direction m̂ follows from the right-hand rule: with the
fingers pointing in the direction of the current, the thumb of the right hand is
pointing in the direction of m̂ . Its magnitude M is equal to the area of the
loop A times the current I , M = AI . If the rectangular loop has lengths
lx and ly , the area of the loop is A = lxly .

B = x̂

x̂

l

ly

B0

I

x

α

F

F

B

M

z

x

Figure E1.3.7.1 Torque on a loop.

The loop is on the x-y plane with two sides aligned with the x-axis and
two sides aligned with the y-axis. Since the static magnetic field is in the x̂
direction, there is no force acting on the two sides with length lx aligned with
the x-axis. The forces acting on the two sides with length ly aligned with the
y axis are in the positive and negative ŷ directions. Thus the loop is rotating
around the y-axis following the right-hand rule; with the fingers pointing in
the direction of the rotation, the thumb of the right hand is pointing in the
ŷ direction.

The torque acting on the loop is calculated as

T =
1
2
lxx̂× (ŷ × x̂IlyB0)−

1
2
lxx̂× (−ŷ × x̂IlyB0) = ŷIAB0

For the current configuration, M = ẑIA and B = x̂B0 . In general, the
magnetic torque is

T = M ×B (E1.3.7.1)

Thus there is no torque acting on the component of M in the direction of
the magnetic field.

End of Example 1.3.7
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Example 1.3.8
A simple DC motor [Fig. E1.3.8.1] consists of a loop of area A with N

turns, called an armature, which is immersed in a uniform magnetic field,
either produced by a permanent magnet or an electromagnet. The armature
is connected to a commutator which is a divided slip ring. A DC current I is
supplied through a pair of brushes resting against the commutator such that
the torque

T = NBoIA sinα

produced by the current on the armature always acts in the same direction.

N S

Bo

α

Brush

Commutator

Armature+−

I

B =

α

F

F

B

M

z

x

α

Figure E1.3.8.1a DC motor.

N S

Brush

Figure E1.3.8.1b Side view of a DC motor.

End of Example 1.3.8
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Alessandro Volta (18 February 1745 – 5 March 1827)
Alessandro Volta was appointed to the chair of physics at the University

of Pavia in 1775. In 1800, Volta built the first electric battery, consisting of
alternating zinc and silver disks separated by layers of paper or cloth soaked
in a solution of either sodium hydroxide or brine, called the ‘voltaic pile’.

Hans Christian Oersted (14 August 1777 – 9 March 1851)
Oersted became a professor at the University of Copenhagen in 1806. In

April 1820, during an evening lecture to a few advanced students, he discov-
ered that a wire connecting the ends of a voltaic battery deflected a magnet
in its vicinity. This discovery was published on 21 July 1820.

Example 1.3.9
In October of 1821, Faraday demonstrated the principle of electric motor

with a dish of mercury. When he connected a battery to form a circuit with
the mercury pool, using a fixed wire carrying current and a dangling magnet
with one end fixed and the other end moving around the surface of the pool
of mercury. Let the magnet be designated as a magnetic moment M placed
in a magnetic field B . The torque acting on the magnet is T = M × B.
Show that the magnet rotates around the wire in a circular trajectory.

Solution:
To find the magnetic field H at the position of the loop due to the

straight wire carrying current I0 in the ẑ direction, we use the integral form
of Ampère’s law,∮

C

H · dl =
∫ 2π

0

Hφd dφ = 2πdHφ =
∫
s

J · ds = I0

which gives the magnetic field B at the loop’s position

B = µ0H = φ̂
I0µ0

2πd

To calculate the torque, we apply,

T = M ×B = ẑ
MI0µ0

2πd

which means that the current loop will move about the z -axis in a counter-
clockwise direction.

End of Example 1.3.9
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B. Lenz’ Law and Electromotive Force (EMF)

We apply Stokes theorem to Faraday’s law and define the line integral
of E as the electromotive force (EMF):

EMF =
∮
C
d l · E = − ∂

∂t

∫∫
dS ·B

= − ∂

∂t
Ψ (1.3.2)

where
Ψ =

∫∫
A
dS ·B (1.3.3)

is the magnetic flux linking a loop with area A bounded by a closed
contour C [Fig. 1.3.1]. Equation (1.3.2) states that the EMF is equal to
the negative time derivative of the magnetic flux linking the loop. Thus
the EMF always produces a flux in the loop to oppose the direction
of change of the flux linking the loop; if Ψ is increasing, the EMF
decreases the flux, and vice versa. This is known as Lenz’ law.

+

−
V

C

Figure 1.3.1 Flux linking a loop.

Heinrich Lenz (12 February 1804 – 10 February 1865)
Heinrich Lenz was scientific assistant at the St. Petersburg Academy of

Science, becoming full Academician in 1834. From 1835 to 1841, he served as
lecturer in physics at the Naval Military School. He was dean of mathematics
and physics (1840–1863) at the University of St. Petersburg. He began his
investigation of electromagnetism in 1831 and in 1833 discovered Lenz’ law,
which is fundamental to electrical machinery.
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Notice that the EMF has unit of voltage (Volt) and not unit of force.
The voltage drop across the loop V is equal to the negative of the
induced EMF.

V = −EMF =
d

dt
Ψ (1.3.4)

Thus in the presence of a time varying magnetic field linking a loop, a
voltage is generated to oppose the time change of the magnetic field.
The voltage generated across the loop V is equal to the negative of
the induced EMF.

LeChatelier’s Principle (Henri Louis Le Chatelier, 8 October 1850 – 17
September 1936) is the chemist’s version of Lenz’ law, which states that when
an external stress (pressure, concentration, or temperature change) is applied
to a chemical system that is in a state of equilibrium, the system will auto-
matically respond so as to undo the stress applied externally.

In Physics, this same phenomenon is embodied in the Third Law of
Motion, that is, for every action there is an equal and opposite reaction. In
biology, a condition in an organism known as homeostasis means that when a
stress is applied to an organism, the organism’s bodily functions automatically
respond so as to remove the stress.

Example 1.3.10 Linear generator.
If a force is applied to move the sliding bar with velocity v = −dx/dt

as shown in Fig. E1.3.10.1, the total magnetic field Ψ = xlBo linking the
loop will be decreasing at the rate of vlB0 . According to Lenz’ law, a current
in the bar must be produced to oppose the decreasing of the magnetic flux.
Thus an induced voltage V = vlB0 is generated across the resistor.

vV

x

y

+

−

sliding bar 

v

x

y

+

−

sliding bar

EMF

Figure E1.3.10.1 Linear generator.

End of Example 1.3.10
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Example 1.3.11 AC generator.
An AC generator can be made of the DC motor by replacing the DC

current source with a load resistance R and providing an external rotatory
force on the armature. Applying a torque that makes the loop turn in the
direction as shown in Fig. E1.3.11.1, a motional EMF

V =
∫

dl · E =
∫

dl · F/q =
∫

dl · v ×B = ωAB sinα

+

−

slip rings

α

α

B

V

M

F

F z

x

Figure E1.3.11.1 AC generator.

is produced. For the armature rotating with an angular frequency ω , we have
v ×B = l̂ωBA sinα and α = ωt .

The same result can be derived by using Lenz’ law

EMF = −dΨ/dt

where

Ψ =
∫∫

A

dS ·B = −AB cosα (E1.3.11.1)

We find the generated AC voltage

V = −EMF = ωAB sinωt

End of Example 1.3.11
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C. Poynting’s Theorem and Poynting Vector

Energy conservation immediately follows from the Maxwell equations.
Dot-multiply Faraday’s law (1.1.2) by H , Ampère’s law (1.1.1) by E
and subtract. By making use of the vector identity ∇ · (E × H) =
H · ∇ × E − E · ∇ ×H , we obtain Poynting’s theorem

∇ · (E ×H) + H · ∂B
∂t

+ E · ∂D
∂t

= −E · J (1.3.5)

The Poynting vector
S = E ×H (1.3.6)

is interpreted as the power flow density with the dimension watts/m2 ,
and H · (∂B/∂t) + E · (∂D/∂t) represents the time rate of change of
the stored electric and magnetic energy density. On the right-hand side
of (1.3.5), −E · J is the power supplied by the current J .

John Henry Poynting (9 September 1852 – 30 March 1914)
John Henry Poynting was educated at Liverpool and Cambridge and

was one of Maxwell’s students. He was professor of physics at Mason Science
College (later the University of Birmingham) from 1880 until his death. In
1884–1885, he established Poynting’s theorem.

Example 1.3.12
Consider the simple wave solution

E = x̂E0 cos(kz − ωt) (E1.3.12.1a)

H = ŷH0 cos(kz − ωt) (E1.3.12.1b)

where H0 = E0/ηo and ηo =
√

µo/εo is called the characteristic impedance
of free space. Substituting (E1.3.12.1) in (1.3.5) we see that Poynting’s theo-
rem is satisfied.

The Poynting vector is calculated to be Poynting’s vector

S = E ×H = ẑ

√
εo
µo

E2
0 cos2(kz − ωt) (E1.3.12.2)

In free space, we find

H · ∂
∂t

(µoH) =
∂

∂t

[1
2
µoH ·H

]
=

∂

∂t
Wm
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and

E · ∂
∂t

(εoE) =
∂

∂t

[1
2
εoE · E

]
=

∂

∂t
We

In the source-free region we also have J = 0 . Poynting’s theorem becomes

∇ · (E ×H) +
∂

∂t
(We + Wm) = 0 (E1.3.12.3)

where

We =
1
2
εo

∣∣E∣∣2 =
1
2
εoE

2
0 cos2(kz − ωt) (E1.3.12.4)

is the stored electric energy density and

Wm =
1
2
µo

∣∣H∣∣2 =
1
2
µoH

2
0 cos2(kz − ωt) (E1.3.12.5)

is the stored magnetic energy density. It is seen that the stored electric energy
is equal to the stored magnetic energy, We = Wm .

End of Example 1.3.12

James Watt (19 January 1736 – 25 August 1819)
James Watt was a Scottish engineer who played an important part in

the development of the steam engine as a practical power source and a key
stimulus to the Industrial Revolution. Watt is the unit of power.

James Prescott Joule (24 December 1818 – 11 October 1889)
Joule attended the University of Manchester in 1835 and in 1840 he

published his paper On the Production of Heat by Voltaic Electricity. He
experimentally verified the law of conservation of energy in his study of the
transfer of mechanical energy into heat energy. Joule is the unit of energy.

William Thomson (Lord Kelvin) (26 June 1824 – 17 December 1907)
At age 22, William Thomson became professor of physics at the Univer-

sity of Glasgow where he remained for 53 years until his retirement in 1899.
He first defined the absolute temperature scale in 1847. In 1851 he published
the paper, ‘On the Dynamical Theory of Heat.’ In 1866 he was Knighted by
Queen Victoria. In 1892 he became Lord Kelvin of Largs. Kelvin is the unit
of absolute temperature.
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Example 1.3.13 Power, energy, force, and radiation pressure.
The time-average Poynting vector power density is given by

<S>=
1
T

∫ T

0

dt S = ẑ
E2

0

2ηo
= ẑ

1
2
ηoH

2
0 = ẑP (E1.3.13.1)

where

P =
E2

0

2ηo
=

1
2
ηoH

2
0

is the power density of the wave with unit of Watts/m2 . The total time-
average electromagnetic energy density (with unit J/m3 ) is equal to the sum
of the electric energy density and the magnetic energy density,

W =<We> + <Wm>=
1
2
εoE

2
0 =

1
2
µoH

2
0 (E1.3.13.2)

We may define an energy velocity ve equal to the ratio of power density to
energy density. We find P/W = ve = 1/

√
µoεo which is the velocity of light.

Radiation pressure is force per unit area F = P/ve (with unit N/m2 ).
Thus the radiation pressure of the wave is

F = P/ve = W =
1
2
εoE

2
0 =

1
2
µoH

2
0 (E1.3.13.3)

which is equal to the time-average total energy density in the wave and acts
in the direction of propagation of the wave. The radiation pressure, although
generally very small, can lead to large scale effects. For example, comet tails
are forced to point away from the Sun due to the radiation pressure from the
Sun.

End of Example 1.3.13

Applying the divergence theorem to Poynting’s theorem (1.3.5),
we write

©
∫∫

S
dS · E ×H = − ∂

∂t

∫∫∫
V
dV

(
1
2
εoE

2 +
1
2
µoH

2

)
−

∫∫∫
V
dV E · J

(1.3.7)
The left-hand side represents power flow out of the surface enclosing
the volume V . The first term on the right-hand side represents the
depletion of the electric energy and the magnetic energy inside the
volume in order to supply the outflow of the Poynting power. The last
term represents the power generated by the source J inside the volume
V .
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Momentum Conservation Theorem
Substituting the Maxwell equations for ρ and J in the Lorentz force
law

f = ρE + J ×B (1.3.8)

we find that

f = − ∂

∂t
(D ×B)−∇ ·

[
1
2
(D · E + B ·H)I −DE −BH

]
(1.3.9)

where I is a unit dyad with diagonal elements equal to 1 and all
off-diagonal elements equal to zero.

The interpretation of the terms is

G = D ×B = momentum density vector (1.3.10)

T =
1
2
(D · E + B ·H)I −DE −BH

= Maxwell stress tensor (1.3.11)

Thus we have the theorem

∇ · T +
∂G

∂t
= −f (1.3.12)

which expresses conservation of momentum. This is in a form similar to
Poynting’s theorem in (1.3.5) except that it is now a vector equation.
In fact, (1.3.5) and (1.3.12) combine to become a four-dimensional
conservation theorem in relativity.

Problems

P1.3.1
According to the classical model of an atom as proposed by Niels Bohr

(1885–1962), electrons revolve around the nucleus in quantized orbits with
radii R = nh̄/mv where n is an integer, m is the electron mass and v is the
electron velocity. Letting the nucleus be a positive charge of Ze , calculate R
by equating the centrifugal force with the Lorentz force. Estimate the radius
for a hydrogen atom with Z = 1 .

P1.3.2
The Earth receives over all frequency bands about 1.5 kW/m2 of power

from the Sun.
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(a) The Earth-Sun distance is 150×109 m . How long does it take the sunlight
to reach the Earth?

(b) The Earth radius is 6400 km. What is the total power received by the
Earth?

(c) The Sun radiates 10−20 W m−2 Hz−1 at 3 GHz. Assuming constant
power level over 1 GHz bandwidth, what is the Poynting power den-
sity and the corresponding electric field amplitude?

P1.3.3
For an electromagnetic wave with electric field with E0 = 3 × 106 V/m

(which is the breakdown electric field strength for air), find the power density
and radiation pressure. What is the area required in order to supply the
electric power of 2.4× 1011 W for use by a nation?

P1.3.4
In cylindrical coordinate system, ρ = ρ̂ρ = x̂x + yy is the radial vector.

Show that the force acting on the charge in Example 1.3.2 is

F = −ρ̂mv2

R

which is equal to the negative of the centrifugal force pointing in the ρ̂ di-
rection, whose magnitude is equal to the Lorentz force ρ̂qvBo .

P1.3.5

x

y

z

a) b)

Bx

y
J}

d
I0

ẑ
-

J
-

0

Figure P1.3.5.1

(a) Consider an infinitely long wire with current I0 flowing along the −ẑ
direction as shown in Fig. P1.3.5.1a. Find the B field at y = d generated
by the current.

(b) Consider a slab of semiconductor with positive charge carriers of density
N so that there is a uniform current density of J = ẑNqv flowing in the
+ẑ direction as shown in Figure P1.3.5.1b. Calculate the force density
F acting on the charges if a static magnetic field B = x̂B0 is applied.

P1.3.6
For a charged particle q moving with velocity v in a constant mag-

netic field B0 , the trajectory is a circle. Set the Lorentz force equal to the
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centrifugal force and derive the cyclotron frequency and the radius of the
circle.

P1.3.7

The solar wind is a high-conductivity plasma which is emitted radially
from the surface of the Sun. Let us calculate the flux of electromagnetic energy
in the solar wind at the orbit of the Earth.

In the plane of the Earth’s orbit, the magnetic field of the Sun is approxi-
mately radial, pointing outward in certain regions and inwards in others. This
field is “frozen” in the high-conductivity plasma. Since the Sun rotates (with
a period of 27 days), and the plasma has a radial velocity, the lines of B are
in fact Archimedes spirals (r = aθ in polar coordinates) and, at the Earth,
they form an angle of about 45◦ with the Sun-Earth direction. This is the
so-called garden hose effect.

At the orbit of the Earth the solar wind has a density of about 107

proton-masses/m3 and a velocity of about 4×105 m/sec , while the magnetic
field of the Sun is about 5× 10−9(webers/m2).

(a) First show that, in an electrically neutral (ρ = 0) and nonmagnetic fluid
of conductivity σ and velocity v , the Maxwell equations become

∇ ·D = 0 ∇ ·B = 0 ∇× E = −∂B

∂t

∇×B = µ0

{
σ(E + v ×B) + ε0

∂E

∂t

}

the polarization currents being negligibly small compared to the conduc-
tion currents. Note that, for an infinite conductivity,

E = −v ×B

This is a satisfactory approximation for the solar wind.

(b) Show that the component of v which is normal to B is vn = 1
B2B ×

(v ×B) , and that the Poynting vector of the solar wind is

S =
B2

µo
vn

Numerically it is approximately equal to 4×10−9 times the average value
of the Poynting vector of the solar radiation, which is about 1.4 kW/m2 .
The Poynting vector of the solar wind is normal to the local B and it
points at an angle of 45◦ away from the Sun-Earth direction.

(c) Compare the relative magnitudes of the kinetic, electric, and magnetic
energy densities. Which is the largest?
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P1.3.8
Particles excited by an electromagnetic wave may be modeled as har-

monic oscillators with a characteristic frequency and damping. For electrons,

∂2x

∂t2
+ δ

∂x

∂t
+ ω2

0x +
qE

m
= 0

which is just an expression for momentum conservation (F = MA) .
(a) Assume δ = 0 . Show that for ω > ω0 (ω is defined as the frequency

of the E-field), the electrons vibrate in phase with the E-field while for
ω < ω0 , they are 180◦ out of phase. Can you explain opacity of certain
substances in terms of this effect? (see Scientific American, Sept. 1968,
p. 60 ff.)

(b) Derive a Poynting theorem and show that

∇ · S +
∂W

∂t
+ PD = 0

S ≡ E ×H (Electromagnetic power density)

Determine W and PD .

P1.3.9
Consider two infinite parallel metal plates separated by a distance d

along the x̂ direction. Initially the system is at rest, and the top plate has
a uniform surface charge density of σ while the bottom plate has a uniform
surface charge density of −σ . At time t = 0 a uniformly decaying magnetic
field is applied parallel to the plane of the plates, that is,

B(t) = ŷB0e
−γt

(a) Calculate the Poynting vector, S , for the system and the momentum
density vector, gf , of the field for t > 0 using the relation,

gf = µ0ε0S

(b) As the magnetic field begins to decay, it will induce an electric field.
By the Lorentz force law, this induced field exerts a force on the two
charged metal plates. Determine the strength and direction of this in-
duced electric field and the resulting force density vector exerted on the
two plates.

(c) From mechanics, the force and momentum vectors are related by

F =
d

dt
p.

Using this relation, calculate the mechanical momentum density vector
that results from the induced electric field.
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(d) As the magnetic field decays, the momentum of the field is transferred to
the plate in the form of mechanical momentum. Using the results of parts
(a) and (c), show that for t > 0 , the total momentum of the system is
conserved.

P1.3.10
The magnetic moment of a particle with charge q at position r with

velocity v is defined as

M =
1
2
qr × v

Show that the magnetic moment of a plane loop with area A carrying current
I is

M = m̂IA

where m̂ is the normal to the plane loop following the right-hand rule: with
the fingers following the direction of the current, the thumb of the right hand
is pointing in the direction of n̂ .

P1.3.11
In mechanics, the classical equations of motion are T = dL/dt , where L

is the angular momentum. The magnetic moment M is analogous to the ex-
pression for the mechanical angular momentum L in terms of the velocity of
mass distributions instead of the charge distributions. The magnetic moment
of a particle with charge q at position r with velocity v is defined as

M =
1
2
qr × v

If the charged particle has mass m , the mechanical angular momentum is

L = mr × v

We set M = γL and called γ the gyromagnetic ratio. From (E1.3.7.1), we
see that applying to the magnetic moment, we have dM/dt = γdL/dt =
γT = γM ×B .
(a) Determine the gyromagnetic ratio γ for the charged particle.

(b) Consider a nucleus with magnetic moment M placed in a dc magnetic
field in the ẑ-direction, B = ẑB0 . The nucleus is precessing about the ẑ
axis. Determine the frequency of precession, which is called the Larmor
frequency.

(c) Place the magnetic moment M of a nucleus precesses in a static mag-
netic field B = x̂x + ẑBz . Show that Bz = B0 − z to satisfy Maxwell
equations.
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(d) When the nucleus is placed on the z axis where x = 0 , B = ẑBz .
Determine the Larmor frequency of precession and show that it is a
function of z .

(e) An induced voltage with the angular frequency ω due to M can be
picked up from an RF (radio frequency) coil placed on the x-z plane.
Assume that the magnetic dipoles are spinning protons of water at room
temperature, with γ = 2.7× 108 T−1s−1. Let there be two protons pre-
cessing on the z axis with a separation of δz . Calculate the difference
of Larmor frequency in kHz of the pick-up coil if δz = 1 mm .

P1.3.12
Consider a loop carrying a current of Il with normal n̂ = x̂ − ŷ is

placed a distance d above a straight wire, which is carrying a current of
I0 . Calculate the magnetic moment of the current loop and the magnetic
field generated by straight wire at the loop’s position. Using these two values,
calculate the torque vector, T , of loop. In what direction does the loop move
due to the torque?

P1.3.13
Joule’s law, Pd = J · E , determines power dissipation per volume due

to Ohmic loss. Derive Joule’s law by using the Lorentz force law, f = ρE ,
and assuming an average constant drifting velocity v due to collision of the
conduction electrons.

P1.3.14
Consider the simple wave solution

E = x̂E0 cos(kz − ωt) (P1.3.14.1a)

H = ŷH0 cos(kz − ωt) (P1.3.14.1b)

where H0 = E0/ηo and ηo =
√

µo/εo is the characteristic impedance of free
space. Substituting (P1.3.14.1) in (1.3.5) to show that Poynting’s theorem is
satisfied. Derive the associated Lorentz force.

P1.3.15
Use Maxwell’s equations to show that for J = 0 and ρ = 0 ,

∂

∂t
(D ×B) +∇ ·

(
WI −DE −BH

)
= 0

where the total stored energy density W =
(
D · E + B ·H

)
/2 . Consider

D = εoE and B = µoH and use index notation.
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1.4 Hertzian Waves

A. Hertzian Dipole

A Hertzian dipole is made of two opposite charges ±q separated by an infinitesimally
small distance �. The dipole moment p = q� has an angular frequency ω such that
each point charge changes from +q to −q and vice versa in a period of 2π/ω.
Mathematically, p is defined as the product of � → 0 and q → ∞ such that p is a
constant. Assume that the two charges are situated at z = ±�/2 on the z-axis [Fig.
1.4.1]. Hertz solved for all the electromagnetic fields with the use of a potential
function known as the Hertzian potential Π

Π =
q�

4πr
cos(kr − ωt) (1.4.1)

+

-

+q

q

x

y

z

Figure 1.4.1 Hertzian dipole.

The solution to the wave equation for Π that Hertz studied for his Hertzian
dipole assumes spherical symmetry. Substituting the Hertian potential Π (1.4.1)
into the wave equation in spherical coordinate system, we find

1

r

∂2

∂r2
(rΠ) − μoεo

∂2

∂t2
Π = 0

and obtain the dispersion relation k2 = ω2μoεo.
——————————————————–

Heinrich Rudolf Hertz (22 February 1857 – 1 January 1894)
Heinrich Rudolf Hertz attended Dresden Polytechnic (1876), University of

Munich (1877), and Berlin Academy (1878–80). He studied under Professors
Hermann von Helmholtz and Gustav Kirchhoff, and his doctoral thesis was on
Electromagnetic Induction in Rotating Conductors. He was employed as an
Assistant to Helmholtz (1880–83) at the Berlin Academy, Privatdozent at the
University of Kiel (1883–85), Professor of Physics at the Karlsruhe Technische
Hochschule (1885–89), and University of Bonn (1889–94).

——————————————————–
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To derive the electromagnetic fields E and H, we write Π = ẑΠ and define a
vector potential A and a scalar potential Φ such that

A = µo
∂Π

∂t
(1.4.2)

Φ = − 1

εo
∇ ·Π (1.4.3)

In terms of Φ and A, the magnetic field H and the electric field E are

H =
1

µo
∇×A (1.4.4)

E = −∂A

∂t
−∇Φ (1.4.5)

Notice that (1.4.4) satisfies Gauss’ law of∇·B = 0 and (1.4.5) follows from Faraday’s
law.

It is seen from (1.4.2) and (1.4.3) that

∇ ·A + µoεo
∂Φ

∂t
= 0 (1.4.6)

which is known as the Lorenz gauge condition relating the scalar and vector
potentials. Making use of (1.4.4), (1.4.5), and (1.4.6), we can derive from Ampère’s
law and Gauss’ law of ∇·D = ρ the following inhomogeneous Helmholtz equations:

∇2A− µoεo
∂2

∂t2
A = −µoJ (1.4.7)

∇2Φ− µoεo
∂2

∂t2
Φ = −ρ/εo (1.4.8)

The Hertzian potential provides a solution to the above equations.

——————————————————–

Ludvig Valentin Lorenz (18 January 1829 – 9 June 1891)
Ludvig Lorenz graduated from the Technical University of Denmark and

taught at the Danish Military Academy. The Lorenz gauge condition and the
retarded potentials were contained in the article ‘On the Identity of the Vibrations
of Light with Electrical Currents’, published in the Philosophical Magazine and
Journal of Science in July–December 1867. In 1869, Lorenz arrived at the result of
a dielectric mixing formula, which was also obtained by H. A. Lorentz in 1878, now
known as the ‘Lorenz-Lorentz’ formula.

——————————————————–
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Example 1.4.1
In spherical coordinates, the unit vectors are [Fig. E1.4.1.1]

r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ

θ̂ = x̂ cos θ cosφ + ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ + ŷ cosφ

ẑ = r̂ cos θ − θ̂ sin θ

φ̂

φ

x

y

z

θ r

θ̂

r̂

θ̂

r̂
ẑ

θ

Figure E1.4.1.1 Unit vectors in spherical coordinates.

The vector del operators in spherical coordinate system are

∇Φ = r̂
∂Φ
∂r

+ θ̂
1
r

∂Φ
∂θ

+ φ̂
1

r sin θ

∂Φ
∂φ

∇ ·A =
1
r2

∂

∂r
(r2Ar) +

1
r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂

∂φ
Aφ

∇×A =
1

r2 sin θ

∣∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂

∂r

∂

∂θ

∂

∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣
∇2Φ =

1
r

∂2

∂r2

[
rΦ

]
+

1
r2 sin θ

∂

∂θ

[
sin θ

∂Φ
∂θ

]
+

1
r2 sin2 θ

∂2Φ
∂φ2

End of Example 1.4.1
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B. Electric and Magnetic Fields

The magnetic field H is obtained from (1.4.7) with

A = µo
∂Π
∂t

= ẑµo
∂Π
∂t

= (r̂ cos θ − θ̂ sin θ)
ωµoq'

4πr
sin(kr − ωt)

H =
1
µo
∇×A =

1
µor2 sin θ

∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θφ̂

∂

∂r

∂

∂θ

∂

∂φ

Ar rAθ 0

∣∣∣∣∣∣∣∣∣
= φ̂

1
µor

[
∂

∂r
(rAθ)−

∂

∂θ
Ar

]

= φ̂
ωkq'

4πr
sin θ

[
1
kr

sin(kr − ωt)− cos(kr − ωt)
]

(1.4.9)

To obtain the electric field E from (1.4.8), noticing that ∂r/∂z =
z/r = cos θ . We find

Φ = − 1
εo

∂Π
∂z

=
k q'

4πεor
cos θ

[
1
kr

cos(kr − ωt) + sin(kr − ωt)
]

E = −∂A

∂t
−∇Φ

= (r̂ cos θ − θ̂ sin θ)
ω2µoq'

4πr
cos(kr − ωt)−

[
r̂
∂Φ
∂r

+ θ̂
1
r

∂Φ
∂θ

]

=
k2q'

4πεor

{
r̂2 cos θ

[
1
kr

sin(kr − ωt) +
1

k2r2
cos(kr − ωt)

]

+ θ̂ sin θ

[
1
kr

sin(kr − ωt) + (
1

k2r2
− 1) cos(kr − ωt)

]}
(1.4.10)

Consider the following special cases:
Case A) When kr � 1 , we are in the far field as r � λ/2π ; or at
a fixed r , the frequency ω = ck � c/r . We only keep terms of the
order of 1/r . The field vectors are

E = −θ̂ k2q'

4πεor
sin θ cos(kr − ωt) (1.4.11)

H = −φ̂ωkq'

4πr
sin θ cos(kr − ωt) (1.4.12)
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It is seen that both H and E are tangent to the surface of a large
sphere with radius r . The field vectors H and E are perpendicular to
each other. As a function of θ , the magnitudes of both the electric and
magnetic fields are proportional to sin θ . We plot the radiation field
pattern in Fig. 1.4.2. The length E is proportional to the magnitude
of the electric field in the direction θ .

z

x+
-

E

θ

Figure 1.4.2 Radiation field pattern.

Case B) For static fields when ω = 0 , k = ω/c = 0 , we find

E =
q'

4πεor3
(r̂2 cos θ + θ̂ sin θ), H = 0 (1.4.13)

There is only electric field for a static dipole.

Case C) In the immediate neighborhood of the dipole, kr → 0 . Keep-
ing terms of the orders 1/r2 , the magnetic field vector is

H = −φ̂ ωq'

4πr2
sin θ sinωt = φ̂

d(q cosωt)
dt

'

4πr2
sin θ = φ̂

I'

4πr2
sin θ

(1.4.14)
This corresponds to the field produced by an element of length ' car-
rying current I along the z axis, and is known as the Biot-Savart
law.

Jean-Baptiste Biot (21 April 1774 – 3 February 1862), professor of math-
ematical physics at the Collège de France since 1800, reported experiments
with his assistant Felix Savart (30 June 1791 – 16 March 1841) following
Orsted’s discovery in April 1820 to the Académie des Sciences in October
1820 which led to the Bior-Savart law. Savart became Professor at the Collège
de France in 1836.
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Example 1.4.2
Apply the Biot-Savart law (1.4.14) to determine the magnetic field of an

infinitely long wire at a distance ρ from the wire. We place the observation
point at (ρ, z) , let ' = dz′ , and integrate (1.4.14) to obtain [Fig. E1.4.2.1]

H = φ̂
1
4π

∫ +∞

−∞
dz′

I sin θ

z′2 + ρ2
(E1.4.2.1)

The integration can be carried out with the substitution z′ = −ρ cot θ . We
find dz′ = ρdθ/ sin2 θ , z′2 + ρ2 = ρ2/ sin2 θ , and (E1.4.2.1) becomes

H = φ̂
1
4π

∫ π

0

dθ
I sin θ

ρ
= φ̂

I

2πρ

ẑ

ρ

dz′

z′
r =

√
z′2 + ρ2

θ

Observation
Point

Figure E1.4.2.1 Integration of current elements in an infinitely long wire.

The above result can also be obtained by applying Stokes’ theorem to
Ampère’s law ∇×H = J .

∮
C

dl ·H =
∫∫

dS · J = I

The integration path for the line integral is a circle of radius ρ around the
line source whose area integral gives rise to the current I . The result is
2πρHφ = I .

End of Example 1.4.2
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C. Electric Field Pattern

To study and sketch the electric and magnetic field lines, Hertz intro-
duced a parameter Q in terms of a radial distance ρ = r sin θ in the
cylindrical coordinate system. We have

Q = ρ
∂Π
∂ρ

= ρ
∂r

∂ρ

∂Π
∂r

= r sin2 θ
∂

∂r

[
q'

4πr
cos(kr − ωt)

]

=
kq'

4π
sin2 θ

[
− sin(kr − ωt)− 1

kr
cos(kr − ωt)

]

∇Q = r̂
∂Q

∂r
+ θ̂

1
r

∂Q

∂θ

= r̂
k2q'

4π
sin2 θ

[
1
kr

sin(kr − ωt) + (
1

k2r2
− 1) cos(kr − ωt)

]

+ θ̂
kq'

2πr
sin θ cos θ

[
− sin(kr − ωt)− 1

kr
cos(kr − ωt)

]

which is the product of two factors, one depends only on θ , and the
other on r and t . From (1.4.9) and (1.4.10), we find

H = φ̂
ωkq'

4πr
sin θ

[
1
kr

sin(kr − ωt)− cos(kr − ωt)
]

(1.4.15)

E =
k2q'

4πεor

{
r̂2 cos θ

[
1
kr

sin(kr − ωt) +
1

k2r2
cos(kr − ωt)

]

+ θ̂ sin θ

[
1
kr

sin(kr − ωt) + (
1

k2r2
− 1) cos(kr − ωt)

]}
(1.4.16)

Thus in terms of Q ,

H = −φ̂1
ρ

∂

∂t
Q

E =
1
εoρ

φ̂×∇Q

The electric field lines on any ρ -z plane are seen to follow the
intersection of Q = constant surfaces with the ρ -z plane. In Fig. 1.4.3,
we plot the electric field lines at different times.
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ωt = 0

ωt = π/2

ωt = π

ωt = 3π/2

Figure 1.4.3 Electric field patterns.
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Example 1.4.3
Consider the radiation field zone when kr � 1 and

Q = −kq'

4π
sin2 θ sin(kr − ωt)

Construct three constant Q surfaces at ωt = −π/2 (or 3π/2) and indicate
the electric field line directions.

Answer: Consider

sin2 θ cos(kr) = c

We sketch the three cases of c = 0, 1
2 , 1 in Fig. E1.4.3.1.

For c = 0, kr = 2mπ ± π
2

For c = 1
2 , kr = 2mπ for θ = ±π

4
kr = 2mπ ± π

3 for θ = π
2

For c = 1, θ = π
2 and kr = 2mπ.

θ = π/4

z

2mπ − π/2 2mπ + π/22mπ

k

kx
c = 1

c = 1/2
c = 0

Eφ̂

∇Q

EEE
φ̂

∇Q

c = 0

2m
π

Figure E1.4.3.1 Radiation field plot.

End of Example 1.4.3
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Example 1.4.4
In the radiation far field of a Hertzian dipole with kr � 1 , the electric

and magnetic fields are

E = −θ̂η ωqk'
4πr

sin θ cos(kr − ωt) (E1.4.4.1)

H = −φ̂ωqk'

4πr
sin θ cos(kr − ωt) (E1.4.4.2)

It is seen that both H and E are tangent to the surface of a large sphere
with radius r . The field vectors H and E are perpendicular to each other
and their magnitudes are related by η = (µo/εo)1/2 .

To investigate the power and energy issues, Hertz invoked Poynting’s
theorem. Poynting’s power density vector S for fields for kr � 1 is

S = E ×H = r̂η

(
ωqk'

4πr

)2

sin2 θ cos2(kr − ωt)

which is seen to be pointing in the r̂-direction away from the large sphere.
We now calculate the time-average power density

<S> =
1
2π

∫ 2π

0

d(ωt) E ×H = r̂
η

2

(
ωqk'

4πr

)2

sin2 θ

The radiation pattern is shown in Fig. E1.4.4.1. The length P is proportional
to the magnitude of the radiated power in the direction θ .

z

x+
-

P

θ

Figure E1.4.4.1 Radiation power pattern.

Integrating the r̂ directed power over the surface of a sphere of radius r
gives

P =©
∫∫

dS r̂· <S>=
4πη
3

(
ωqk'

4π

)2

=
η

12π
(ωqk')2 = 10(ωqk')2 (E1.4.4.3)

Notice that the total time-average power leaving the dipole source can be
calculated with a spherical surface of any radius r , and yields the same
result.

End of Example 1.4.4
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Poynting’s Power Vector for Hertzian Waves
For a Hertzian dipole, the magnetic field H and the electric field

E are

H = φ̂
ωkq'

4πr
sin θ

[
1
kr

sin(kr − ωt)− cos(kr − ωt)
]

(1.4.17)

E = η
ωkq'

4πr

{
r̂2 cos θ

[
1
kr

sin(kr − ωt) +
1

k2r2
cos(kr − ωt)

]

+ θ̂ sin θ

[
1
kr

sin(kr − ωt) + (
1

k2r2
− 1) cos(kr − ωt)

]}
(1.4.18)

The Poynting vector power density is

S = E ×H

= η

(
ωkq'

4πεor

)2 {
−θ̂ sin 2θ

[
(

1
k3r3

− 1
kr

)
1
2

sin 2(kr − ωt)

− 1
k2r2

cos 2(kr − ωt)
]

+ r̂ sin2 θ

[
(

1
k3r3

− 2
kr

)
1
2

sin 2(kr − ωt)

− 1
k2r2

cos 2(kr − ωt) + cos2(kr − ωt)
]}

(1.4.19)

We now calculate the time-average of S . Notice that the time average
of sin 2(kr − ωt) and 2 cos(kr − ωt) is zero, and the time average of
either sin2(kr − ωt) or cos2(kr − ωt) is 1/2 . The above expression,
after integration, is equal to the time-average power density at any
point r .

<S> =
1
2π

∫ 2π

0
d(ωt)E ×H = r̂

η

2

(
ωqk'

4πr

)2

sin2 θ

Integrating the r̂ directed power over the surface of a sphere of radius
r gives [Fig. 1.4.4]

P =©
∫∫

dS r̂· <S>=
∫ 2π

0
dφ

∫ π

0
dθ r2 sin θ

[
η

2

(
ωqk'

4πr

)2

sin2 θ

]

=
∫ π

0
dθ 2πr2 sin3 θ

[
ωk3

2εo

(
q'

4πr

)2
]

=
4πη
3

(
ωqk'

4π

)2

=
η

12π
(ωqk')2
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r sin θ

rdθ

2πr2 sin θdθ

θ

x

y

z

Figure 1.4.4 Integration geometry for time-average power density.

where 2πr2 sin θ is the ribbon-like surface element to be integrated
from θ = 0 to θ = π . Notice that the total time-average power leaving
the dipole source obtained by calculating with a spherical surface with
any radius r is the same.

Example 1.4.5
For a Hertzian dipole, the time average of E ·J is, with J = ẑωq' sinωtδ(r) ,

and as r → 0 ,

<E · J > =
ηk

2
(ωq')2

4πr

{
2 cos2 θ

[
− 1
kr

cos kr +
1

k2r2
sin kr

]

− sin2 θ
[
− 1
kr

cos kr + (
1

k2r2
− 1) sin kr

]}
δ(r)

=
ηk

2
(ωq')2

4πr

{
cos2 θ

[
− 3
kr

(1− k2r2

2
+...)+(

3
k2r2

− 1)(kr− k3r3

6
+...)

]

−
[
− 1
kr

(1− k2r2

2
+ ...) + (

1
k2r2

− 1)(kr − k3r3

6
+ ...)

]}
δ(r)

=
ηk

2
(ωq')2

4πr

{[
2kr
3

]}
δ(r) =

η

12π
(ωqk')2δ(r)

where we have Talor expanded sin kr and cos kr around r = 0 .
End of Example 1.4.5
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Example 1.4.6
For a dipole moment p = q' , the magnetic and electric fields are

H =
ωk

4πr
(p× r̂)

[
1
kr

sin(kr − ωt)− cos(kr − ωt)
]

(E1.4.6.1)

E =
k2

4πεor

{
[(p× r̂)× r̂ + 2r̂(r̂ · p)]

[ 1
k2r2

cos(kr − ωt) +
1
kr

sin(kr − ωt)
]

− [(p× r̂)× r̂] cos(kr − ωt)
}

(E1.4.6.2)

Applying the Biot-Savart law to derive the magnetic field of an infinitely
long wire, we first make use of the first term in (E1.4.6.1) with the same
approximation as for (1.4.14) to obtain

H ≈ ωk

4πr
(p× r̂)

1
kr

sin(−ωt) =
1

4πr2

[
d(q cosωt)

dt
'× r̂

]
=

1
4πr3

(I'× r)

where I is the current and ' denotes the direction and length of the current
element. The vector r = ρ̂ρ + ẑz′ points from the source element to the
observation point.

End of Example 1.4.6

Example 1.4.7
Consider the scattering of electromagnetic waves by particles of size much

smaller than a wavelength, such as sunlight by air molecules. Model the parti-
cle as a small sphere of radius a with an induced dipole moment proportional
to a and the intensity of the illuminating electric field,

ql = 4πεoa3
(

εa − εo
εa + 2εo

)
E0

where εa is the dielectric constant of the air molecule and E0 is the incident
electric field intensity. The total power Ps re-radiated by the particle acting
as a Hertzian dipole is, by virtue of (E1.4.4.3)

Ps =
η

12π
(ωqk')2 =

4π
3η

(
εa − εo
εa + 2εo

)2

k4a6E2
0

The scattering cross-section is defined as

σs =
Ps

E2
0/2η

=
8π
3

(
εa − εo
εa + 2εo

)2

k4a6

This is known as the result of Rayleigh scattering, which has been used to
explain why the sky is blue.

End of Example 1.4.7
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John William Strutt (Lord Rayleigh) (12 November 1842 – 30 June 1919)
entered Trinity College, Cambridge, in 1861, and graduated in 1865. His first
paper in 1865 was on Maxwell’s electromagnetic theory. His theory of scatter-
ing (1871) provided the explanation of why the sky is blue. From 1879–1884 he
succeeded Maxwell as the second Cavendish professor of experimental physics
at Cambridge.

Problems

P1.4.1
The magnetic field H and electric field E of a Hertzian dipole at very

large distances (kr � 1) are

H = −φ̂ωkq'

4πr
sin θ cos(kr − ωt)

E = −θ̂ k2q'

4πεor
sin θ cos(kr − ωt)

(a) Find the Poynting’s power density vector S as a function of time. What
is the time-averaged power density vector

〈
S
〉

?
(b) By integrating the Poynting vector over the surface of a sphere of radius

r , find the time-averaged power P radiated by the Hertzian dipole.
(c) The amplitude of the current in the Hertzian dipole is Io = ωq . By using

P = 1
2I

2
oRrad , find the radiation resistance Rrad of the Hertzian dipole.

(d) A radio station is 15 km away from a city. The transmitting antenna
tower may be modeled as a Hertzian dipole antenna of dipole moment
q' . To maintain the FCC standard of 25 mV/m field strength in the city,
how much radiation power P must be provided?

P1.4.2
Determine the static electric field for a Hertzian dipole oriented in a

general direction p = x̂px + ŷpy + ẑpz , with dipole moment p = q' .

P1.4.3
Sun navigation was first observed in 1911. It was found that some species

of ants, horseshoe crabs, honeybees, etc., are sensitive to polarized light. These
creatures can navigate as long as there is a small patch of blue sky. The sky
polarization depends upon the angle φ between the sun’s rays to a partic-
ular point in the sky and an observer’s line of sight to the same point. The
sunlight, which is unpolarized, or randomly polarized, excites air molecules
which behave like small dipole antennas when irradiated by the incident elec-
tric fields of the sunlight. The scattered electric field Es for each excited
dipole antenna is linearly polarized in planes perpendicular to the sunlight
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path; and looking along the sun ray path the scattered wave is unpolarized,
or randomly polarized.

At sunset, if an ant looks directly at the sun (φ = 0) , what is the
polarization? What is the polarization if the ant looks at the zenith (φ = 90◦)
perpendicular to the sun ray path? Show that the sky light appears to be
partially linearly polarized when it looks at other parts of the sky [Scientific
American, July 1955].

P1.4.4

(a) For the electromagnetic field solution of a Hertzian dipole with dipole
moment p = ql , let k → 0 and show that H = 0 . Determine the
electric field E of a static dipole with k = 0 .

(b) Consider the Rayleigh scattering of electromagnetic waves by particles of
size much smaller than a wavelength, such as sunlight by air molecules.
Model the particle when illuminated with a light wave as an induced
Hertzian dipole with dipole moment p , which is proportional to the
incident field amplitude Eo , and can be expressed as p = poEo . Find
the total power Ps re-radiated by the particle. Find the scattering cross-
section defined by 2ηP/E2

0 . The above result is usually used to explain
why the sky is blue.

P1.4.5

Why is sky blue (but why isn’t it purple?) ?

P1.4.6

(a) Consider an optical fiber with cross section area A . The electromagnetic
wave guided inside the fiber is scattered by the atoms and the molecules
making up the fiber. Since the sizes of the scattering particles are much
smaller than the guided light wavelength, the process can again be de-
scribed by Rayleigh scattering. Assume ε = 2εo , show that the scattered
power from each particle is π

12ηk
4a6E2

o .
(b) Assume the guided light has intensity E0 , wavelength 10−6 m , and

particle radius a = 10−10 m . Find the guided power flow in watts and
the total scattered power of a fiber with a length of 1 km in terms of
the density of the particles inside the fiber N . Calculate the ratio of the
scattered power to the guided power.

(c) Assume the particle density is approximately 3/4πa3 per m3 , estimate,
with the numbers given above, the fiber loss per kilometer (in dB/km)
due to the Rayleigh scattering.

P1.4.7

Two Hertzian dipole antennas are located at (0, 0, 0) and (0, d, 0) with
dipole moments p1 = q1l and p2 = q2l current densities:

J1 = ẑI1δ(x)δ(y)δ(z) and J2 = x̂I2δ(x)δ(y − d)δ(z)

as shown in Figure P1.4.7.1. The two in phase dipoles are oriented in z and
x directions respectively.
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z

θ

x

y

r

J1
J2

d

φ

Figure P1.4.7.1

(a) For the x -oriented dipole, the far field ( r � 1 ) expression of E on the
yz-plane is:

E2 = x̂
k2q2'

4πrε0
cos(k

√
x2 + (y − d)2 + z2 − ωt)

Show that as d�
√

x2 + y2 + z2 = r

E2 = x̂
k2q2'

4πrε0
cos(kr − kd sin θ − ωt)

(b) Find the total far field E on the yz-plane.
(c) Let q1 and q2 be real and positive. On the yz-plane, if the far field E

for θ = 45◦ is circularly polarized,
(i) Find the minimum d in terms of λ .
(ii) What is the ratio of q1/q2 ?
(iii) Specify the handness of the circularly polarized field.

P1.4.8
The Biot-Savart law states that the magnetic field at (r, θ, φ) produced

by an element of length ' at the origin carrying current I along the z axis
is

B = φ̂
µoI'

4πr2
sin θ

Consider a wire with infinite length carrying current I in the direction of
z . Use the Biot-Savart law to show that the magnetic field produced by the
wire is

B = φ̂
µoI

2πρ
where ρ is the distance from the wire. Apply Stokes’ theorem to Ampère’s
law without the displacement term, find B and confirm the above result.

For a high-voltage transmission line carrying current I = 1 kA, find the
magnetic field strength 10 meters away from the wire, and compare with the
earth magnetic field strength which is approximately 5× 10−5 Tesla.
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1.5 Constitutive Relations

Maxwell’s equations govern the behavior of electric field vectors D
and E , magnetic field vectors B and H , and source fields J and ρ .

∇×H =
∂

∂t
D + J (1.5.1)

∇× E = − ∂

∂t
B (1.5.2)

∇ ·D = ρ (1.5.3)

∇ ·B = 0 (1.5.4)

∇ · J = − ∂

∂t
ρ (1.5.5)

Equation (1.5.3) can be derived by taking the divergence of (1.5.1) and
introducing (1.5.5). Similarly, Eq. (1.5.4) is derivable from divergence
of (1.5.2). Giving sources J and ρ satisfying (1.5.5), we have a total
of six independent scalar equations, three from (1.5.1) and three from
(1.5.2), to determine 12 components of the field vectors D , E , H ,
and B . Thus we need six more scalar equations.These are the con-
stitutive relations, which provide a mathematical description of the
electromagnetic properties of all media.

I proposed that we call them bianisotropic media [Kong, 1968]
when material media are characterized by the following constitutive
relations:

D = ε · E + ξ ·H (1.5.6)

B = ζ · E + µ ·H (1.5.7)

where ε, µ, ξ, and ζ are all 3 × 3 matrices. Their elements are
called constitutive parameters. In its most general form, a constitutive
parameter can be cast in the form of integro-differential operators. In
this section, we discuss special cases of the constitutive relations.

The bianisotropic description of material has fundamental impor-
tance from the point of view of relativity. The principle of relativ-
ity requires that all physical laws of nature must be characterized by
mathematical equations that are form-invariant from one observer to
the other. Although the numerical values of the field quantities may
vary from one observer to another, the forms of the Maxwell equations
in (1.5.1) to (1.5.5) are invariant, and so are the bianisotropic form as
expressed in (1.5.6) and (1.5.7) for the constitutive relations.
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A. Isotropic Media

For isotropic media, ξ = ζ = 0 , and µ = µI with I denoting the 3×3
identity matrix. The constitutive relations for an isotropic medium can
be written simply as

D = εE where ε = permittivity (1.5.8)
B = µH where µ = permeability (1.5.9)

By isotropy we mean that the field vector E is parallel to D and
the field vector H is parallel to B. In free space void of any matter,
µ = µo and ε = εo,

µo = 4π × 10−7 henry/meter

εo ≈ 8.85× 10−12 farad/meter

Inside a material medium, the permittivity ε is determined by the
electrical properties of the medium and the permeability µ by the
magnetic properties of the medium.

Example 1.5.1
A dielectric material can be described by a free-space part and a part

that is due to the material alone. The material part can be characterized by
a polarization vector P such that

D = εE = εoE + P (E1.5.1.1)

The polarization P symbolizes the electric dipole moment per unit volume
of the dielectric material. In the presence of an external electric field, the
polarization vector may be caused by induced dipole moments, alignment of
the permanent dipole moments of the medium, or migration of ionic charges.

A magnetic material can also be described by a free-space part and a
part characterized by a magnetization vector M such that

B = µH = µoH + µoM (E1.5.1.2)

A medium is diamagnetic if µ < µo and paramagnetic if µ > µo. Diamag-
netism is caused by induced magnetic moments that tend to oppose the exter-
nally applied magnetic field. Paramagnetism is due to alignment of magnetic
moments. When placed in an inhomogeneous magnetic field, a diamagnetic
material tends to move toward regions of weaker magnetic field, and a para-
magnetic material toward regions of stronger magnetic field. Ferromagnetism
and antiferromagnetism are highly nonlinear effects.

End of Example 1.5.1
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B. Anisotropic Media

For anisotropic media, ξ = ζ = 0 , and the constitutive relations are
usually written as

D = ε · E where ε = permittivity tensor (1.5.10)

B = µ ·H where µ = permeability tensor (1.5.11)

The field vector E is no longer parallel to D, and the field vector
H is no longer parallel to B. A medium is electrically anisotropic if
it is described by the permittivity tensor ε and a scalar permeability
µ , and magnetically anisotropic if it is described by the permeability
tensor µ and a scalar permittivity ε. Note that a medium can be both
electrically and magnetically anisotropic as described by both ε and
µ in (1.5.10) and (1.5.11).

Crystals are described in general by symmetric permittivity ten-
sors. There always exists a coordinate transformation that transforms
a symmetric matrix into a diagonal matrix. In this coordinate system,
called the principal system,

ε =


 εx 0 0

0 εy 0
0 0 εz


 (1.5.12)

The three coordinate axes are referred to as the principal axes of the
crystal. For cubic crystals, εx = εy = εz and they are isotropic. In
tetragonal, hexagonal, and rhombohedral crystals, two of the three
parameters are equal. Such crystals are uniaxial. Here there is a two-
dimensional degeneracy; the principal axis that exhibits this anisotropy
is called the optic axis. For a uniaxial crystal with

ε =


 ε 0 0

0 ε 0
0 0 εz


 (1.5.13)

the z axis is the optic axis. The crystal is positive uniaxial if εz > ε ;
it is negative uniaxial if εz < ε. In orthorhombic, monoclinic, and
triclinic crystals, all three crystallographic axes are unequal. We have
εx �= εy �= εz, and the medium is biaxial.
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C. Bianisotropic Media

For isotropic or anisotropic media, the constitutive relations relate the
two electric field vectors and the two magnetic field vectors by either
a scalar or a tensor. Such media become polarized when placed in an
electric field and become magnetized when placed in a magnetic field. A
bianisotropic medium provides the cross-coupling between the electric
and magnetic fields. When placed in an electric or a magnetic field,
a bianisotropic medium becomes both polarized and magnetized. The
constitutive relations for a bianisotropic medium take the form

D = ε · E + ξ ·H (1.5.14a)

B = ζ · E + µ ·H (1.5.14b)

where D depends on both E and H , and so does B .

Magnetoelectric Media
Magnetoelectric materials, theoretically predicted by Dzyaloshin-

skii, and Landau and Lifshitz [1960], were observed experimentally in
1960 by Astrov [1960] in antiferromagnetic chromium oxide. The con-
stitutive relations that Dzyaloshinskii proposed for chromium oxide
have the following form:

D =


 ε 0 0

0 ε 0
0 0 εz


 · E +


 ξ 0 0

0 ξ 0
0 0 ξz


 ·H (1.5.15a)

B =


 ξ 0 0

0 ξ 0
0 0 ξz


 · E +


µ 0 0

0 µ 0
0 0 µz


 ·H (1.5.15b)

It was then shown by Indenbom [1960] and by Birss [1963] that 58
magnetic crystal classes can exhibit the magnetoelectric effect. Rado
[1964] proved that the effect is not restricted to antiferromagnetics;
ferromagnetic gallium iron oxide is also magnetoelectric.

Moving Media
Media in motion were the first bianisotropic media to receive at-

tention in electromagnetic theory. In 1888, Wilhelm Röentgen (1845–
1923) discovered that a moving dielectric becomes magnetized when it
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is placed in an electric field. In 1905, H. A. Wilson showed that a mov-
ing dielectric in a uniform magnetic field becomes electrically polarized.
Almost any medium becomes bianisotropic when it is in motion.

D. Biisotropic Media

Tellegen Media
In 1948, the gyrator was introduced by B. D. H. Tellegen as a new

element, in addition to the resistor, the capacitor, the inductor, and
the ideal transformer, for describing a network. To realize his new net-
work element, Tellegen conceived of a medium possessing constitutive
relations of the form

D = εE + τH (1.5.16a)

B = τE + µH (1.5.16b)

where τ2/µε is nearly equal to 1. Tellegen considered that the model
of the medium had elements possessing permanent electric and mag-
netic dipoles parallel or antiparallel to each other, so that an applied
electric field that aligns the electric dipoles simultaneously aligns the
magnetic dipoles; and a magnetic field that aligns the magnetic dipoles
simultaneously aligns the electric dipoles. Tellegen also wrote general
constitutive relations (1.5.14) and examined the symmetry properties
by energy conservation.

Chiral Media
Chiral media, which include many classes of sugar solutions, amino

acids, DNA, and natural substances have the following constitutive
relations

D = εE + χ
∂H

∂t
(1.5.17a)

B = µH − χ
∂E

∂t
(1.5.17b)

where χ is the chiral parameter. Media characterized by the constitu-
tive relations (1.5.16) and (1.5.17) are biisotropic media.
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E. Constitutive Matrices

Constitutive relations in the most general form can be written as

cD = P · E + L · cB (1.5.18a)

H = M · E + Q · cB (1.5.18b)

where c = 3×108 m/s is the velocity of light in vacuum, and P , Q, L,

and M are all 3×3 matrices. Their elements are called constitutive pa-
rameters. In the definition of the constitutive relations, the constitutive
matrices L and M relate electric and magnetic fields. When L and
M are not identically zero, the medium is bianisotropic. When there
is no coupling between electric and magnetic fields, L = M = 0 and
the medium is anisotropic. For an anisotropic medium, if P = cεI and
Q = (1/cµ)I with I denoting the 3 × 3 unit matrix, the medium is
isotropic. The reason that we write constitutive relations in the present
form is based on relativistic considerations. First, the fields E and cB
form a single tensor in four-dimensional space, and so do cD and H.
Second, constitutive relations written in the form (1.5.18) are Lorentz-
covariant. These aspects will be discussed in Chapter 8.

Equation (1.5.18) can be rewritten in the form

[
cD
H

]
= C ·

[
E
cB

]
(1.5.19a)

and C is a 6× 6 constitutive matrix:

C =
[
P L
M Q

]
(1.5.19b)

which has the dimension of admittance.
The constitutive matrix C may be a function of space-time coordi-

nates, thermodynamical and continuum-mechanical variables, or elec-
tromagnetic field strengths. According to the functional dependence
of C, we can classify the various media as (i) inhomogeneous if C is
a function of space coordinates, (ii) nonstationary if C is a function
of time, (iii) time-dispersive if C contains time derivatives, (iv) spa-
tially dispersive if C contains spatial derivatives, (v) nonlinear if C
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depends on the electromagnetic field, and so forth. In the general case
C may be a function of integro-differential operators and coupled to
fundamental equations of other physical disciplines.

We have defined constitutive relations by expressing D and H in
terms of E and B. We may also express constitutive relations in the
form of D and B as a function of E and H :[

D
B

]
= CEH ·

[
E
H

]
(1.5.20a)

where in view of (1.5.14) and (1.5.18),

CEH =

[
ε ξ

ζ µ

]
=

1
c

[
P − L ·Q

−1
·M L ·Q

−1

−Q
−1
·M Q

−1

]
(1.5.20b)

Here CEH is the constitutive matrix under EH representation.
To express E and H in terms of B and D, we write[

E
H

]
= CDB ·

[
D
B

]
(1.5.21a)

where

CDB =
[
κ χ

γ ν

]
= c

[
P

−1
−P

−1
· L

M · P
−1

Q−M · P
−1
· L

]
(1.5.21b)

In terms of parameters in EH representation, we find

κ =
[
ε− ξ · µ−1 · ζ

]−1

χ = −κ · ξ · µ−1

ν =
[
µ− ζ · ε−1 · ξ

]−1

γ = −ν · ζ · ε−1

Here CDB is the constitutive matrix under DB representation. The
other possible construction for expressing E and B in terms of H and
D is not shown because it will not be needed in later developments.
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Problems

P1.5.1
For each of the following constitutive relations, state whether the given

medium is
(1) Isotropic/anisotropic/bianisotropic,
(2) Linear/nonlinear,
(3) Spatially/temporally dispersive,
(4) Homogeneous/inhomogeneous.

(a) Cholesteric liquid crystals can be modeled by a spiral structure with
constitutive relations given by

D =

 ε(1 + δ cosKz) εδ sinKz 0
εδ sinKz ε(1− δ cosKz) 0

0 0 εz

 · E
where the spiral direction is along the z axis.

(b) In view of the optical activities in quartz crystals, the constitutive rela-
tion for a quartz crystal is phenomenologically described as

Ej = κijDi +
1

µoεo
Gij

∂

∂t
Bi

Hj =
1
µo

Bj −
1

µoεo
Gij

∂

∂t
Di

(c) When a magnetic field B0 is applied to a conductor carrying a current,
an electric field E is developed. This is called the Hall effect, discovered
by Edwin Herbert Hall in 1879 while he was a graduate student at the
Johns Hopkins University. Assuming the conduction carrier drifts with
a mean velocity v proportional to RσE, the constitutive relation that
takes care of the Hall effect is given by

J = σ
(
E + RσE ×B0

)
where σ is the conductivity and R is the Hall coefficient. For copper,
σ ≈ 6.7× 107 mho/m and R ≈ −5.5× 10−11 m3/coul .

(d) The phenomenon of natural optical activity can be explained with the
use of the constitutive relation

Di = εijEj + γijk
∂Ej

∂xk

where εij and γijk are functions of frequency and γijk = −γjik.
(e) The phenomenon of pyroelectricity in a crystal is observed when it is

heated. The constitutive relation for a pyroelectric material can be writ-
ten as

D = D0 + ε · E
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where a spontaneous term D0 exists even in the absence of an external
field.

(f) The phenomenon in which dipole moments are induced in a crystal by
mechanical stress is called piezoelectricity. A piezoelectric material is
characterized by a piezoelectric tensor γi,kl = γi,lk such that

Di = D0i + εikEk + γi,klskl

where skl is the stress tensor to second order in electric fields. All pyro-
electric media are also piezoelectric.

(g) An isotropic dielectric can exhibit the Kerr effect when placed in an
electric field. In this case the permittivity can be written as

εij = εδij + σEiEj

where ε is the unperturbed permittivity. The principal axis of εij coin-
cides with the electric field.

(h) In an electrooptical material that exhibits Pockel’s effect, the constitutive
relation can be written as

Di = εijEj + σijkEjEk

where σijk = σjik is a third-rank tensor symmetrical in i and j, and
therefore has 18 independent elements.

P1.5.2
Similar to the expression of the constitutive relation D = ε·E = εoE+P ,

the constitutive relation B = µ · H can also be represented in terms of a
“free-space” part µoH and a magnetization vector M such that

B = µoH + µoM

Notice that while P has the same dimension as D , M has the same dimen-
sion as H .

In the case of media possessing permanent moments, the polarization P
and the magnetization M are given classically by the Langevin equation

L(x) = cothx− 1
x

For a paramagnetic material with magnetic moments Nm,

M = NmL

(
mH

kT

)

where k = 1.38 × 10−23 joule/kelvin is Boltzmann’s constant, and T is the
absolute temperature in kelvins. Show that in the low-field limit, since mH �
kT , the medium is linear.
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1.6 Boundary Conditions

A. Continuity of Electric and Magnetic Field Components

Assume that there is a plane boundary surface at z = 0 separating Regions 1 and 2,
we can derive the boundary condition for H by using a small pill-box [Fig. 1.6.1] and
letting Δz go to zero. As across the boundary, field amplitudes may be discontinuous
while on the x-y plane they are not varying much. We thus ignore partial derivatives
with respect to x and y, and keep only partial derivatives with respect to z. We
find that

∇× H =
∂

∂z

{
ẑ × H

}

= lim
Δz→0

1

Δz

{
ẑ ×

[
H(x0, y0, z0 +

Δz

2
) − H(x0, y0, z0 − Δz

2
)

]}

= lim
Δz→0

1

Δz

{
ẑ ×

[
H1 − H2

]}
(1.6.1)

where H(x0, y0, z0 + Δz
2

) = H2 is in region 2, and H(x0, y0, z0 − Δz
2

) = H1 is in
region 1.

Region 1

Region 2

x

y1

2
z

dS = dSs

Figure 1.6.1 Small pill-box volume.

From Ampère’s law, letting the surface normal n̂ = ẑ, we find

n̂ × (H1 − H2) = lim
Δz→0

Δz

{
∂D

∂t
+ J

}
(1.6.2)
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Assume that the time derivative of D , ∂D
∂t and the vector current

density J are both finite, we obtain from (1.6.2) H1y = H2y;H1x =
H2x or that

n̂× (H1 −H2) = 0 (1.6.3)

Thus the tangential components of the magnetic field H are continu-
ous across the boundary surface.

Similar derivations apply to the electric field components. From
Faraday’s law across the boundary, we conclude that

n̂× (E1 − E2) = 0 (1.6.4)

Thus the tangential components of the electric field E are continuous
across the boundary surface.

Letting ∆z go to zero by using the small pill-box in [Fig. 1.6.1],
we find from Gauss’ law

∇ ·D = lim
∆z→0

1
∆z

[
Dz(x0, y0, z0 +

∆z

2
)−Dz(x0, y0, z0 −

∆z

2
)
]

= lim
∆z→0

1
∆z

[
ẑ · (D1 −D2)

]
(1.6.5)

where Dz(x0, y0, z0 + ∆z
2 ) = D1z and Dz(x0, y0, z0 − ∆z

2 ) = D2z . We
find

n̂ · (D1 −D2) = lim
∆z→0

ρ ∆z (1.6.6)

Assume that the charge density is finite across the boundary, we find

n̂ · (D1 −D2) = 0 (1.6.7)

Thus the normal components of the electric field D are continuous
across the boundary surface.

Similarly from Gauss’ law ∇ ·B = 0 , we find

n̂ · (B1 −B2) = 0 (1.6.8)

The normal component of the magnetic field B is continuous across
the boundary surface. The magnetic field H is continuous.
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B. Surface Charge and Current Densities

It is often convenient, in particular mathematically, to define re-
gions where the electric and magnetic fields are zero. The media occu-
pying such regions are called perfect conductors, which are idealizations
of media where the fields inside are vanishingly small. We assume that
all fields in Region 2 are zero, E2 = H2 = B2 = D2 = 0 .

Electric charges and currents are located primarily in a very thin
layer on the surface of perfect conductors. Thus on the surface of per-
fect conductors, we assume ρ is infinite contained in a zero thickness.
We may define a surface charge density

ρs = lim
∆z→0

ρ∆z

which is finite and has dimension coulombs/m2 . The concept of sur-
face charge density will have very practical usefulness. As D2 = 0 ,
Equation (1.6.6) becomes

ρs = n̂ ·D1 (1.6.9)

Thus the difference between the D field components normal to the
boundary surface is equal to the surface charge density at the boundary
surface.

On the right hand side of (1.6.2), the time derivatives ∂Dx/∂t
and ∂Dy/∂t are finite but we may assume Jx and Jy to be infinite
to create a surface current density Js when ∆z → 0 :

Js = lim
∆z→0
J→∞

J ∆z (1.6.10)

We obtain from (1.6.1), as H2 = 0 ,

Js = n̂×H1 (1.6.11)

Thus the discontinuity in the tangential components of H is equal to
the surface current at the boundary surface.

The boundary conditions (1.6.8) and (1.6.4) remain unchanged,

n̂× E1 =0

n̂ ·B1 =0

the normal component of the magnetic field B and the tangential
components of the electric field E are continuous.
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C. Boundary Conditions

The Maxwell equations have been written in differential form. They
must be supplemented with boundary conditions and initial conditions
wherever derivatives do not exist. The boundary conditions can be
derived from either the differential form or the integral form of the
Maxwell equations. The field vectors E, B, D , and H are assumed
to be finite but may be discontinuous across the boundary. The volume
current and charge densities J and ρ , however, may be infinite, such
as on the surface of a perfect conductor, where we can define the surface
current density Js = δJ in the limit as δ → 0 and J →∞ ,

Js = lim
δ→0
J→∞

J δ (1.6.12)

and the surface charge density ρs = δρ in the limit as δ → 0 and
ρ→∞

ρs = lim
δ→0
ρ→∞

ρ δ (1.6.13)

The surface current density has dimension amp/m and the surface
charge density has dimension coul/m2.

For a stationary boundary separating regions 1 and 2, we let the
surface normal n̂ point from region 2 to region 1. The boundary con-
ditions are as follows:

n̂× (E1 − E2) = 0 (1.6.14)

n̂× (H1 −H2) = Js (1.6.15)

n̂ · (B1 −B2) = 0 (1.6.16)

n̂ · (D1 −D2) = ρs (1.6.17)

where subscripts 1 and 2 denote fields in regions 1 and 2, respectively.
Essentially the boundary conditions state that the tangential compo-
nents of E and the normal components of B are continuous across
the boundary; the discontinuity of the tangential components of H is
equal to the surface current density Js ; and the discontinuity of the
normal components of D is equal to the surface charge density ρs .



94 1. Fundamentals

Example 1.6.1 Derivation of boundary conditions.
We now derive the boundary conditions by using integral formulas. First

we consider the integration of a vector field A over a volume V enclosed by
a surface S with surface normal ŝ . The following formulas are useful:∫∫∫

dV ∇ ·A =©
∫∫

dS ŝ ·A (E1.6.1.1a)∫∫∫
dV ∇×A =©

∫∫
dS ŝ×A (E1.6.1.1b)

where (E1.6.1.1a) is the familiar Gauss’ theorem which relates integration
of the divergence of the vector field A over the volume V to the integra-
tion of the field over the surface S enclosing V . Equation (E1.6.1.1b) is
derived from (E1.6.1.1a) by noting that ∇ · (C × A) = −C · ∇ × A where
C is a constant vector independent of position. Applying the Gauss’ theorem
(E1.6.1.1a) to ∇ · (C ×A) , we obtain

−C ·
∫∫∫

dV ∇×A =©
∫∫

dS ŝ · C ×A = −C · ©
∫∫

dS ŝ×A

This is seen to be (E1.6.1.1b) dot-multiplied by C on both sides. Letting C
be an arbitrary vector, the result is then (E1.6.1.1b) .

δ

region 1

region 2

ŝ

ŝ

ŝ

a

ˆ

ˆ

ˆ

Figure E1.6.1.1 Pillbox for derivation of boundary conditions.

Now consider an interface separating regions 1 and 2 [Fig. E1.6.1.1]. As-
sume a small pillbox volume across the interface. Integrating Maxwell equa-
tions over the volume and applying (E1.6.1.1), we obtain
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©
∫∫

dS ŝ× E = −
∫∫∫

dV
∂

∂t
B (E1.6.1.2)

©
∫∫

dS ŝ×H =
∫∫∫

dV
∂

∂t
D +

∫∫∫
dV J (E1.6.1.3)

©
∫∫

dS ŝ ·B = 0 (E1.6.1.4)

©
∫∫

dS ŝ ·D =
∫∫∫

dV ρ (E1.6.1.5)

These are the Maxwell equations in integral form, which will be used to derive
boundary conditions for both stationary and moving boundaries.

If we assume that the boundary surface is not in motion, then for the
terms involving partial derivatives with time, ∂/∂t can be moved to the
outside of the integral. Since the integration is over the volume, the result is
a function of time only, and the partial derivatives become total derivatives.
Therefore, for stationary boundary surfaces, the Maxwell equations in integral
form become

©
∫∫

dS ŝ× E = − d

dt

∫∫∫
dV B (E1.6.1.6)

©
∫∫

dS ŝ×H =
d

dt

∫∫∫
dV D +

∫∫∫
dV J (E1.6.1.7)

©
∫∫

dS ŝ ·B = 0 (E1.6.1.8)

©
∫∫

dS ŝ ·D =
∫∫∫

dV ρ (E1.6.1.9)

Now we let the volume of the pillbox approach zero in such a manner
that the thickness of the ribbon side, δ , goes to zero before the top and
bottom areas a shrink to a point. We dispose of terms of the order of δ .

We see that the terms involving time derivatives in (E1.6.1.6) and
(E1.6.1.7) drop out because they are proportional to δ . We then consider the
right-hand sides of (E1.6.1.7) and (E1.6.1.9) which become δaJ and δaρ ,

respectively. If J and ρ are finite, both terms will be zero because they are
proportional to δ . When there are surface charges and currents at the bound-
ary, the right-hand sides of (E1.6.1.7) and (E1.6.1.9) become aJs and aρs .
We then see that the surface integral terms involving cross and dot products
will be dropped except when ŝ is in the directions n̂ or −n̂ . After canceling
a on both sides of the equations, we obtain from (E1.6.1.6)–(E1.6.1.9) the
boundary conditions (1.6.14)–(1.6.17).

End of Example 1.6.1
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Example 1.6.2
Consider an electromagnetic wave with

Ei = x̂E0 cos(kz − ωt) (E1.6.2.1a)

Hi = ŷH0 cos(kz − ωt) (E1.6.2.1b)

impinging upon the surface of a perfectly conducting surface [Fig. E1.6.2.1].
The boundary condition at the surface of the boundary requires that

n̂× (E1 − E2) = 0 (E1.6.2.2a)

n̂× (H1 −H2) = Js (E1.6.2.2b)

where n̂ = −ẑ is the normal to the surface. A perfect conductor is defined
to have fields zero inside, thus E2 = H2 = 0 .

z

Js

n̂ = −ẑ E = H = 0

H

Perfect conductor

F

x

y

z ≥ 0Ei

Hi

Er

Hr

incident reflected

Figure E1.6.2.1 Reflection by a perfect conductor.

The reflected wave that satisfies the boundary conditions (E1.6.2.2) is

Er = −x̂E0 cos(kz + ωt) (E1.6.2.3a)

Hr = ŷH0 cos(kz + ωt) (E1.6.2.3b)

which is propagating in the −ẑ direction. The surface current Js at z = 0
is found to be

Js = n̂× [(Hi + Hr)− 0]z=0 = x̂2H0 cosωt

The magnetic field at z = 0 is B = µo(Hi + Hr) = ŷ2µoH0 cosωt . From
the Lorentz force law, the force density acting on Js is

F =
1
2
Js ×B = ẑ2µoH

2
0 cos2 ωt
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The factor 1/2 is due to the fact that there is magnetic field only on one side
of the current sheet. The time-average value is thus

F = µoH
2
0

which is twice the value of the incident radiation pressure in Example 1.3.13.
This is because the reflected wave is in the −ẑ direction, and it exerts a
recoil force on the conductor when it launches the reflected wave.

End of Example 1.6.2

Problems

P1.6.1
Derive boundary conditions for E and H by applying Stokes’ theorem

to [P1.6.1.1].

dl

−dl

region 2

δ

2

dS = ŝ dS

ˆ

region 1

n̂

Figure P1.6.1.1 Derivation of boundary condition with Stokes’ theorem.

P1.6.2
Derive the boundary conditions for H by applying the curl theorem

to a small pill-box volume on the x-y plane which has an area A and an
infinitesimal thickness ∆z .

P1.6.3
Applying the divergence theorem (1.1.19) and integrating over the pillbox

volume in Fig. E1.6.1.1 with area a and circumferential length l to find
boundary condition for D .
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1.7 Reflection and Guidance

A. Wave Vector k

The electric field E(r, t) is governed by the Helmholtz wave equa-
tion. (

∇2 − µε
∂2

∂t2

)
E(r, t) = 0 (1.7.1)

with

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.7.2)

as the Laplacian operator ∇2 in rectangular coordinate system.
Consider the solution

E(r, t) = E cos (kxx + kyy + kzz − ωt) (1.7.3)

where E is a constant vector. The electric field vector in (1.7.3) rep-
resents a linearly polarized wave. Since a general polarization can be
expressed as a combination of two linear polarizations, the following
analysis applies to all polarizations.

Substituting (1.7.3) into (1.7.1), we obtain the dispersion relation

k2
x + k2

y + k2
z = ω2µε = k2 (1.7.4)

We define a vector
k = x̂kx + ŷky + ẑkz (1.7.5)

The vector k is called the wave vector, the propagation vector, or
simply the k vector. By virtue of the dispersion relation (1.7.4), we
see that the magnitude of the k vector is equal to ω(µε)1/2 .

The scalar product of the wave vector k = x̂kx + ŷky + ẑkz and
the position vector r = x̂x + ŷy + ẑz gives

k · r = kxx + kyy + kzz

A constant phase front is determined by k · r = constant , which indi-
cates that the front is a plane perpendicular to the k vector [Fig. 1.7.1].
The phase front is a plane and the amplitude of the electric field on
the plane is a constant. We call the solution in (1.7.3) a uniform plane
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a1 a2

k

r1

r2

constant
phase
front

k · r1 = kr1 cos a1

= kr2 cos a2

= k · r

1

x

z

Figure 1.7.1 Constant phase fronts of a plane wave.

wave. A plane wave is non-uniform if its phase front is a plane but the
amplitudes of the field are not constant. Since the constant phase front
must be perpendicular to k at all times, we conclude that this phase
front propagates in the direction of k .

B. Reflection and Transmission of TE Waves

Consider a plane wave incident from a medium with permittivity ε0
and permeability µ0 upon a dielectric medium with permittivity εt
and permeability µ0 . The boundary surface of the two media is situ-
ated at x = 0 . Let the incident plane wave be linearly polarized with
the electric field vector in the ŷ direction [Fig. 1.7.2].

We call the x-z plane the plane of incidence, which is formally
defined as the plane formed by the normal to the boundary surface
and the incident wave vector k . The incident electric field vector Ei

is perpendicular to the plane of incidence and the magnetic field vector
H i is parallel to the plane of incidence. We call the incident wave a
transverse electric (TE) wave. The TE wave is also called perpendic-
ularly polarized, horizontally polarized, or simply the E wave or s
wave.

An incident wave of general polarization can be decomposed into
two linearly polarized waves; one with the electric field vector perpen-
dicular to the plane of incidence which is the TE wave, and one with
the electric field vector parallel to the plane of incidence which is called
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Region 0 Region t

µ0, ε0 µt, εt

Er

Ei

Et

H i

Hr

Ht

θi

θr θt

z

x

kr kt

k

Figure 1.7.2 Reflection and transmission of TE waves at a plane boundary
separating Regions 0 and t .

the transverse magnetic (TM) wave. The TM wave will have the mag-
netic field vector perpendicular to the plane of incidence and is also
called parallelly polarized, vertically polarized, or simply the H wave
or p wave. We shall first study the case of TE wave incidence.

The incident electric field vector is assumed to have unit amplitude
and is written as

Ei(r, t) = ŷ cos(k · r − ωt)
= ŷ cos(kxx + kzz − ωt) (1.7.6a)

with the wave vector
k = x̂kx + ẑkz

The magnetic field vector

H i(r, t) =
1

ωµ0
(−x̂kz + ẑkx) cos(kxx + kzz − ωt) (1.7.6b)

The Poynting vector power density for the incident plane wave is

Si(r, t) = Ei(r, t)×H i(r, t)

= k
1

ωµ0
cos2(kxx + kzz − ωt) (1.7.6c)
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which is in the direction of the wave vector k .
The reflected fields for the incident TE wave are

kr = −x̂krx + ẑkrz (1.7.7a)

Er(r, t) = ŷR cos(−krxx + krzz − ωt) (1.7.7b)

Hr(r, t) = − 1
ωµ0

(x̂krz + ẑkrx)R cos(kxx + kzz − ωt) (1.7.7c)

The Poynting vector power density for the reflected plane wave is

Sr(r, t) = kr
R2

ωµ0
cos2(krxx + krzz − ωt) (1.7.7d)

where R is the reflection coefficient for the electric field component.
The incident wave vector k = x̂kx + ẑkz and the reflected wave

vector kr = −x̂krx + ẑkrz are governed by the dispersion relations

k2
x + k2

z = ω2µ0ε0 = k2 (1.7.8)

k2
rx + k2

rz = ω2µ0ε0 = k2
r (1.7.9)

This is seen by substituting (1.7.6a) and (1.7.7a) in the Helmholtz wave
equations for Eiy and Ery .

In Region t , we write the transmitted TE wave solution in the
following form

kt = x̂ktx + ẑktz (1.7.10a)

Et(r, t) = ŷT cos(ktxx + ktzz − ωt) (1.7.10b)

Ht(r, t) =
T

ωµt
(−x̂ktz + ẑktx) cos(ktxx + ktzz − ωt) (1.7.7c)

St(r, t) = kt
T 2

ωµt
cos2(kxx + kzz − ωt) (1.7.7d)

where T is the transmission coefficient, and the dispersion relation

k2
tx + k2

tz = ω2µtεt = k2
t (1.7.11)

governs the magnitude kt for the transmitted wave vector kt = x̂ktx+
ẑktz .
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Let the boundary surface be at x = 0 where the tangential com-
ponents of E and H are continuous for all z and t . We obtain

cos(kzz − ωt) + R cos(krzz − ωt) = T cos(ktzz − ωt) (1.7.12)

kx
µ0

cos(kzz − ωt)− krx
µ0

R cos(krzz − ωt) =
ktx
µt

T cos(ktzz − ωt)

(1.7.13)

Since (1.7.12) and (1.7.13) must hold for all z and t , it follows that

kz = krz = ktz (1.7.14)

This is called the phase matching condition.
From the dispersion relations (1.7.8) and (1.7.9), we find krx = kx .

Equations (1.7.12) and (1.7.13) then reduce to

1 + R = T (1.7.15)

1−R =
µ0ktx
µtkx

T (1.7.16)

Note that the boundary conditions of normal D and normal B com-
ponents continuous at x = 0 are satisfied since the condition of con-
tinuous normal B yields the same equation as (1.7.15) and there is no
normal D component.

The reflection and transmission coefficients R and T are deter-
mined from (1.7.15) and (1.7.16), giving

R = RTE
0t =

1− pTE0t

1 + pTE0t

(1.7.17)

T = T TE
0t =

2
1 + pTE0t

(1.7.18)

where
pTE0t =

µ0ktx
µtkx

(1.7.19)

With pTE0t for the TE waves defined in (1.7.19), RTE
0t in (1.7.17) is

called the Fresnel reflection coefficient for a TE wave incident from
Region 0 and reflected at the boundary separating Regions 0 and
t . In (1.7.18), T TE

0t is the transmission coefficient from Region 0 to
Region t .
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Augustin Jean Fresnel (10 May 1788 – 14 July 1827)
Augustin Fresnel was educated at the Ecole Polytechnique and served as

an engineer in various departments of France. With his mathematical analy-
sis, he removed a number of objections to the wave theory, and used the wave
theory to calculate diffraction patterns that agreed with experimental obser-
vations. He developed a system of lenses which has revolutionized lighthouse
illumination throughout the world.

Equation (1.7.14), the phase matching condition, is a very im-
portant formula arising from the boundary conditions. In terms of the
angle of incidence θi , the angle of reflection θr , and the angle of trans-
mission θt , and the relation kr = k as seen from (1.7.8) and (1.7.9),
the phase matching condition (1.7.14) gives

k sin θi = kr sin θr = kt sin θt

Thus the angle of reflection is equal to the angle of incidence θr = θi ,
and

sin θt
sin θi

=
k

kt
=
√
µ0ε0√
µtεt

=
n0

nt
(1.7.20)

where n0 = c
√
µ0ε0 is called the refractive index for Region 0 and

nt = c
√
µtεt is the refractive index for Region t . Equation (1.7.20) is

known as Snell’s law.

Willebrord van Roijen Snell (1580 – 1626) studied at the University of
Leiden and received his degree in 1607. In 1613 he succeeded his father as
professor of mathematics at the University of Leiden. Snell’s law for the re-
fraction of light between two media was experimentally discovered in 1621.

Power Conservation
The time-average Poynting vectors for the incident, the reflected,

and the transmitted waves are calculated to be

<Si> =
1

2ωµ0
k =

1
2ωµ0

(x̂kx + ẑkz) (1.7.21)

<Sr> =
|R|2
2ωµ0

kr =
|R|2
2ωµ0

(−x̂kx + ẑkz) (1.7.22)

<St> =
|T |2
2ωµt

kt =
|T |2
2ωµt

(x̂ktx + ẑkz) (1.7.23)
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z

Stx

Stz

Stz

Srz

Srz
Siz

Siz

Srx

Six

Figure 1.7.3 Power conservation at a plane boundary.

Power conservation is observed by considering a control volume across
the boundary surface [Fig. 1.7.3]. We must prove that the x com-
ponents of all the Poynting vectors entering and exiting the control
volume are equal. We define the power reflection coefficient or the re-
flectivity to be

r =
−x̂· <Sr>

x̂· <Si>
= |R|2 (1.7.24)

and the power transmission coefficient or the transmissivity to be

t =
x̂· <St>

x̂· <Si>
= p0t |T |2 (1.7.25)

By virtue of (1.7.17)–(1.7.18), we see that

r + t = 1

This demonstrates power conservation for reflection and transmission
at a plane boundary surface.

Exercise 1.7.1 Notice that

<Six> − <Srx> =<Stx>

<Siz> − <Srz> �=<Stz>

End of Exercise 1.7.1
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C. Reflection and Transmission of TM Waves

The reflection and transmission of TM waves [Fig. 1.7.4] by a plane
boundary can be carried out in a manner similar to the treatment of
TE waves. The incident magnetic field vector H i = ŷHiy is assumed
to have unit amplitude and the magnetic and electric field components
are written as

Hiy = cos(kxx + kzz − ωt) (1.7.26a)

Eix =
kz
ωε0

cos(kxx + kzz − ωt) (1.7.26b)

Eiz = − kx
ωε0

cos(kxx + kzz − ωt) (1.7.26c)

H i

Ei

z

Hr

Er

x

Et

Ht

kr

k

kt

θi

θr θt

Region 0 Region t

µ0, ε0 µt, εt

Figure 1.7.4 Reflection and transmission of TM waves.

The reflected field components for the incident TM wave are

Hry = RTM cos(−krxx + krzz − ωt) (1.7.27a)

Erx =
krz
ωε0

RTM cos(−krxx + krzz − ωt) (1.7.27b)

Erz =
krx
ωε0

RTM cos(−krxx + krzz − ωt) (1.7.27c)
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where RTM is the reflection coefficient for the magnetic field compo-
nent Hiy . In Region t , the transmitted TM field components are

Hty = T TM cos(ktxx + ktzz − ωt) (1.7.28a)

Etx =
ktz
ωεt

T TM cos(ktxx + ktzz − ωt) (1.7.28b)

Etz = − ktx
ωεt

T TM cos(ktxx + ktzz − ωt) (1.7.28c)

where T TM is the transmission coefficient for the magnetic field com-
ponent Hiy .

The incident wave vector k = x̂kx+ ẑkz , the reflected wave vector
kr = −x̂krx + ẑkrz , and the transmitted wave vector satisfy the same
dispersion relations (1.7.8), (1.7.9), and (1.7.11) as for the TE wave
case. Matching the boundary conditions of tangential components of
E and H continuous at x = 0 , we obtain the same phase matching
condition (1.7.14) and the reflection and transmission coefficients RTM

and T TM

RTM = RTM
0t =

1− pTM0t

1 + pTM0t

(1.7.29)

and
T TM = T TM

0t =
2

1 + pTM0t

(1.7.30)

where
pTM0t =

ε0ktx
εtkx

(1.7.31)

Note that the Fresnel reflection coefficient for TM waves is now repre-
senting the ratio of the reflected and incident magnetic fields.

Exercise 1.7.2 At the surface of a perfect conductor, we may calculate
the reflection coefficients by letting εt → ∞ . We find that for TE waves
pTE
0t → ∞ and RTE

0t → −1 while for TM waves pTM
0t → 0 and RTM

0t → 1 .
Thus the tangential electric field vanishes at the boundary and the tangential
magnetic field doubles its strength in order to support the induced surface
currents.

End of Exercise 1.7.2
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D. Brewster Angle and Zero Reflection

The Brewster angle θb is the incident angle θi = θb at which there
is no reflected power. Setting R = 0 or p0t = 1 we find, from (1.7.19),
for TE waves ktx = kx or

kt cos θt = k cos θi (1.7.32)

To solve for the incident angle, we make use of Snell’s law

kt sin θt = k sin θi (1.7.33)

It follows from (1.7.32) and (1.7.33) that θt = θi and εt = ε0 . Thus
there is zero reflection since there is no boundary.

For TM waves, we obtain from (1.7.31), ε0ktx = εtkx or

ε0kt cos θt = εtk cos θi (1.7.34)

Since k = ω
√
µ0ε and kt = ω

√
µ0εt , we obtain from (1.7.34)

k cos θt = kt cos θi (1.7.35)

Multiplying (1.7.33) and (1.7.35), we obtain

sin 2θb = sin 2θt

In addition to the trivial solution θt = θb , we also obtain

θb + θt =
π

2
(1.7.36)

Region 0 Region t

µ0, ε0 µt, εt

ki

kr

θt

kt

z

x

θbb

θbb

x

Figure 1.7.5 Incidence at the Brewster angle.
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Since the reflected direction is perpendicular to the transmitted direc-
tion, the reflected wave vector kr is perpendicular to the transmitted
wave vector kt [Fig. 1.7.5].

Physically we can explain this by visualizing the dielectric media
as consisting of dipoles that are excited by the transmitted wave and
radiating at the same frequency. Each individual dipole has a radiation
pattern that is maximum in a direction perpendicular to the dipole axis
and null along the dipole axis. For a TM wave excitation, all dipoles
oscillate parallel to the plane of incidence along the E-field lines. At
the Brewster angle of incidence, the reflected kr vector is in the same
direction as the dipole oscillation in the transmitted medium. Thus,
no TM wave is reflected.

Substituting (1.7.36) in (1.7.35), we obtain the Brewster angle

θb = tan−1 kt
k

= tan−1

√
εt
ε0

(1.7.37)

TE

TM

Incident angle

1

0
θb

0

Figure 1.7.6 Reflectivity of TE and TM waves.

In Fig. 1.7.6, we plot the reflectivities as functions of the incident angle.
In general, on a solid dielectric surface, the TE waves reflect more than
the TM waves. For an unpolarized incident wave, the reflected wave
becomes linearly polarized perpendicular to the plane of incidence.
Thus the Brewster angle is also referred to as the polarization angle.

David Brewster (11 December 1781 – 10 February 1868)
David Brewster entered the University of Edinburgh at the age of 11. He

was knighted in 1831, and his Treatise on Optics was also published in 1831.
He taught at St. Andrews and in 1838 was promoted to principal. In 1859,
he became principal of the University of Edinburgh.
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The reflection and transmission of TM waves by a plane boundary
has been carried out in a manner similar to the treatment of TE waves.
We can also invoke the principle of duality and write down the answers
directly. Making the replacements E → H , H → −E , µ0→← ε0 , and
the boundary conditions of continuous tangential H and E at x = 0 ,
we find the dual of the TE problem [Fig. 1.7.2] to be precisely the
TM problem [Fig. 1.7.4]. We obtain the reflection and transmission
coefficients as in (1.7.29)–(1.7.30) with pTE0t in (1.7.19) replaced by
pTM0t = ε0ktx/εtkx .

Example 1.7.1
Consider an electromagnetic wave impinging normally upon a dielectric

half space (Region 2) with permittivity ε2 from a medium (Region 1) with
permittivity ε1 .

(a) Let ε1 = εo and ε2 = 4εo . What are the reflection coefficient R12 and
the transmission coefficient T12 ?

(b) What is the sum of Poynting power of the wave on either side of the
interface? Do they conserve?

(c) What is the sum of momentum density of the wave on either side of the
interface? Do they conserve?

(d) Find the radiation pressure exerted on both sides of the boundary. Do
they match?

(e) Will the half space move towards the incident wave or away from it?

Solution:
(a)

p0t =
µ0ktx
µtkx

=
µ0ω
√
µ04ε0

µ0ω
√
µ0ε0

= 2

R12 =
1− p0t

1 + p0t
=

1− 2
1 + 2

= −1
3

T12 = 1 + R12 =
2

1 + p0t
=

2
3

(b) Computing the time averaged Poynting power of the incident, reflected,
and transmitted waves, we find

< Si > = x̂
E2

0

2η1
= x̂

E2
0

2η0

< Sr > = −x̂R
2
12E

2
0

2η1
= −x̂R

2
12E

2
0

2η0
= −x̂

(1
9

)
E2

0

2η0

< St > = x̂
T 2

12E
2
0

2η2
= x̂

2T 2
12E

2
0

2η0
= x̂

(8
9

)
E2

0

2η0
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and since

x̂· < Si >= −x̂· < Sr > +x̂· < St >

we see that power is conserved.
(c) The momentum density of the field is given by g = µεS , so that

< gi > = x̂µ0ε0
E2

0

2η0
= x̂

E2
0

2η0c2

< gr > = −x̂
(1

9

)
E2

0

2η0c2
= −x̂µ0ε0

E2
0

18η0c2

< gt > = x̂µ0(4ε0)
(8

9

)
E2

0

2η0
= x̂

16E2
0

9η0c2

The total momentum density of the field is not conserved which implies
there exists a mechanical momentum. Assuming that the plates are ini-
tially at rest, in order for total momentum to be conserved we need the
mechanical momentum,

< gmech >=< gi > − < gr > − < gt >= −x̂ 11E2
0

9η0c2

(d) The radiation pressure magnitude is given by |F | =
√
µε |S| . The di-

rection in which the force is applied depends on whether the wave is
an impinging wave (force acts in same direction as S ) or a launched
wave (force acts in opposite direction as S due to recoil effect). For the
incident, reflected, and transmitted fields we find,

< F i > =
√
µ0ε0 < Si >= x̂

E2
0

2η0c

< F r > = −√µ0ε0 < Sr >= x̂
E2

0

18η0c

< F t > = −
√

µ0(4ε0) < St >= −x̂ 8E2
0

9η0c

so that there is a net force of

< F tot >= −x̂ 13E2
0

18η0c

acting on the half space.
(e) Using the results of either part (c) or (d) we find that the half space will

move towards the incident wave.
End of Example 1.7.1
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E. Guidance by Conducting Parallel Plates

Consider the guidance of electromagnetic waves by a pair of perfectly
conducting plates at x = 0 and x = d [Fig. 1.7.7]. For TM waves, the
Maxwell equations are(

∂2

∂x2
+

∂2

∂z2
− µε

∂2

∂t2

)
Hy = 0 (1.7.38a)

ε
∂

∂t
Ex = − ∂

∂z
Hy (1.7.38b)

ε
∂

∂t
Ez =

∂

∂x
Hy (1.7.38c)

σ →∞

µ, ε

σ →∞

x = dx = 0

x

z

cos(−k
xx+

k
z z −

ωt)

cos
(kx

x+ kz
z −

ωt
)

Figure 1.7.7 Parallel-plate waveguide.

In the parallel-plate waveguide, the wave is guided along the ±ẑ di-
rections. The two wave solutions with wave vectors k and kr in the
guided region are

H i = ŷ cos(kxx + kzz − ωt) (1.7.39)

Ei = [x̂kz − ẑkx]
1
ωε

cos(kxx + kzz − ωt) (1.7.40)

Hr = ŷ R cos(−kxx + kzz − ωt) (1.7.41)

Er = [x̂kz + ẑkx]
R

ωε
cos(−kxx+kzz−ωt) (1.7.42)
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The boundary conditions at the parallel plates require that the tan-
gential electric field be zero at x = 0 and x = d .

− cos(kzz − ωt) + R cos(kzz − ωt) = 0 (1.7.43a)
− cos(kxd + kzz − ωt) + R cos(−kxd + kzz − ωt) = 0 (1.7.43b)

Solution to the above equations yields R = 1 and

2kxd = 2mπ (1.7.44)

which is known as the guidance condition. It states that in the x̂ di-
rection the bouncing waves must interfere constructively with 2kxd =
2mπ in order for the wave to be guided [Fig. 1.7.8].

The dispersion relation is k2
x + k2

y = k2 . The set of discrete kx
values admissible inside the guide is

kx =
mπ

d
m−1 =

m

2d
Ko = kcm (1.7.45)

where m is any integer. We name the guided waves TMm modes.

kx

kzk

0 c1k c2k c3k

k

Figure 1.7.8 Interpretation of the guidance condition.

Thus as a result of the boundary condition at x = 0 and x = d ,
the spatial variation along the x̂ direction of a guided wave must be an
integer number in a distance of 2d . The magnetic and electric vector
fields are

H = ŷ cos kxx cos(kzz − ωt) (1.7.46)

E = x̂
kz
ωε

cos kxx cos(kzz − ωt) + ẑ
kx
ωε

sin kxx sin(kzz − ωt) (1.7.47)
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Hy = cos(
mπx

a
)

m = 1

m = 2

m = 3

TM1

TM2

TM3

Figure 1.7.9 Field amplitudes for TM1, TM2, and TM3 modes.

In Fig. 1.7.9, we plot Hy for m = 1, 2, 3 . They are standing waves
in the transversal x direction and propagate in the z direction. We
see that there are more spatial variations in the waveguide with sep-
aration of d , when the x component of the spatial frequency, kx =
(m/2d) Ko , is higher with larger m . The velocity of the TMm mode
in the z direction is determined from the dispersion relation

k2
z = k2 − k2

cm (1.7.48)

kz

k

TM0

TM1TE1

TM2
TE2

TM3 TE3

c3kc2kc1k

Figure 1.7.10 ω–kz diagram.
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The phase and group velocities are, as ω = ck and kzdkz = kdk ,

vp = ω/kz = ck/kz (1.7.49)
vg = dω/dkz = cdk/dkz = ckz/k (1.7.50)

vpt

θm
ct

x

vgt

Figure 1.7.11 Distances traveled with phase and group velocities.

where c = 1/
√
µε . The phase velocity vp is larger than c , as seen

from Fig. 1.7.11. Let sin θm = kcm/k = mπ/kd = mλ/2d . We see that
vp = c/ sin θm and vg = c sin θm , thus vpvg = c2 . In Figure 1.7.12 we
show that for a propagating TMm mode, as frequency increases, the
angle θm increases, and the group velocity vg = c∆k/∆kz increases.

θm

k3

k1

kcm
kx

kz

k2

Figure 1.7.12 Guidance with increasing frequency.
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It is seen from (1.7.48) that as k < kcm , k2
z = −(k2

cm−k2) = −k2
zI ,

suggesting that the guided wave will attenuate in the ẑ direction. The
fields satisfying the Maxwell equations and the boundary conditions
become

H = ŷ cos kxx e−kzIz cosωt (1.7.51)

E = x̂
kzI
ωε

cos kxx e−kzIz sinωt− ẑ
kx
ωε

sin kxx e−kzIz sinωt (1.7.52)

The time-average power in the ẑ direction is zero, and the guided
modes for k < kcm are evanescent.

The spatial frequency at which kz = 0 is called the cutoff spatial
frequency kcm

kcm =
m

2d
Ko (1.7.53)

corresponding to cutoff wavelength λcm = 2d/m . In order for the mth
order TM mode to propagate, the spatial frequency k must be larger
than kcm or the wavelength must be smaller than λcm . Notice that
if the TMm mode is propagating, then all TMl modes with l < m
can also propagate. Thus for a given spatial frequency k such that
kcm < k < kc(m+1) , there will be m + 1 TM modes admissible inside
the waveguide. The lowest-order TM mode is TM0 whose kc0 = 0 .

The electric and magnetic fields for the TM0 mode are, since
kx = 0 and kz = k ,

Hy = cos(kz − ωt) (1.7.54a)

Ex =
k

ωε
cos(kz − ωt) (1.7.54b)

which is equivalent to a plane wave propagating in the ẑ direction. The
TM0 mode is also called the fundamental mode or the TEM mode in
the parallel-plate waveguide.

Example 1.7.2 TE modes.
We write the solution for TE waves as

Ey = (A cos kxx−B sin kxx) sin(kzz − ωt) (E1.7.2.1)

The boundary conditions at x = 0, d require Ey = 0 which gives A = 0
and the same guidance condition (1.7.45). We thus obtain the electric and
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magnetic fields for TE modes

E = −ŷ B sin kxx sin(kzz − ωt) (E1.7.2.2)

H = x̂
kz
ωµ

B sin kxx sin(kzz − ωt)

+ ẑ
kx
ωµ

B cos kxx cos(kzz − ωt) (E1.7.2.3)

where

kx =
mπ

d
m−1 =

m

2d
Ko = kcm (E1.7.2.4)

The above result can be interpreted in terms of plane waves reflecting from
the conducting plates in the same way as for the TM waves. One important
difference is that TE0 does not exist and the lowest-order TE mode is TE1 .

x

y z

a

bb

Figure E1.7.2.1 Metallic rectangular waveguide.

Consider a metallic rectangular waveguide having dimensions a along the
x axis and b along the y axis [Fig. E1.7.2.1]. The TE wave fields inside
the guided region can be written as (E1.7.2.2) and (E1.7.2.3). The boundary
conditions at x = 0, a require Ey = Ez = 0 and at y = 0, b require
Ex = Ez = 0 which give rise to the same guidance condition (E1.7.2.4) with
d replaced by a .

Surface charges are ρs = ∓B sin kxx sin(kzz − ωt) at y = 0, b . Surface
currents are Js = ∓ẑB sin kxx sin(kzz−ωt) at y = 0, b . Since there is no vari-
ation in the ŷ directions, the fields are for TEm0 modes. The fundamental
mode is TE10 and the lowest cutoff spatial frequency is k = kc1 = (1/2a) Ko

corresponding to a cutoff wavelength of λc1 = 2a .
End of Example 1.7.2
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Problems

P1.7.1

Consider an electromagnetic wave propagating in an isotropic medium
with permittivity ε and permeability µ . It has the following electric field
vector

E = (x̂Ex + ŷEy + ẑEz) cos (kxx + kzz − ωt)

where Ex , Ey , and Ez are real constants.

(a) Determine the constraints on Ex , Ey , and Ez , in terms of kx and kz ,
such that the above electric field vector represents an electromagnetic
wave.

(b) Let kx =
√

3k/2 , kz = k/2 and Ex = Ey = Eo . What is the polariza-
tion of the wave?

(c) Add another plane wave component to the wave shown above, so that
the total electric wave is left-hand circularly polarized.

P1.7.2

When the incident k vector is normal to a plane boundary, a TE wave
becomes a TEM wave; a TM wave also becomes a TEM wave. Compare the
reflection and transmission coefficients for TE and TM waves at normal in-
cidence. Do both TE and TM results reduce to the same numbers? If not,
why? Do the reflectivities and transmissivities for TE and TM waves at nor-
mal incidence reduce to the same result?

P1.7.3

The gas laser depicted in Fig. P1.7.3.1 uses “Brewster angle” quartz
windows on the gas discharge tube in order to minimize reflection losses.
Determine the angle θ if the index of refraction for quartz at the wavelength
of interest is n = 1.46 . Because of these windows, the laser output is almost
completely linearly polarized. What is the direction of polarization, i.e., is E
parallel or perpendicular to the paper? Why?

Mirror

Brewster window

θ

Mirror

Figure P1.7.3.1 A gas laser with Brewster windows.
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P1.7.4
Sun light glares caused by reflections from plane surfaces are partially

linearly polarized.
(a) Determine the Brewster angle for εt = 9εo. The Brewster angle, θB , is

also called the polarization angle because at θB the reflected wave is
entirely TE polarized.

(b) Your polaroid glasses absorb one linear component of incident light. To
minimize sun glare, what component, TE or TM, reaches your eyes after
passing through the glasses? Explain why.

P1.7.5
Consider a plane wave incident on a planar boundary at x = 0 from

a dielectric medium with ε = 9εo upon another dielectric medium with µo

and εt . The right-hand circularly polarized incident electric field is

Ei = E0(
√

3x̂ + ẑ) cos(kxx− kzz − ωt) + 2ŷ sin(kxx− kzz − ωt)

where E0 is a real constant. The reflected field is

Er =E0

[
2RTE ŷ sin(kxx + kzz − ωt)+RTM (−

√
3x̂ + ẑ) cos(kxx + kzz−ωt)

]
(a) Show that the incident angle is 30◦ .
(b) For kx = 1 Ko , find the frequency (Hz) and wavelength (m) in region 1.
(c) Find the value of εt (0 < εt/εo < ∞) for which the reflected wave is

linearly polarized.

P1.7.6
A laser beam in free space with the polarization of electric field parallel

to the paper is incident normally upon a glass surface. There is 16% power
of the incident wave being reflected and the rest being transmitted. Neglect
the reflection on the bottom surface. The reflection coefficients of TE and TM
incident waves are given by, respectively,

RTE =
cos θi −

√
n2 − sin2 θi

cos θi +
√

n2 − sin2 θi

RTM =
n2 cos θi −

√
n2 − sin2 θi

n2 cos θi +
√

n2 − sin2 θi

where n =
√

ε/εo is the refraction index and θi is the incident angle.

(a) What is the amplitude of the reflected electric field Er in terms of the
amplitude of the incident electric field Ei ?

(b) What is the refraction index (n =
√

ε/εo ) of the glass?
(c) Let the surface of the glass rotate by θ = sin−1 (2/3) about an axis

perpendicular to the paper. How much of the incident power is reflected?
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(d) Let the surface of the glass rotate by θ about an axis perpendicular to
the paper, so that the laser beam is totally transmitted without reflection.
What is the rotation angle θ in radians?

P1.7.7
Find the cutoff wavelength λcm and the cutoff angular frequency ωcm

corresponding to the cutoff spatial frequency kcm = (m/2d) Ko .

P1.7.8
An AM radio in an automobile cannot receive any signal when the car is

inside a tunnel. Consider, for example, the Lincoln Tunnel under the Hudson
River, which was built in 1939. A cross-section of the tunnel is shown in
Figure P1.7.8.1. Ignore the air ducts; assume that they are closed. Model the
tunnel as a rectangular waveguide of dimension 6.55m× 4.19m .

exhaust air duct

6.55m
4.19m

fresh air duct

Figure P1.7.8.1 Tunnel modeled as rectangular waveguide.

(a) Give the range of frequencies for which only the dominant mode, TE10 ,
may propagate.

(b) Explain why AM signals cannot be received.
(c) Can FM signals be received? Above what frequencies?
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Answers

P1.1.1

A + B + C = 0 and A + B − C = −2C.

P1.1.2

|A×B|2 = (A×B) ·(A×B) = A ·(B×(A×B)) = A ·(AB2−B(A ·B)) =
A2B2 − (A ·B)2

P1.1.3

r =
√

8, θ = π/4, φ = π/4 ; and ρ = 2, φ = π/4, z = 2.

P1.1.4

ĉ = x̂ 0.6 + ẑ 0.8.

P1.1.5

A ·B = AxBx = ABx = AB cos θAB

P1.1.6

From B2 sin2 θAB = |A − B|2 − (A − B cos θAB)2 , we find |A − B|2 =
A2 +B2− 2AB cos θAB . It follows that AB cos θAB = 1

2 [A2 +B2− (A−B) ·
(A−B)] = A ·B
P1.1.7

A× B = ẑ(AxBy − AyBx) is in the ẑ direction perpendicular to both
A and B .

P1.1.8

|A×B|2 = (AyBz −AzBy)2 + (AzBx −AxBz)2 + (AxBy −AyBx)2

= A2B2 − (AxBx + AyBy + AzBz)2

= A2B2 − (A ·B)2 = A2B2(1− cos2 θAB) = (AB sin θAB)2

P1.1.9

For Φ(x) = x2, ∇Φ(x) = x̂2x . For Φ(x) = −x3, ∇Φ(x) = −x̂3x2 .

P1.1.10

Its gradient is ∇Φ = x̂2x + ŷ4y .
For the ellipse with Φ = x2 + 2y2 equals a constant,

dΦ = 2xdx + 4ydy = (x̂2x + ŷ4y) · (x̂dx + ŷdy) = ∇Φ · dr = 0

where dr is tangent to the ellipse. Thus the gradient ∇Φ is normal to the
ellipse and pointing in the directions of an expanding ellipse.

P1.1.11

The gradient of the function is ∇Φ = x̂ + ŷ . For Φ2 = x2 + y2 > Φ1 =
x1 + y1 , ∇Φ is pointing in the direction of increasing Φ .
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P1.1.12

∇ ·
(
E ×H

)
= ∇ ·

[
x̂ ŷ ẑ
Ex Ey Ez

Hx Hy Hz

]

=
∂

∂x
(EyHz − EzHy) +

∂

∂y
(EzHx − ExHz) +

∂

∂z
(ExHy − EyHx)

= Hx

(
∂

∂y
Ez −

∂

∂z
Ey

)
+ Hz

(
∂

∂x
Ey −

∂

∂y
Ex

)
+ Hy

(
∂

∂z
Ex −

∂

∂x
Ez

)

− Ex

(
∂

∂y
Hz −

∂

∂z
Hy

)
− Ey

(
∂

∂z
Hx −

∂

∂x
Hz

)
− Ez

(
∂

∂x
Hy −

∂

∂y
Hx

)
= H ·

(
∇× E

)
− E ·

(
∇×H

)
∇ ·

(
∇×A

)
= ∇ ·

[
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
Ax Ay Az

]
= 0

∇× (∇φ) =

[
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
∂φ/∂x ∂φ/∂y ∂φ/∂z

]
= 0

∇×
(
∇× E

)
= ∇×

[
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
Ex Ey Ez

]

=


 x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z(
∂Ez
∂y −

∂Ey
∂z

) (
∂Ex
∂z −

∂Ez
∂x

) (
∂Ey
∂x −

∂Ex
∂y

)



=
[

∂

∂x

(
∂Ey

∂y
+

∂Ex

∂x
+

∂Ez

∂z

)
−

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ex

]
x̂

+
[

∂

∂y

(
∂Ey

∂y
+

∂Ex

∂y
+

∂Ez

∂z

)
−

(
∂2

∂y2
+

∂2

∂y2
+

∂2

∂z2

)
Ey

]
ŷ

+
[

∂

∂z

(
∂Ey

∂y
+

∂Ex

∂y
+

∂Ez

∂z

)
−

(
∂2

∂y2
+

∂2

∂y2
+

∂2

∂z2

)
Ez

]
ẑ

= ∇
(
∇ · E

)
−∇2E

To prove (1.1.9), we may also write

∇ · (E ×H) =

∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

Hx Hy Hz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Hx Hy Hz

∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
Ex Ey Ez

∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣∣
= H · (∇× E)− E · (∇×H)
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P1.1.13

We write (1.1.21) as ∇×H = lim∆V→0©
∫∫

dS ŝ×H/∆V

Applying the above result to a large V containing an infinite number of such
differential volumes, we find the curl theorem∫∫∫

V

dV ∇×H =©
∫∫

S

dS ŝ×H

This is the curl theorem similar to the divergence theorem except that now
the result is in vector form.

P1.1.14

If the surface integral of ∇×H is carried out over a closed surface, there
will be no external contour enclosing the surface and the result will be zero.

©
∫∫

S

dS · (∇×H) = 0 (A1.1.14.1)

This scalar equation should not be confused with Stokes theorem which is
obtained by integrating over an open surface or the curl theorem in P1.1.13
for which we integrated over a volume V enclosed by a surface S , which is
a vector relation.

P1.1.15

∇ ·A = 3ρ + 2 ,
∫∫∫

dV ∇ ·A = 6π
∫

(3ρ2 + 2ρ) = 6π(53 + 52) = 900π

©
∫∫

S

dS ·A = 10π
∫ 3

0

dz 52 + 6π52 = 900π

P1.1.16

[A×(∇×B)]i = εijkεklmAj∂lBm = (δilδjm−δimδjl)Aj∂lBm=Am∂iBm−
Al∂lBi = Aj∂iBj − [(A · ∇)B]i

P1.1.17

∂i(A ·A) = Aj∂iBj +Bj∂iAj = Aj∂jBi +Bj∂jAi +Aj∂iBj −Aj∂jBi +
Bj∂iAj −Bj∂jAi = Aj∂jBi + (δilδjm − δimδjl)Aj∂lBm +Aj∂jBi + (δilδjm −
δimδjl)Bj∂lAm = Aj∂jBi + Bj∂jAi + εijkAjεklm∂lAm + εijkAjεklm∂lAm =
[(A · ∇)B + A× (∇×B) + (B · ∇)A + B × (∇×A)]i

or [(A · ∇)B + A× (∇×B)]i = [(A · ∇)B]i + Aj∂iBj − [(A · ∇)B]i .

P1.1.18

∂i(A · A) = 2Aj∂iAj = 2Aj∂jAi + 2Aj∂iAj − 2Aj∂jAi = 2Aj∂jAi +
2(δilδjm− δimδjl)Aj∂lAm = 2Aj∂jAi + 2εijkAjεklm∂lAm = 2[(A · ∇)A+A×
(∇×A)]i
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or [(A · ∇)A + A× (∇×A)]i = [(A · ∇)A]i + Aj∂iAj − [(A · ∇)A]i .

P1.1.19

E = −∇Φ =
C

(x2 + y2 + z2)3/2
[x̂x + ŷy + ẑz] = r

C

r3
= r̂

C

r2

in terms of the position vector r = x̂x + ŷy + ẑz , and the length of the
position vector r =

√
x2 + y2 + z2 , and r̂ is pointing in the direction of r

with unit length. Assuming that the electric field is due to a charged particle
q situated at the origin, we can integrate Gauss’ law over a small spherical
volume with radius r = δ surrounding the origin to obtain

q =©
∫∫

S

dS ·D =
∫ π

0

∫ 2π

0

dθ dφ δ2 sin θ
εoC

δ2
= 4πεoC

Thus the constant C = q/4πεo and the static electric field

E = r̂
q

4πεor2

P1.2.1

E1 and E3 qualify as electromagnetic waves.
E2 and E4 violate Gauss’ law ∇ · E = 0.

P1.2.2

E = x̂E0 cos(kz + ωt) . As time t increases, z must decrease in order
for kz + ωt = constant, thus the wave is propagating in the −ẑ direction.

P1.2.3

Wavelength λ = 2π/k0 = 0.01 m.
Frequency f = c/λ = 30 GHz.
For λ = 632.8 nm, k = 1/λ = 1.58× 106 Ko.
For f = 2.4 GHz, k = f/c = 2.4× 109 Hz/3× 108 m/s = 8 Ko.

P1.2.4

(a) (i) 60 Hz: λ = c/f = 5× 106 (m)
(ii) AM radio (535–1605 kHz): λ = 186.9 ∼ 560.8 (m)
(iii) FM radio (88–108 MHz): λ = 2.778 ∼ 3.409 (m)
(iv) Visible light (∼ 1014 Hz): λ =∼ 3× 10−6 (m)
(v) X-rays (∼ 1018 Hz): λ =∼ 3× 10−10 (m)

(b) (i) 1 km: f = c/λ = 3× 105 (Hz)
(ii) 1 m: f = 3× 108 (Hz)
(iii) 1 mm: f = 3× 1011 (Hz)
(iv) 1 µm: f = 3× 1014 (Hz)
(v) 1 Å: f = 3× 1018 (Hz)

(c) (i) 1 km: k = 2π/λ = Ko/λ = 10−3 Ko
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(ii) 1 m: k = 1 Ko

(iii) 1 mm: k = 103 Ko

(iv) 1 µm: k = 106 Ko

(v) 1 Å: k = 1010 Ko

(d) (i) 1 km: h̄ω = 1.24× 10−9 eV
(ii) 1 m: h̄ω = 1.24× 10−6 eV
(iii) 1 mm: h̄ω = 1.24× 10−3 eV
(iv) 1 µm: h̄ω = 1.24 eV
(v) 1 Å: h̄ω = 1.24× 104 eV

P1.2.5

vp = vg = c

P1.2.6

(a) At z = z0 , Ex = −2 sin(kz0 − ωt) , and Ey = 1√
2

cos(kz0 − ωt) −
1√
2

sin(kz0−ωt) . Since E2
x/2−

√
2ExEy+2E2

y = 1 , the wave is elliptically
polarized.

(b) E= 1
2 [x̂ cos(kx−ωt) + ŷ sin(kz− ωt)]+1

2 [x̂ cos(kx−ωt)−ŷ sin(kz − ωt)]
(c) E = x̂ cos(kz−ωt+π/4)+ ŷ cos(kz−ωt−π/4) . This is the superposition

of two linearly polarized waves.

P1.2.7

The wave has wavelength 1 cm, and is right-hand circularly polarized,
the helix is left-handed, and its pitch is 1 cm.

P1.2.8

For a right-handed circularly polarized wave α = π/4 , then

Q = I cos(2π/4) cos(2β) = 0
U = I cos(2π/4) sin(2β) = 0
V = I sin(2π/4) = I

For a left-handed circularly polarized wave α = −π/4 , then

Q = I cos(−2π/4) cos(2β) = 0
U = I cos(−2π/4) sin(2β) = 0
V = I sin(−2π/4) = −I

For linearly polarized wave α = 0 , then

V = I sin 0 = 0

P1.3.1

mv2/R = Ze2/4πεR2 ⇒ R = 4πεn2h̄2/Zme2 ≈ 0.52n2 × 10−10 m for
Z = 1 .
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P1.3.2

(a) T = 150× 109/c = 500 sec = 8.33 min
(b) Pr = 1.5 kW/m2 × π × (6.4× 106)2 m2 = 1.93× 1014 kW
(c) S = P (power density per Hz)×W (bandwidth) = 10−11 Wm−2

E =
√

2ηS = 8.68× 10−5 volt/m

P1.3.3

The power density is P = 1.2 × 1010 W/m2 . The radiation pressure is
p = 40 N/m2 . The area required is 20 m2 .

P1.3.5

(a) B = x̂I0µo/2πd
(b) F = ŷNqvB0

P1.3.4

F = x̂md2x
dt2

+ ŷmd2y
dt2

= −mω2
c (x̂x + ŷy) = −mρ̂Rω2

c = −ρ̂mv2/R

P1.3.6

The Lorentz force acting on the particle is qvB0 and the centrifugal force
acting on the particle is mv2/R , where R is the radius of the circle. We have
qvB0 = mv2/R . The time it takes the particle to complete one revolution is
2πR/v = 2πm/qB0 . The cyclotron frequency is thus ωc = v/R = qB0/m ,
and the radius is R = mv/qB0 .

P1.3.7

(a) Because there is a magnetic field, the effective electric field that drives
conduction current is approximately

Eeff
∼= E + v ×B

Hence J ∼= σ(E + v×B) . When σ →∞, E,B still remains finite, then
we have to impose E + v × B = 0 or E = −v × B . This is used in
approximating solar wind fields.

(b) Let v = vn + v‖ , where vn is normal to B and v‖ is parallel to B .
Then E = −v ×B = −vn ×B . The Poynting vector

S = E ×H =
1
µ0

E ×B = − 1
µ0

(vn ×B)×B =
B2

µ0
vn

≈ (5× 10−9)2

4π × 10−7
× 4× 105 × cos 45◦ ≈ 5.6µW/m2

(c) Kinetic energy density Wk = 1
2ρmv2 ≈ 1

2 × (1800× 9.1× 10−31× 107)×
(4× 105)2 = 1.31× 10−9 joule/m3 .
Electric energy density We = 1

2ε0E
2 ≈ 1

2 × 8.85× 10−12× (4× 105× 5×
10−9 × sin 45◦)2 = 8.85× 10−18 joule/m3 .
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Magnetic energy densityWm = 1
2µ0

B2 ≈ 1
2×4π×10−7 × (5 × 10−9)2 =

9.9× 10−12joule/m3 Therefore Wk �Wm �We .
Kinetic energy density is the largest.

P1.3.8

a) For δ = 0 our model becomes ∂2x
∂t2

+ ω2
0x + qE

m = 0 . Assuming that
driving and driven quantities have sinusoidal time dependency ω , we
may write

(
ω2

0 − ω2
)
x = − qE

m or x = qE

m(ω2−ω2
0)

. For ω > ω0 the

electrons are in phase with the E-field, but for ω < ω0 the electrons
are 180◦ out of phase. In terms of current (or radiation) the oscillation
is 180◦ out of phase for ω > ω0 (for electrons or ions) thus tending
to cancel the exciting field (by radiating a competing field 180◦ out of
phase). This cancellation becomes complete if there are many particles
participating and if their amplitudes are large enough. Thus we want
ω > ω0 (for opacity) but not so large as to render x too small and we
want a high density. This condition is in fact met by 0 < ω2−ω2

0 < ω2
p as

is the case in many metals with ω in optical regime and ω0 much smaller
and ωp in the ultraviolet regime. Thus these metals appear opaque.

b) Poynting theorem −∇ · (E ×H)− µ0
2

∂
∂tH

2 − ε0
2

∂
∂tE

2 = E · J .

E = −m
q

(
∂2x
∂t2

+ δ ∂x
∂t + ω2

0x
)

. Assume a particle density n and velocity

v , J = qnv = qn∂x
∂t . Thus

E · J = −mn
∂x

∂t
·
(
∂2x

∂t2
+ δ

∂x

∂t
+ ω2

0x

)

= −mn

(
∂

∂t

[
1
2

(
∂x

∂t

)2
]

+ δ

(
∂x

∂t

)2

+ ω2
0

∂

∂t

(1
2
x2

))

W ≡ µ0H
2

2
+

ε0E
2

2
+

mn

2

(
∂x

∂t

)2

+
mnω2

0

2
x2 (Energy desity)

PD ≡ mnδ

(
∂x

∂t

)2

(Power density dissipated through collision)

µ0H
2

2
= magnetic energy density

ε0E
2

2
= electric energy density

mn

2

(
∂x

∂t

)2

= particle kinetic energy density

mnω2
0x

2

2
= particle potential energy density
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P1.3.9

(a) Using Gauss’ law, the electric field between the two plates due to the
charges is given by E = x̂ σ/ε0 . The Poynting vector and the momentum
density vector are given by S = E ×H = x̂ σ

ε0
× ŷB0

µ0
e−γt = ẑ B0σ

ε0µ0
e−γt

and gf = ε0µ0S = ẑB0σe
−γt.

(b) By Faraday’s law, the induced electric field will exist along the surface
of the plate. Accordingly,∮

C

E · dl = − ∂

∂t

∫
S

B · dS ⇒ 2E0l = γldB0e
−γt ⇒ E0 =

γdB0

2
e−γt

By symmetry, both the E -field at the top and bottom will be equal in
magnitude, however opposite in direction. The total force density along
the top and bottom of the plate will be F = ẑ 2σE0 = ẑ γdB0σe

−γt .
(c) The mechanical momentum density vector, gm , can then be found by

integrating the force density vector.

gm = ẑ

∫ t

0

γB0σe
−γt′dt′ = ẑ

[
−B0σe

−γt′
]t
0

= ẑB0σ(1− e−γt)

(d) Adding the field and mechanical momentum terms, we see that the total
momentum of the system is conserved, g = gf + gm = ẑ B0σ .

P1.3.10

For the plane current loop, we let the line charge density be ρ amp/m.
The magnetic moment for the segment dl is

dM =
1
2
(ρdl)r × v =

1
2
dlr × I =

1
2
Ir × dl

The total magnetic moment of the loop is thus M =
∮
dM = 1

2I
∮
r × dl .

For the plane loop
∮
r × dl = 2m̂A . In the case of a circle with radius R ,∮

r × dl = ẑ2πR2 .

P1.3.11

(a) γ = q/2m . For a complicated structure of charged distributions, the
gyromagnetic ratio is γ = gq/2m , where the g -factor g describes the
magnetic structure.

(b) Let M = x̂Mx + ŷMy + ẑMz , dM
dt = γM ×B gives

dMy

dt = −γMxB0
dMx
dt = γMyB0

dMz
dt = 0 which yield

Mx = M0 cos(γB0t + φ0) My = −M0 sin(γB0t + φ0) Mz = M0z

Thus the angular Larmor frequency of precession is ω = γB0 . .

(c) ∇ ·B = 0 gives Bz = B0 − z

(d) The angular precession Larmor frequency is . ω = γBz = γ(B0 − z) .
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(e) δf = δω/2π = γ × δz/2π = 43 kHz

P1.3.12

The magnetic field, H at the position of the loop due to the straight
wire carrying current I0 is H = φ̂ I0

2πd = x̂ I0
2πd .

T = M ×B = ẑ
A0IlI0µ0

2πd

which means that the current loop will move about the z -axis in a counter-
clockwise direction.

P1.3.13

The dissipated power per unit volume is Pd = f · v = ρv · E = J · E .

P1.3.14

The Poynting vector is calculated to be

G = D ×B = ẑ

√
εo
µo

c2E2
0 cos2(kz − ωt)

The Maxwell stress tensor is

T =
1
2

(µoH
2
0 + εoE

2
0) cos2(kz − ωt)I − (x̂x̂εoE2

0 + ŷŷµoH
2
0 ) cos2(kz − ωt)

From (1.3.12) we find the force density

f = −∇ · T − ∂G

∂t
= ẑk(µoH

2
0 + εoE

2
0) sin(kz − ωt) cos(kz − ωt)

P1.3.15

For ∂i = ∂
∂xi

, Maxwell’s equations can be written in index notation as

∇×H =
∂D

∂t
⇐⇒ ∂Di

∂t
= εijk∂jHk

∇× E = −∂B

∂t
⇐⇒ ∂Bi

∂t
= −εijk∂jEk

∇ ·D = 0 ⇐⇒ ∂iDi = 0
∇ ·B = 0 ⇐⇒ ∂iBi = 0

The ith component of the time derivative of D ×B is

∂

∂t
(D ×B)i =

∂

∂t
(εijkDjBk) = εijkDj

∂Bk

∂t
+ εijk

∂Dj

∂t
Bk

= −εijkεpqkDj(∂pEq) + εkijεmnjBk∂mHn

= −(δipδjq − δiqδjp)Dj(∂pEq) + (δkmδin − δknδim)Bk(∂mHn)
= Dj∂jEi −Dj∂iEj + Bk∂kHi −Bk∂iHk (A1.3.15.1)
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where we use the identity εijkεrsk = δirδjs − δisδjr . Identify the terms in
the right hand side of equation (A1.3.15.1):

Dj∂iEj = ε0Ej∂iEj = ∂i(
1
2
ε0E · E) = ∂i(

1
2
D · E)

Bk∂iHk = µ0Hk∂iHk = ∂i(
1
2
µ0H ·H) = ∂i(

1
2
B ·H)

Dj∂jEi = Dj∂jEi + Ei∂jDj = ∂j(DjEi) = ∇ · (DEi)

Bk∂kHi = Bk∂kHi + Hi∂kBk = ∂k(BkHi) = ∇ · (BHi)

we find ∂
∂t (D × B)i = −∂i( 1

2D · E + 1
2B ·H) +∇ · (DEi + BHi) , which is

identical to

∂

∂t
(D ×B) +∇ ·

(
WI −DE −BH

)
= 0

P1.4.1

(a)
〈
S
〉

= r̂ωk3

2εo

(
q4

4πr

)2
sin2 θ

(b) P =
∫ π

0

dθ2πr2 sin θ

[
ωk3

2εo

(
q'

4πr

)2

sin2 θ

]
=

4πωk3

3εo

(
q'

4π

)2

(c) Rrad = 2P
I2o

= 8πk3

3εoω

(
4

4π

)2

(d) For θ = π/2 Eo = − k2q4
4πεor

, q' = − 4πεor
k2 Eo. Notice that the radiation

field is only in the upper half space for the radio antenna, therefore
P = 2π

3ηo
(Eor)

2 = 1
180

(
25× 10−3 × 15× 103

)2
= 781.25(W )

P1.4.2

For the pz component, the electric field vector in the rectangular coor-
dinate system is

Epz = [r̂2 cos θ + θ̂ sin θ]
pz

4πεor3

=
pz

4πεo

{
x̂

3
r3

(
xz

r2

)
+ ŷ

3
r3

(
yz

r2

)
+ ẑ

3
r3

(
z

r

)2

− ẑ
1
r3

}
The total electric field due to all three components is therefore

E = [3r̂(r̂ · p)− p]
1

4πεor3
= [(p× r̂)× r̂ + 2r̂(r̂ · p)] 1

4πεor3

P1.4.3

Looking at φ = 0 , the sky is unpolarized, looking at the zenith ( φ =
90◦ ) the sky is linearly polarized, looking at other parts of the sky, it is
partially linearly polarized.

P1.4.4

(a) E = p
4πεr3

(
θ̂ sin θ + r̂ 2 cos θ

)
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(b) The total power scattered by a Hertzian dipole with dipole moment p0E0

P =
∫ π

0

dθ 2πr2 sin θ

[
ωk3

2εo

(
p0E0

4πr

)2

sin2 θ

]
=

4πωk3

3εo

(
p0E0

4π

)2

=
k4p2

0E
2
0

12πηε20

Scattering cross section 2ηPs/E
2
o = k4

6πε20
p2
0 .

P1.4.5

Ps = 4π
3η

(
εa−εo
εa+2εo

)2
k4a6E2

0 . Sky is blue as blue light has a larger k and
thus scatters more. It is not violet because there is less violet light reaching
the lower atmosphere for scattering and the color receptors in our eyes are
stimulated differently. The red and green cones are stimulated about equally
and the blue cones are stimulated more strongly, resulting in perceiving a
pale sky blue color.

P1.4.6

(a) Pscatt = 4π
3η

[
εp−εo
εp+2εo

]2

k4a6E2
o = π

12ηk
4a6E2

o

(b) The total power loss of a control-volume with area A and length dl is
1
P

dP

d'
=

2η
AE2

0

× πk4 × 10−60

12η
E2

0 ×N ×A

=
πk4 × 10−60

6
N =

π(2π × 106)4 × 10−60

6
N

=
8N
3

π5 × 10−36 m−1 =
8N
3

π5 × 10−33 km−1

which gives rise to a loss of (300.88− 10 logN) dB/km.
(c) 1

P
dP
d4 ≈ 0.2 km−1 gives rise to a loss of 6.99 dB/km.

P1.4.7

(a)
√

x2 + (y − d)2 + z2 =
√

x2 + y2 + z2 − 2yd + d2 ≈
√

r2 − 2yd
= r

√
1− 2 y

r2
d ≈ r(1− 1

2 × 2 y
r2
d) = r − y

r d = r − d sin θ

(b) Etot = − k24
4πrε0

[
θ̂q1cos(kr − ωt) sin θ − x̂q2cos(kr − kd sin θ − ωt)

]
(c)

(i) d sin θ = λ
4 ; d =

√
2λ

4

(ii)
√

2
2 q1 = q2 ; q1/q2 =

√
2

(iii) Etot = − k24q2
4πrε0

[
θ̂cos(ωt− kr)− φ̂sin(ωt− kr)

]
⇒ L.H.C.P

P1.4.8

Writing '=dz , r=
√

ρ2 + z2 , sin θ= ρ√
ρ2+z2

, and z=ρ tanα , yields

B = φ̂
∞∫

−∞
dz µoρI

4π(ρ2+z2)3/2
= φ̂

π/2∫
−π/2

sec2 αdα µoρ
2I

4π sec3 α
= φ̂µoI

2πρ .
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The magnetic field is B = φ̂µoI
2πρ = φ̂ 4π×10−7×103

2π×10 = φ̂ 2× 10−5 Tesla.

P1.5.1

(a) This constitutive relation for cholesteric liquid crystals is
(1) Anisotropic
(2) Linear
(4) Inhomogeneous: ε depends on position.

(b) This constitutive relation for the quartz crystals is
(1) Bianisotropic
(2) Linear
(3) Temporally dispersive
(4) Homogeneous
Another answer is

Ej = κijDi + c2Gij
∂

∂t
Bi = κijDi − c2Gij(∇× E)i

Hj =
1
µ0

Bj − c2Gij
∂

∂t
Di =

1
µ0

Bj − c2Gij(∇×H)i

Express D and B in terms of E and H .

Dj = κ−1
ij

[
Ei + c2Gki(∇× E)k

]
Bj = µ0

[
Hj + c2Gij(∇×H)i

]
Then the constitutive relation is
(1) Anisotropic
(2) Linear
(3) Spatial dispersive
(4) Homogeneous

(c) We can write J � σ(E + RσE ×B0), in matrix form[
Jx
Jy
Jz

]
=

[
σ Rσ2B0z −Rσ2B0y

−Rσ2B0z σ Rσ2B0x

Rσ2B0y −Rσ2B0x σ

][
Ex

Ey

Ez

]

∇×H = −iωε0E + J

= −iω




ε0 + i
σ

ω
i
Rσ2

ω
B0z −iRσ2

ω
B0y

−iRσ2

ω
B0z ε0 + i

σ

ω
i
Rσ2

ω
B0x

i
Rσ2

ω
B0y −iRσ2

ω
B0x ε0 + i

σ

ω


 · E = −iωε · E

The constitutive relation is thus
(1) Anisotropic
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(2) Linear
(3) Temporally dispersive: Permittivity depends on ω.
(4) Homogeneous

(d) Consider the following dispersion relation:

Di = εijEj + γijk
∂Ej

∂xk

A repeated index in a product implies summation over that index from 1
to 3 (e.g., AiBi = A1B1 +A2B2 +A3B3 ). An equation or an inequality
holds for each of the unrepeated indices.
The constitutive relation is
(1) Anisotropic: D and E are not related by a scalar factor.
(2) Linear
(3) Spatially dispersive: The constitutive relation involves space deriva-

tives of E .
(4) Homogeneous: εij and γijk do not depend on r .

(e) The constitutive relation for pyroelectricity is
(1) Anisotropic
(2) Linear : Variations of D and E are linearly related. δD = ε · δE .
(4) Homogeneous

(f) The constitutive relation for piezoelectricity is
(1) Anisotropic
(2) Linear : Variations of D and E are linearly related. δD = ε · δE .
(4) Homogeneous
Note: Skl is the mechanical stress tensor. The force acting on an imag-
inary surface S in a solid is

Fk =
∫
S

ds Sklnl

The dimensions of Skl are Force/Area.
(g) For the Kerr effect, the constitutive relation is

(1) Anisotropic
(2) Nonlinear
(4) Homogeneous

(h) For the Pockel’s effect, the constitutive relation is
(1) Anisotropic
(2) Nonlinear
(4) Homogeneous

P1.5.2

In the low-field limit, L(x) ≈ x
3 , and M ≈ Nm2H

3kT , and the medium is
linear.

P1.6.1

Consider a ribbon-like surface as shown in Fig. P1.6.1.1. Integrating over
the surface of the ribbon area, Faraday’s law and Ampère’s law become
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∮
dl · E = − d

dt

∫∫
dS ŝ ·B∮

dl ·H =
d

dt

∫∫
dS ŝ ·D +

∫∫
dS ŝ · J

Let the ribbon area approach zero in such a manner that δ goes to zero first
and the terms involving δ are discarded. To relate E1, H1 in region 1 to
E2, H2 in region 2, we proceed as follows.

The integral forms of Faraday’s law and Ampère’s law as applied to the
ribbon area in Fig. P1.6.1.1 yield, as δ → 0,

d

dt

∫∫
dS ŝ ·B = 0 =

d

dt

∫∫
dS ŝ ·D

because d(ŝ · B)/dt and d(ŝ · D)/dt remain finite while the ribbon area
approaches zero. Therefore

dl · (E1 − E2) = 0

dl · (H1 −H2) = ŝ · Jδ dl

The electric field E in the dl direction is tangential to the surface and can
be written as dl ·E = dlŝ · n̂×E = dlŝ× n̂ ·E for all dlŝ along the interface
and similarly for H . We thus have

n̂× (E1 − E2) = 0

n̂× (H1 −H2) = lim
δ→0

Jδ ≡ Js

P1.6.2

We apply the curl theorem to a small pill-box volume on the x-y plane
[Fig. P1.7.8.1], which has an area A and an infinitesimal thickness ∆z . We
let ∆z → 0 faster than A → 0 , such that terms involving ∆z can be
neglected: ∫∫∫

dV ∇×H ≈ Aẑ × (Hz>0 −Hz<0)

Such results are useful in the derivation of boundary conditions for the Max-
well equations. Integrating Ampere’s law ∇ × H = ∂D/∂t + J over the
pill-box volume, we have Aẑ × (Hz>0 −Hz<0) = A∆z∂D/∂t + A∆zJ . The
first term on the right-hand side is neglected because physically ∂D/∂t is
finite. However if J is infinite in the pill-box then ∆zJ = Js is finite, where
Js = ẑ × (Hz>0 −Hz<0) . We call Js surface current.
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P1.6.3

Using Gauss’ law of ∇ ·D = ρ , we find aδρ = ŝ(a+ lδ) ·
(
D1 −D2

)
. In

the limit of δ → 0 , δρ = ρs , the last term vanishes, and we obtain (1.6.9).

P1.7.1

(a) ∇ · E = 0 gives
{

Exkx + Ezkz = 0
Ey = arbitrary

(b) E =
(
x̂ + ŷ − ẑ

√
3
)
Eo cos (kxx + kzz − ωt) is linearly polarized.

(c) Let Eadd = (x̂E1 + ŷE2 + ẑE3) sin (kxx + kzz − ωt) and we require{
E3 = −

√
3E1

(x̂Ex + ŷEy + ẑEz) · (x̂E1 + ŷE2 + ẑE3) = 0
|x̂Ex + ŷEy + ẑEz| = |x̂E1 + ŷE2 + ẑE3|

Thus Eadd =
(
− 1

2 x̂ + 2ŷ + ẑ
√

3
2

)
Eo sin (kxx + kzz − ωt) .

P1.7.2

RTE and TTE are for electric field vectors while RTM and TTM are
for magnetic field vectors. They do not reduce to the same numbers.

RTE =
1− n

1 + n
RTM =

n− 1
n + 1

As for reflectivity and transmissivity, the two cases yield identical results.

P1.7.3

θB = tan−1 n = tan−1 1.46 = 55.59◦, θ = 90◦ − θB = 34.41◦.

P1.7.4

(a) The Brewster angle for εt = 9 is θB = tan−1√εt = tan−1
√

9 = 71.57◦.
(b) The dominant portion of the sun glares is TE polarized wave. The po-

laroid glasses absorb the TE component of the incident light, thus the TM
component reaches the eyes after passing through the polaroid glasses.

P1.7.5

(a) Ei · ki = 0 ⇒
√

3kx − kz = 0 ⇒ θi = tan−1(kx/kz) = tan−1(1/
√

3) =
30◦.

(b) For kx = 1 (Ko) , we get kz =
√

3kx =
√

3 (Ko) . ⇒ k =
√

k2
x + k2

z =
2 (Ko), and k = ω

√
µo9εo = 3ω/c. So f = ω/2π = ck/(3 · 2π) =

2× 108 (Hz) and λ = 2π/k = 0.5 m.
(c) If the totally reflected wave is linearly polarized, the incident angle is the

Brewster angle, thus θi = 30◦ = tan−1
√

εt/9εo ⇒ εt = 9εo tan2 30◦ =
3εo.

P1.7.6

(a) Pr = 0.16Pi , so
∣∣Er

∣∣ =
√

0.16
∣∣Ei

∣∣ = 0.4
∣∣Ei

∣∣ .
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(b) R = (n− 1)/(n + 1) = 0.4 so n = 7/3 .
(c) This problem is the TM wave case, so Pr/Pi =

∣∣RTM
∣∣2 = (11/38)2 .

(d) The tilted angle is the Brewster angle, θB = tan−1 n = tan−1 (7/3).

P1.7.7

λcm = 2d/m and ωcm = mπ/d(µε)1/2 .

P1.7.8

(a) fc10 = ωc10
2π = c

2π

(
π
a

)
= 3×108

2π × π
6.55 = 22.9 (MHz) < f < fc01 =

c
2π

(
π
b

)
= 3×108

2π × π
4.19 = 35.8 (MHz)

(b) An AM radio operates in the range of 500 to 1600 (KHz) is below the
cutoff frequency of the fundamental mode TE10 . Therefore, AM signals
can not be received in the tunnel.

(c) FM signals operating in the range of 88.1 to 107.9 (MHz) can be re-
ceived in the tunnel.
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2.1 Transmission Line Theory

A. Transmission Line Equations

Transmission line theory deals with coaxial cables, parallel-plate wave-
guides, open-wire transmission lines, microstrip lines, etc, and provides
a simplified model to study complicated transmission systems. Parallel-
plate waveguide is a canonical example in the study of transmission line
theory. In order to derive transmission line equations from the Max-
well equations, we consider two parallel plates [Fig. 2.1.1] separated
by a distance d . Both plates have the same width w . For w � d ,
we can assume that all electromagnetic fields are confined in between
the plates and there are no fringing fields outside the plate regions.
An electromagnetic wave is guided along the ẑ direction with the elec-
tric field E in the x̂ direction and the magnetic field H in the ŷ
direction. Since both E and H are perpendicular to the direction of
propagation, the guided wave is a transverse electromagnetic (TEM)
wave. We write

E = x̂Ex(z, t) (2.1.1a)

H = ŷHy(z, t) (2.1.1b)

x
y

z µ, εd

w

Figure 2.1.1 Parallel-plate transmission line.

For example,

Ex (z, t) = E0 cos(kz − ωt) (2.1.2a)

Hy (z, t) = H0 cos(kz − ωt) (2.1.2b)
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where E0/H0 =
√
µ/ε .

On the plate at x = 0 , the boundary conditions of zero tangential
E and zero normal B are satisfied. The boundary condition for the
normal D field gives rise to the surface charge density

ρs = x̂ · εE = εEx(z, t) = εE0 cos(kz − ωt)

The boundary condition for the tangential magnetic field gives rise to
the surface current density

Js = x̂×H = ẑHy(z, t) = ẑH0 cos(kz − ωt)

+−

z = 0

z

z = λ/2

+ + + +

+ + ++ + +

− − − − −

− − − − −
Js

E
H

Figure 2.1.2 Surface charge and current on parallel-plate waveguide.

It is seen that
∇ · Js = − ∂

∂t
ρs

which guarantees conservation of charge. On the plate surface at x =
d , the surface charge and current densities are the negatives of those
on the plate surface at x = 0 as shown in Fig. 2.1.2 which is plotted
at t = 0 .

The Maxwell equations with the solutions in (2.1.1) reduce to the
following pair of equations

∂

∂z
Ex(z, t) = −µ ∂

∂t
Hy(z, t) (2.1.3)

∂

∂z
Hy(z, t) = −ε ∂

∂t
Ex(z, t) (2.1.4)

A voltage V (z, t) is defined as V (z, t) = Ex(z, t)d and a current I(z, t)
is defined as I(z, t) = Hy(z, t) w .
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For the parallel-plate waveguide, we further define the inductance
per unit length

L = µ
d

w
(H/m) (2.1.5)

and capacitance per unit length

C = ε
w

d
(F/m) (2.1.6)

From (2.1.3) and (2.1.4), we obtain the transmission equations

∂

∂z
V (z, t) = −L ∂

∂t
I(z, t) (2.1.7)

∂

∂z
I(z, t) = −C ∂

∂t
V (z, t) (2.1.8)

These two equations in terms of V (z, t) and I(z, t) and circuit pa-
rameters L and C are known as the transmission line equations. Sim-
ilar transmission line equations for coaxial lines, two-wire transmission
lines, and microstrip lines can be derived for the TEM waves on such
lines.

Example 2.1.1 Poynting’s theorem.
Multiplying (2.1.7) by I and (2.1.8) by V and adding, we obtain Poynt-

ing’s theorem for transmission lines

∂

∂z
(V I) = − ∂

∂t

(1
2
LI2 +

1
2
CV 2

)
(E2.1.1.1)

We identify V I as the power flow, Wm = 1
2LI

2 as the magnetic energy per
unit length, and We = 1

2CV
2 as the electric energy per unit length. Thus

Poynting’s theorem is a statement of power conservation at all points and all
times on the transmission line.

End of Example 2.1.1

Example 2.1.2 Coaxial transmission lines.
A coaxial transmission line consists of an inner circular conducting cylin-

der with radius a and an outer circular conducting sheath with radius b ,
where a < b . The electric and magnetic field vectors are

E = ρ̂Eρ(z, t)/ρ (E2.1.2.1)

H = φ̂Hφ(z, t)/ρ (E2.1.2.2)
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Faraday’s law and Ampère’s law reduce to the following pair of equations

∂

∂z
Eρ(z, t) = −µ ∂

∂t
Hφ(z, t) (E2.1.2.3)

∂

∂z
Hφ(z, t) = −ε ∂

∂t
Eρ(z, t) (E2.1.2.4)

A voltage V (z, t) is defined as

V (z, t) =
∫ b

a

dρEρ(z, t)/ρ = ln
(
b

a

)
Eρ(z, t)

and a current I(z, t) is defined as

I(z, t) =
∫ 2π

0

dφρHφ(z, t)/ρ = 2πHφ(z, t)

Notice that the surface current density on the inner conducting surface at
ρ = a is Js = ρ̂ × φ̂Hφ(z, t)/a = ẑHφ(z, t)/a and the surface current den-
sity on the outer conducting surface at ρ = b is Js = −ρ̂ × φ̂Hφ(z, t)/b =
−ẑHφ(z, t)/b . For the coaxial transmission line, we further define the induc-
tance per unit length

L = µ
ln (b/a)

2π
(H/m) (E2.1.2.5)

and the capacitance per unit length

C = ε
2π

ln(b/a)
(F/m) (E2.1.2.6)

Eqs. (E2.1.2.3) and (E2.1.2.4) then become

∂

∂z
V (z, t) = −L ∂

∂t
I(z, t) (E2.1.2.7)

∂

∂z
I(z, t) = −C ∂

∂t
V (z, t) (E2.1.2.8)

which are of the same form as (2.1.7) and (2.1.8).
End of Example 2.1.2
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Example 2.1.3
In the parallel-plate waveguide, the voltage is obtained as

V (z, t) = dEx (z, t) = d cos(kz − ωt)

and the current I(z, t) is obtained as

I(z, t) = wHy (z, t) = w cos(kz − ωt)

In a coaxial transmission line, the voltage and current are obtained as

V (z, t) = ln
(
b

a

)
Eρ(z, t) = ln

(
b

a

)
cos(kz − ωt)/ρ

and the current I(z, t) is obtained as

I(z, t) = 2πHφ(z, t) = 2π cos(kz − ωt)/ρ

We see that the voltage at z = 0 is opposite to the voltage at z = λ/2 ,
contrary to Kirchhoff’s voltage law (KVL), which requires the two voltages
to be equal. The surface current density at z = 0 and that at z = λ/2 are
opposite in direction, also contrary to Kirchhoff’s current law (KCL) which
requires that current flowing into a node is equal to that flowing out.

End of Example 2.1.3

Note: Transverse electromagnetic (TEM) waves guided by transmission
lines have the electric field E perpendicular to the magnetic field H and both
E and H transverse to the direction of propagation along the transmission
line. A transmission line is composed of two conductors parallel to each other.
The cross-sections of the transmission line at any point on the propagation
path are of the same shape. A parallel-plate transmission line consists of
two parallel conducting plates separated by a constant distance; the space
in between the plates may be filled uniformly with dielectric material. A
microstrip line usually consists of a thin narrow metal strip fabricated on
top of a dielectric slab backed by a grounded conduction plane. A two-wire
transmission line consists of a pair of parallel conducting wires separated by
a uniform distance. A coaxial transmission line consists of an inner conductor
and a coaxial outer conducting sheath separated by a dielectric medium. In
addition to the TEM mode of propagation along the transmission lines, there
exist many other modes, which will not be covered by the transmission line
theory.



144 2. Transmission Lines

B. Circuit Theory

The Kirchhoff voltage law (KVL) states that the voltage sum over a
closed loop must equal to zero. This is a static limit of Faraday’s law.
When there is no time varying field linking a closed loop, ∂B/∂t = 0 ,
we have

∇× E = 0 (2.1.9)

Integrating the above equation over a closed loop, we obtain∮
d � · E =

∑
n

Vn = 0 (2.1.10)

where the voltage drops are defined by Vn =
∫
d �n · E . In Figure 2.1.3,

the sum of the voltage drops around the loop is equal to zero.

V1

V2

V3

�1

�2

�3

+

−

+

−

+

−

Figure 2.1.3 Kirchhoff voltage law (KVL).

The source voltage Vs may be generated by the EMF due to a
time-varying magnetic field, governed by Faraday’s law.

∇× E = − ∂

∂t
B (2.1.11)

From Stokes theorem, we find∮
d � · E =

∑
n

Vn = EMF (2.1.12)

where
EMF = − ∂

∂t

∫∫
dS ·B = −dΨ

dt
(2.1.13)

and Ψ =
∫∫
dS ·B is magnetic flux linking the loop. The Kirch-

hoff’s voltage law (KVL) is thus modified with the addition of EMF in
(2.1.12).
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Example 2.1.4
Consider the loop in Fig. E2.1.4.1 consisting of two resistors with resis-

tances R1 = 2.5 ohm and R2 = 7.5 ohm. Let the magnetic flux linking the
loop be increasing at the rate of 10 Wb/s. According to (2.1.13), an EMF of
10 V is induced to counter the increase. The direction of the induced current
is as shown so as to produce a magnetic field in the opposite direction of the
increasing magnetic field. The voltage across R1 is V1 = 2.5 V, which can be
obtained by taking the closed loop consisting of the voltmeter and R1 yield-
ing 0 = 2.5 − V1 , or by taking the loop consisting of the voltmeter and R2

which includes the time varying magnetic field and yielding 10 = 7.5 + V1 .
Likewise, the voltage readings for the other two voltmeters are V2 = −7.5 V
and V3 = 2.5 V.

V1V2 V3

+

−
7.5V 2.5V

+

−

+

−

+

−

+

−

R1R2

Figure E2.1.4.1 EMF of the loop is 10 volts.

It is noted that although the voltmeters for V2 and V3 are connected to the
same two nodes, the two readings are drastically different, a clear violation
of Kirchhoff’s voltage law (KVL), which applies only when ∇× E = 0 .

Consider the electric circuit as shown in Fig. E2.1.4.2 where the induced
counter EMF is 20 V. Following the same analysis, we find V1 = 5 V, V2 =
−15 V, V3 = −5 V, V4 = 10 V, and V5 = 20 V.

V1V2 V3

+

−

15V 5V
+

−

+

−

+

−

+

− R1R2

V4+ −

V5+ −

Figure E2.1.4.2 EMF of the loop is 20 volts.

End of Example 2.1.4



146 2. Transmission Lines

Circuit Elements

The fundamental circuit elements are the resistor, the capacitor, and
the inductor. The voltage V across a loop of N turns is equal to the
negative of the induced EMF.

V = −EMF =
d

dt
Ψ = L0

dI

dt
(2.1.14)

V

+

−
I

I

Figure 2.1.4 Inductance.

where Ψ =
∫∫
A dS ·B = L0I , and the loop can be viewed as an inductor

with inductance L0 such that the magnetic flux is proportional to the
current I flowing in the loop.

The Kirchhoff current law (KCL) states that the currents flowing
into a node must equal to those flowing out of the node. This is a
result of the continuity law. When there is no charge accumulation at
a point, ∂ρ/∂t = 0 , we have

∇ · J = 0 (2.1.15)

I1

I2

I3

S1

S2

S3

Figure 2.1.5 Kirchhoff current law (KCL).

Integrating the above equation over the surface enclosing the node, we
obtain

©
∫∫
S
dS · J =

∑
n

In = 0 (2.1.16)

where the currents are defined by In =
∫∫
dSn · J . In Figure 2.1.5,

the sum of the currents flowing out of the node is zero. Thus some of
the arrows of the current directions must be reversed such that the
currents flowing into the node equal the currents flowing out and the
sum is zero.
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Gustav Robert Kirchhoff (12 March 1824 – 17 October 1887)
Gustav Kirchhoff was a student of Gauss. In 1845 he announced Kirch-

hoff’s laws, extending the theory of Georg Simon Ohm. He graduated from the
University of Koenigsberg in 1847. In 1854 he became professor of physics at
the University of Heidelberg. In 1875 he became chair of mathematical physics
at the University of Berlin.

Notice that the Kirchhoff circuit laws in (2.1.16) and (2.1.10) are
not dependent on either space or time. From the point of view of Fara-
day’s law, (2.1.9) is true only when ∂B/∂t = µo∂H/∂t = 0 which is
for static fields with no time variation, or mathematically equivalent
to letting µo = 0 . Thus the speed of light can be thought of being
equal to infinity in circuit theory.

Since the space coordinates do not enter the circuit theory, the
spatial dimension of the layout of a circuit is theoretically zero (or the
speed of light is infinite). Notice also the inconsistencies in the circuit
theory. While Kirchhoff’s current and voltage laws are statements of
Ampère’s and Faraday’s laws when the time derivative is zero, the
circuit elements of inductor and capacitor are defined using the time
derivatives in the Faraday and Ampère laws. The circuit theory is
a limiting case of the Maxwell equations when the time variation is
small. In electromagnetic wave theory, this limit is equivalent to k ≈
0 ; therefore, it is applicable only when the frequency is very low or
when the wavelength is very large. As the physical dimensions become
comparable to the fraction of a wavelength, transmission line theory
should be used in place of circuit theory.

Consider a cylindrical wire with cross-sectional area A carrying
current I [Fig. 2.1.6a]. Let the cylinder be a conducting material with
conductivity σ and governed by Ohm’s law

J = σE (2.1.17)

Integrating Ampère’s law

∇×H = J

over the area of the cylinder A , we have from Stokes theorem

I =
∮
C
d l ·H = JA =

σA

�
V = GV (2.1.18)
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where G = σA/� is the conductance of the cylinder. The inverse of
the conductance is resistance. Thus

V = RI R =
�

σA
(2.1.19)

I

H d

A

C

I I

I

(a) (b)

A

�

σ

Figure 2.1.6 Displacement current.

According to Ampère’s law with the displacement current ∂D/∂t

∇×H =
∂

∂t
εoE

the current flowing in a wire creates a magnetic field H circulating
the wire. Now separate the wire into two pieces with a narrow gap of
separation d [Fig. 2.1.6b]. There is no conduction current J across
the gap. The gap area A is bounded by the closed loop C circulating
along the magnetic field lines. Integrating Ampère’s law over the gap
area A , we have from Stokes theorem

I =
∮
C
d l ·H =

d

dt

∫∫
dS · εoE =

εoA

d

dV

dt
= C0

dV

dt
(2.1.20)

where V = Ed is the voltage across the gap and C0 = εoA/d is the
capacitance of the gap area, which is a capacitor. The displacement
current sustained by this capacitor, which accompanies a time varying
voltage, assures the continuity of the current flow. Note that the capac-
itor is an opened circuit and direct current (dc) cannot flow, so current
continuity is assured by the displacement current only for time varying
fields. This represents a very practical consequence of the displacement
term in Maxwell’s theory, which preserves the continuity law.
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Electric Conductive Circuits

According to Faraday’s law, the sum of the voltage around a closed
loop C is equal to the time-varying magnetic flux linking the area
formed by the loop. Kirchhoff’s voltage law (KVL) states that the
voltage around a closed loop is equal to zero. Thus KVL is correct
only when ∇×E = 0 . It is important to note that if there is magnetic
field linking the loop, then KVL will be invalid.

The governing equations for electric conductive circuits are

∇× E = −∂B/∂t (2.1.21)

∇ · J = 0 (2.1.22)
J = σE (2.1.23)

For an electric conductive circuit as shown in Fig. 2.1.7, we find

Vs =
�

σA
I +

d

σoA
I = RI

Notice that the current density J in the conductive ring area is dif-
ferent from that in the gap area and

R =
�

σA
+

d

σoA

Vs
σo

σ

d
+

−

+

−

+

−
So

Figure 2.1.7 Electric circuit excited by voltage source.

The source voltage Vs may be generated by the EMF due to a time-
varying magnetic field. The KVL in (2.1.12) is modified to read∮

d � · E =
∑
n

Vn = EMF (2.1.24)

The Kirchhoff’s voltage law (KVL) is modified with the addition of
EMF in (2.1.24). The Kirchhoff’s current law (KCL) can also be mod-
ified by restoring the term −∂ρ/∂t in the right-hand side of (2.1.22).
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Magnetic Circuits

A magnetic circuit is characterized by the following equations:

∇×H = Js (2.1.25)

∇ ·B = 0 (2.1.26)
B = µH (2.1.27)

where Js includes both conduction and displacement currents. For a
magnetic circuit as shown in Fig. 2.1.8, we integrate (2.1.25) along the
closed contour C of the ring with permeability µ including the gap
with width d , we find

Is =
∮
C
d� ·H ≈ Ψl

µSo
+

Ψd
µoSo

= RΨ (2.1.28)

µo

µ

H

Is

C

dSo

Figure 2.1.8 Magnetic circuit excited by current loop.

where R is known as the magnetic reluctance, which is analogous
to the electric resistance in electric circuits. The loop current Is that
excites the magnetic circuit, is called the magnetomotive force (MMF),
which may also be caused by the displacement current for a time-
varying electric field integrated over the loop area.

We approximate the magnetic flux Ψ by

Ψ =
∫∫

dS ·B ≈ BSo (2.1.29)

where So is the cross-sectional area of the ring. By virtue of (2.1.26),
we see that the flux is continuous around the ring, thus in the magnetic
material with permittivity µ , Ψ = µHSo , and in the gap area Ψ =
µoHSo . The magnetic field strength H in the magnetic material is
different from that in the gap area.
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Problems

P2.1.1

Capacitance is a constant relating current I to the time variation of V .
Suppose the capacitor is charged to a total charge of Q . By integrating

I = C
dV

dt

over time for the charging period, find the voltage V in terms of the total
charge on the plate Q , and show that the capacitance C0 is a measure of
the ability to store electric charge.

P2.1.2

Consider a conductor of circular cross-section with radius R = 1 mm
carrying a current I = 1 Ampere, which is caused by movement of electric
charges q . Calculate the velocity of the charge particles, assuming a charge
density of N = 8.5× 1028 per cubic meter.

P2.1.3

The inner conductor of a coaxial line is made of copper of diameter
2a = 0.501 cm and the outer conductor is made of aluminum of diameter
2b = 1.393 cm. The dielectric between the inner and outer conductors is
polyethylene with ε = 1.5εo . What is the characteristic impedance of the
coaxial line? If the maximum voltage is 250 volt, what is the maximum electric
field in the line?

P2.1.4

The behavior of TEM lines is characterized by their inductance per unit
length L and capacitance per unit length C , and the same basic relationships
(Z0 =

√
L/C and k = ω

√
LC = ω

√
µ ε) apply to all such lines.

(a) For a coaxial line, let the separation distance between the two concentric
perfect conductors be d . Find the dimensions as a function of d for an
air-filled coaxial line with a characteristic impedance of 50 Ω .

(b) Repeat for a parallel-plate line.
(c) In designing a feeding system to drive a particular load, one finds that

an essential component is a coaxial line with a characteristic impedance
of 1× 104 Ω . Would this be a practical design?

(d) Would it be practical to have Z0 = 1 Ω for an air-filled coaxial line?

P2.1.5

The behavior of TEM lines is characterized by their inductance per unit
length, L , and capacitance per unit length, C , and the same basic relation-
ships (Z0 =

√
L/C and k = ω

√
L/C = ω

√
µε) apply to all such lines.

The values of L and C for any arbitrary cross-section can be computed
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using:

C =
Q

V
=

∮
εET · (−ẑ × d�)∫ 2

1

ET · ds
L =

Ψ
I

=

∫ 2

1

µHT · (ẑ × ds)∮
HT · d�

where ET and HT are the transverse field components in the x-y plane
(Ez = Hz ≡ 0). [Figure P2.1.5.1]

x

y

z

ds

d�

ε, µ

1

2

arbitrary contours
separating or 
connecting the 
two conductors..

Figure P2.1.5.1

(a) Show that LC = µε .
(b) Let the separation distance between the two perfect conductors be d .

Find the dimensions as a function of d for an air-filled coaxial line with
a characteristic impedance of 50 ohms.

(c) Repeat for a parallel plate line.
(d) In designing a feeding system to drive a particular load, one finds that

an essential component is a coaxial line with a characteristic impedance
of 1× 103 ohms. Would this be feasible design?

(e) Would it be practical to have Z0 = 1 Ω for an air-filled coaxial line? For
a parallel plate line?
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2.2 Time-Domain Transmission Line Theory

A. Wave Equations and Wave Solutions

Eliminating I(z, t) or V (z, t) from (2.1.7) and (2.1.8), we obtain

(
∂2

∂z2
− LC ∂2

∂t2

) [
V (z, t)
I(z, t)

]
= 0 (2.2.1)

which are the wave equations for V (z, t) and I(z, t) .
For waves propagating in the +ẑ direction, a solution for V (z, t)

is
V (z, t) = V0 cos (kz − ωt) (2.2.2)

Substituting in (2.2.1) we obtain the dispersion relation

k2 = ω2LC (2.2.3)

The velocity of propagation is

v =
ω

k
=

1√
LC

=
1√
µε

(2.2.4)

which is equal to the velocity of light. The relation
√
LC =

√
µε is seen

to hold for the parallel plate waveguide and the coaxial lines, which
is in fact generally true for a TEM wave propagating on a general
transmission line.

From (2.1.7) or (2.1.8), we find the corresponding I(z, t)

I(z, t) =

√
C

L
V0 cos (kz − ωt) =

1
Z0

V (z, t) (2.2.5)

We define the characteristic impedance of the line Z0 to be

Z0 =

√
L

C
(2.2.6)

which has the dimension of impedance and relates V and I as V =
Z0I . The solutions (2.2.2) and (2.2.5) represent a sinusoidal wave prop-
agating in the ẑ direction because as time increases, z must also in-
crease in order to maintain a phase kz − ωt = constant.
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For a voltage wave propagating in the −ẑ direction, we write the
solution as

V (z, t) = V0 cos (kz + ωt)

The associated current wave is then

I(z, t) = −
√
C

L
V0 cos (kz + ωt) = − 1

Z0
V (z, t) (2.2.7)

The negative sign in (2.2.7) can be understood by realizing that the
magnetic fields in a parallel plate waveguide for the negative travelling
wave is opposite to that of the positive travelling wave.

We symbolize a transmission line in general with two fat lines
[Fig. 2.2.1], on which voltage and current waves propagate with the
characteristic velocity (2.2.4). We use thin lines to connect the trans-
mission line to circuit elements. On the thin lines the voltage and
current waves propagate with infinite velocity, thus their length is of
no concern. In general, a voltage wave of arbitrary shape propagating
in the ẑ direction can be written as

V+(z, t) = f(z − vt) (2.2.8)

For a voltage wave propagating in the −ẑ direction, we have

V−(z, t) = f(z + vt) (2.2.9)

The corresponding current waves are

I+(z, t) =
1
Z0
f(z − vt) =

1
Z0
V+(z, t) (2.2.10)

I−(z, t) = − 1
Z0
f(z + vt) = − 1

Z0
V−(z, t) (2.2.11)

z

L, C

z = �

Figure 2.2.1 Transmission line representation.

The transmission line equations (2.1.7) and (2.1.8) are satisfied with
the above voltage and current solutions of general wave shape, and the
voltage and current are related by the characteristic impedance Z0 .
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Example 2.2.1 Consider a transmission line of length � that is open ended.
The solutions to the wave equation (2.2.1) for the voltage and current waves
are

V (z, t) = V+ cos(kz − ωt) + V− cos(kz + ωt) (E2.2.1.1)

I(z, t) = I+ cos(kz − ωt) + I− cos(kz + ωt) (E2.2.1.2)

The relations between the voltage and current waves traveling in the positive
and negative ẑ directions are given by (2.2.10) and (2.2.11):

I+(z, t) = V+(z, t)/Z0 (E2.2.1.3)
I−(z, t) = −V−(z, t)/Z0 (E2.2.1.4)

z

V

z = −� z = 0

d

Figure E2.2.1.1 Open-circuited transmission line as capacitor.

Let the origin of the z axis be placed at the right end of the transmission
line and the left end is connected to a source at z = −� . Since the current is
zero at z = 0 , we find I− = −I+ . We thus have

V (z, t) = V+[cos(kz − ωt) + cos(kz + ωt)] = 2V+ cos kz cosωt

I(z, t) = I+[cos(kz − ωt)− cos(kz + ωt)] = 2I+ sin kz sinωt

A capacitance C0 viewed from the input can be used to relate I and the time
derivative of V as I = C0dV/dt . We find, in the limit when −kz = k�� 1 ,

C0 = − I+
ωV+

tan kz ≈ 1
ωZ0

k� = ε
w�

d

for a parallel-plate waveguide. This corresponds to a capacitor of area w�
and separation d .

End of Example 2.2.1
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B. Transients on Transmission Lines

The transmission line equations that govern voltage V (z, t) and cur-
rent I(z, t) on the line are

∂

∂z
V (z, t) = −L ∂

∂t
I(z, t) (2.2.12)

∂

∂z
I(z, t) = −C ∂

∂t
V (z, t) (2.2.13)

Wave equations for V (z, t) and I(z, t) can be derived from (2.2.12)
and (2.2.13), which give(

∂2

∂z2
− LC ∂2

∂t2

) [
V (z, t)

I(z, t)

]
= 0 (2.2.14)

Solutions to the second order partial differential equation (2.2.14) for
V (z, t) can be written as

V (z, t) = V+(z − vt) + V−(z + vt) (2.2.15)

where V+(z − vt) represents a voltage wave propagating in the ẑ di-
rection and V−(z + vt) represents a voltage wave propagating in the
−ẑ direction. Both V+(z − vt) and V−(z + vt) can assume general
wave forms.

Substituting (2.2.15) in (2.2.14) yields

v = 1/
√
LC = 1/

√
µε (2.2.16)

which is equal to the speed of light.
We write the solution for I(z, t) as

I(z, t) = I+(z − vt) + I−(z + vt) (2.2.17)

From the transmission line equations (2.2.12) and (2.2.13), we find the
relationship between V+ and I+ , and V− and I− :

V+ = Z0 I+ (2.2.18)
V− = −Z0 I− (2.2.19)

where
Z0 =

√
L/C (2.2.20)

is the characteristic impedance of the transmission line. In (2.2.18) and
(2.2.19) we also ignore the arguments z−vt and z+vt as the subscript
+ in V and I denotes a wave traveling in the positive ẑ direction
with implied argument z − vt and the subscript − denotes a wave
traveling in the negative ẑ direction with implied argument z + vt .
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From Transient to Steady State

To study transients on a transmission line, consider the transmission
line with length � in Fig. 2.2.2 which has a resistive termination RL .
At z = � , the total voltage V and current I must satisfy the bound-
ary condition

V (z = �) = RL I(z = �) (2.2.21)

At z = 0 the line is connected to a dc voltage source V0 with internal
resistance Rs . The boundary condition at z = 0 is

V0 = V (z = 0) +Rs I(z = 0) (2.2.22)

Rs

V0

t = 0

z = 0

I(z = 0)

V (z = 0) Z0 =
√
L/C V (z= )

I

RL

z =

+

−

+

−

�

(z= )�

�

Figure 2.2.2 Transient on transmission line.

We turn on the voltage source at time t = 0 . Thus for t < 0 , V =
I = 0 . We also know that at steady state as t → ∞ , the voltage on
the line is

V =
RL

Rs +RL
V0

We now study the transient build-up of the voltage and current on the
transmission line.

At t = 0 a forward traveling wave V+ is generated. By the trans-
mission line equations, the corresponding current is I+ = V+/Z0 . The
boundary condition (2.2.22) gives

V0 = V+ +Rs I+ =
(

1 +
Rs
Z0

)
V+

This ẑ directed traveling wave has a speed of v = 1/
√
LC and will

reach the termination RL at t = �/v . We sketch

V+ =
V0

Rs/Z0 + 1
=

V0

Rsn + 1
(2.2.23)
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V+

V− = ΓLV+

z

z

z

V+

V+

V−

V ′
+

�

�

(a) 0 ≤ t < �/v

(b) �/v ≤ t < 2�/v

(c) 2�/v ≤ t < 3�/v

�

V

V

V

Figure 2.2.3 Transient build-up on a transmission line.

in Fig. 2.2.3a for 0 ≤ t < �/v .
At time t = �/v , the voltage wave reaches the termination at

z = � . The boundary condition (2.2.21) can only be satisfied by sending
back a −ẑ directed voltage wave V− with the corresponding current
wave I− = −V−/Z0 . The boundary condition (2.2.21) gives

V+ + V− = RL (I+ + I−) =
RL
Z0

(V+ − V−) (2.2.24)

The backward traveling wave V− is found to be

V− =
RLn − 1
RLn + 1

V+

We sketch both V+ and V− in Fig. 2.2.3b for �/v ≤ t < 2�/v . We
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define a reflection coefficient at the load to be

ΓL =
RLn − 1
RLn + 1

(2.2.25)

and write
V− = ΓL V+ (2.2.26)

In the sketch, we assume RL > Z0 .
At time t = 2�/v , the backward traveling wave reaches the source

end at z = 0 . A new forward traveling wave V ′
+ and I ′+ = V ′

+/Z0 is
generated. The boundary condition (2.2.22) requires that

V0 =
(
V+ + V− + V ′

+

)
+
Rs
Z0

(
V+ − V− + V ′

+

)

Making use of (2.2.24), we find

V ′
+ =

Rsn − 1
Rsn + 1

V− (2.2.27)

We define a reflection coefficient at the source

Γs =
Rsn − 1
Rsn + 1

(2.2.28)

and write
V ′

+ = Γs V− (2.2.29)

The total voltage on the line for 2�/v ≤ t < 3�/v is sketched in
Fig. 2.2.3c.

Repeating the process, we find the expression for the voltage on
the line after an infinite number of reflections to be

V = V+ + V− + V ′
+ + V ′

− + V ′′
+ + V ′′

− + · · ·

= V+ (1 + ΓL + ΓsΓL + ΓsΓ2
L + Γ2

sΓ
2
L + Γ2

sΓ
3
L · · ·)

= V+ (1 + ΓL)
[
1 + ΓsΓL + (ΓsΓL)2 + · · ·

]
= V+ (1 + ΓL)

1
1− ΓsΓL
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where we made use of the formula
∞∑
n=0

xn = 1
1−x as in our case |x| =

|ΓsΓL| < 1 . It is straightforward to show that

V =
V0

Rsn + 1
2RLn
RLn + 1

(Rsn + 1)(RLn + 1)
(Rsn + 1)(RLn + 1)− (Rsn − 1)(RLn − 1)

= V0
2RLn

2(Rsn +RLn)
=

RL
Rs +RL

V0

which is exactly equal to the steady state value as t→∞ .

We now consider the following special cases:

Case A) Open circuit
RL →∞ , matched source resistance Rs = Z0 .

Solution: The reflection coefficients are

Γs = 0; ΓL =
RL − Z0

RL + Z0
=

1− Z0/RL
1 + Z0/RL

= 1

as Z0/RL = 0 when RL →∞ . We find

V+ =
1
2
V0, V− = ΓL V+ =

1
2
V0, V ′

+ = 0

The results are sketched in Fig. 2.2.4. Steady-state is reached as t ≥
2�/v.

V+ = V0/2 z

V− = V0/2

V0

V+ = V0/2 z z

� � �

0 ≤ t < �/v �/v ≤ t < 2�/v 2�/v ≤ t
V V V

Figure 2.2.4 Transients on an open circuited line.

Case B) Short circuit
RL = 0 , matched source resistance Rs = Z0 .

Solution:

Γs = 0 ΓL =
RL − Z0

RL + Z0
= −1

V+ =
1
2
V0, V− = ΓL V+ = −1

2
V0, V ′

+ = 0
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The results are sketched in Fig. 2.2.5.

V+ = V0/2

V− = V0/2

V+ = V0/2 z

zz z

V+ = V0/2

V− = V0/2

V0

2
V0

2

0 ≤ t < �/v �/v ≤ t < 2�/v 2�/v ≤ t

�

� � �

� �

z z

V V V

V V V

Figure 2.2.5 Transients on a shorted circuit line.

Case C) Matched load impedance ZL = Z0 , and matched source
impedance Zs = Z0 .

Solution: The reflection coefficients are Γs = ΓL = 0 . We find

V+ =
1
2
V0, V− = 0

The results are sketched in Fig. 2.2.6.

V+ = V0/2

zz
�

0 ≤ t < �/v �/v ≤ t

�

V+ = V0/2

V V

Figure 2.2.6 Transient on a matched line.
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Example 2.2.2 Capacitance terminated transmission line and matched
source resistance Rs = Z0 , as shown in Fig. E2.2.2.1.

V0

t = 0

z

V

I

−

+

L

L
Z0 C

z = �

Z0

Figure E2.2.2.1 Transmission line with capacitive termination.

Solution: The source reflection coefficient is Γs = 0 . The boundary condi-
tion at z = � with the capacitance termination is

IL = C
dVL
dt

V+ z

(a) 0 ≤ t < �
v (b) �

v ≤ t < 2�
v

�

V0

2
V0

2

V0

2
V0

2
V+

V−

z

�

z

�

z

�

V

V

V

V

Figure E2.2.2.2 Transient on capacitor terminated line.

For 0 ≤ t < �/v , the waveform is shown in Fig. E2.2.2.2a. At t = �/v , a back-
ward traveling wave V− is generated. The total load voltage is VL = V++V−
and the total load current IL = (V+ − V−)/Z0 . The boundary condition
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at z = � requires that V+ − V− = Z0C
dVL
dt which yields a differential equa-

tion for VL :

dVL
dt

+
1

Z0C
VL =

2
Z0C

V+

The particular solution is VL = 2V+ . The homogeneous solution for �/v ≤ t
is Ae−t/Z0C . At t = �/v , VL = 0 ; it follows that A = −2V+e

�/vZ0C . We
thus have

VL = 2V+

[
1− e−(t−�/v)/Z0C

]
u(t− �/v)

where u(t− �/v) is a step function with u(t− �/v) = 1 for t− �/v ≥ 0 and
u(t− �/v) = 0 for t− �/v < 0 . We thus have

V− = VL − V+ = V0

[1
2
− e−(t−�/v)/Z0C

]
u(t− �/v)

The reflected wave V− is sketched in Fig. E2.2.2.2b. It is seen that the
capacitor first behaves as a short circuit and becomes open circuited when
steady state is reached.

End of Example 2.2.2

Example 2.2.3 Inductance terminated transmission line and matched
source resistance Rs = Z0 , as shown in Fig. E2.2.3.1.

Rs

V0

t = 0

z

V

I

−

+

L

L
Z0= L

z = �

Figure E2.2.3.1 Transmission line with inductive termination.

Solution: The source reflection coefficient is Γs = 0 . The boundary condi-
tion at z = � with the inductor termination is

VL = L
dIL
dt

For 0 ≤ t < �/v , the waveform is sketched in Fig. E2.2.3.2a. At t = �/v ,
a backward traveling wave V− is generated. The total load current is IL =
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I++I− and the total load voltage VL = Z0(I+−I−) . The boundary condition
at z = � requires that

Z0(I+ − I−) = L
dIL
dt

which yields a differential equation for IL :

dIL
dt

+
Z0

L
IL = 2

Z0

L
I+

At t = �/v , IL = 0 ; the solution is

IL = 2I+
[
1− e−Z0(t−�/v)/L

]
and

I− = IL − I+ = 2I+
[1
2
− e−Z0(t−�/v)/L

]
We thus have

V− = −Z0I− = −V0

[1
2
− e−Z0(t−�/v)/L

]
u(t− �/v)

The reflected wave V− is sketched in Fig. E2.2.3.2b. It is seen that the induc-
tor first behaves as an open circuit and becomes short circuited when steady
state is reached.

V+ V+

V−
z

�

z
�

z
�

z
�

V0

2
V0

2

V0

2
V0

2

V

V

V

V

(a) 0 ≤ t < �
v (b) �

v ≤ t < 2�
v

Figure E2.2.3.2 Transient on an inductor terminated line.

End of Example 2.2.3
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Example 2.2.4 A common method for generating short, high voltage pulses
is to use a charged transmission line with a fast switch. The basic idea of such
devices is illustrated in Fig. E2.2.4.1.

V0

R� Zo
Zo =

√
L/C RL = Zo

t = 0

�

Figure E2.2.4.1

(a) The line has been charged to a voltage V0 by a dc high voltage source
with internal resistance R� Z0 . If the switch closes at t = 0 with the
line fully charged to V = V0 , sketch and dimension the voltage VL(t)
across the load.

(b) If the transmission line is an air-filled coaxial cable with Z0 = 50 Ω , how
long should the line be to give a voltage pulse of 0.1µs duration? How
big must the supply voltage be to deliver one joule of total pulse energy
to the load RL ?

(c) To see if the above is physically reasonable, calculate the smallest possi-
ble inner radius of the air-filled 50 Ω coaxial line with 100 kV charging
voltage, if the breakdown electric field is taken as 3× 106 V/m.

Solution:

(a) At t = 0 , a backward traveling wave V− is generated to satisfy the
boundary condition at RL ,

V0 + V− = −V−
Z0

RL

which gives V− = −V0/2 . The voltage VL at RL is

VL = V0 + V− =
V0

2
The load voltage VL(t) is shown in Fig. E2.2.4.2.

V−

VL
+

−

IL = −V−
Z

RL = Zo

VL(t)

Vo/2

t
2�/v

Figure E2.2.4.2
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(b)

2�
v

= 10−7 s gives � = 15 m(
V0

2

)2
1
Z0

t = 1 J gives V0 = 44.7 kV

(c) For a coaxial line we have the following:

Z0 = η
ln(b/a)

2π
= 50 Ω gives ln

(
b

a

)
=

5
6

E(ρ, z) = ρ̂
V (z)

ρ ln(b/a)
gives

V0

a ln(b/a)
≤ 3× 106 V/m

this yields b = 2.3a and a ≥ 4 cm.
End of Example 2.2.4

Example 2.2.5 A modified form of the scheme in Example 2.2.4 is the
Blumlein (Alan Dower Blumlein 1903–1942) line as shown in Fig. E2.2.5.1.
Both lines are of length � . Sketch and dimension VL(t) . What is the advan-
tage of this scheme?

V0

R� Z

t = 0Z

VL

+−

RL = 2Z

z

Z

� �

00

0

0

Figure E2.2.5.1 Blumlein line.

Solution:
At t = 0 , a backward traveling wave V− = −V0 is generated at z = � .
At t = �/v , V− reaches the load RL = 2Z0 at z = 0 . A reflected wave

V ′
+ is generated on the transmission line at z = 0+ . The equivalent circuit is

shown in Fig. E2.2.5.2. The current at RL is IL = I ′++I− = (V ′
+−V−)/Z0 =

V0/2Z0 , and the voltage at RL is VL = ILRL = V0 . The boundary condition
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to be satisfied at z = 0+ is V− + V ′
+ = −IL(RL + Z0) = (V− − V ′

+)(RL +
Z0)/Z0 , which gives V ′

+ = ΓV− , where the reflection coefficient is

Γ =
3Z0 − Z0

3Z0 + Z0
=

1
2

Thus

V ′
+ = ΓV− = −V0/2 at z = 0+

V−

V+

VL

Zo
2Zo

I

+−

Zo
I

′

V0 V−

+

−
+

z = 0

L

L

+

Figure E2.2.5.2

At z = 0− , a wave V ′
− is generated. By KVL, V0 + V ′

− = V0 + V− +
V ′

+ + VL , thus

V ′
− = V ′

+ = −V0/2 at z = 0−

At t = 2�/v , V ′
− generates a reflected wave V ′′

+ at z = −� , which has
a reflection coefficient Γ = 1 . Thus

V ′′
+ = V ′

− = −V0/2 at z = −�

At the same time t = 2�/v , V ′
+ generates a reflected wave V ′′

− at z = � ,
which has a reflection coefficient Γ = −1 . Thus

V ′′
− = −V ′

+ = V0/2 at z = �

At t = 3�/2v , V ′′
+ and V ′′

− reach the load at z = 0 . By KVL,

V0 + V ′
− + V ′′

+ = V0 + V− + V ′
+ + V ′′

− + VL

which gives VL = 0 . The newly generated pair of waves V ′′′
+ = V ′′′

− = V0/4
will again give VL = 0 at later times. Therefore, VL = V0 for the duration
from t = �/v to t = 3�/v . The advantage of the Blumlein line is that the
pulse amplitude is V0 instead of V0/2 as shown in Example 2.2.4.

End of Example 2.2.5
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C. Normal Modes and Natural Frequencies

Consider the transmission line shown in Fig. 2.2.7. The left-hand-side
at z = 0 is short circuited and the right-hand-side at z = � is an open
circuit. The voltage and current waves on the line are governed by the
transmission line equations

∂

∂z
V (z, t) = −L ∂

∂t
I(z, t) (2.2.30)

∂

∂z
I(z, t) = −C ∂

∂t
V (z, t) (2.2.31)

with the boundary conditions

V (z = 0) = 0 (2.2.32)

I(z = �) = 0 (2.2.33)

L, C

z = 0

z

z = �

Figure 2.2.7 Transmission line with V (z = 0) = 0 and I(z = �) = 0.

Solutions to (2.2.30) and (2.2.31) for V (z, t) and I(z, t) are

V (z, t) = A sin(kz − ωt) +B sin(kz + ωt) (2.2.34)

I(z, t) =
1
Z0

[A sin(kz − ωt)−B sin(kz + ωt)] (2.2.35)

with the dispersion relation k = ω
√
LC. Boundary condition (2.2.32)

yields B = A . Solutions (2.2.34) and (2.2.35) become

V (z, t) = V sin kz cosωt (2.2.36)

I(z, t) = − V
Z0

cos kz sinωt (2.2.37)

where V = 2A . The boundary condition (2.2.33) gives

cos k� = 0 (2.2.38)
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From (2.2.38) we find the natural spatial frequency of the nth mode

kn =
nπ

2�
n : odd (2.2.39)

where we use subscript n to indicate that k now takes on only a
discrete set of values. The corresponding natural temporal frequency
of the nth mode is

ωn =
nπ

2�
√
LC

=
nπ

2
v

�
n : odd (2.2.40)

where v = 1/
√
LC is the characteristic velocity of the line.

The voltage distribution of the nth mode along the line is

Vn(z, t) = Vn sin
nπ

2
z

�
cos

nπ

2
vt

�
(2.2.41)

n = 1

n = 3

n = 5

t = 0 t = 2l
√
LC/5

z = 0 z = 0z = � z = �

Figure 2.2.8 Normal modes V1, V3, V5 at times t = 0 and 2�/5v.

We now illustrate Vn(z, t) at various times for the different modes. In
Fig. 2.2.8 we plot the first three modes at times t = 0 and t = 2�/5v .
We observe that since the z-dependence is fixed, the amplitudes of
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each mode varies with time; the higher the mode number, the higher
the spatial variation and the higher the temporal frequency of am-
plitude variation. The arrows indicate the direction of the amplitude
dependence for increasing t .

D. Initial Value Problem

Consider the transmission line in Fig. 2.2.9. The line is charged to a
unit voltage for t < 0 . At t = 0 , the left-hand-side at z = 0 is
short circuited. We wish to investigate the waveform evolution after
the switch is closed.

L, C

z = 0

z

t = 0

V
t < 0

1

z = �

z = �

Figure 2.2.9 Initial value problem.

We have learned the normal modes of the line with a short circuit on
the left at z = 0 and an open circuit on the right at z = � . Each mode
satisfies the transmission line equations and boundary conditions. We
express V (z, t) as a superposition of all these modes with different
mode amplitudes Vn .

V (z, t) =
∞∑
n=1
n odd

Vn sin
nπ

2
z

�
cos

nπ

2
vt

�
(2.2.42)

The total voltage V (z, t) also satisfies the transmission line equations
and the boundary conditions. The mode amplitudes Vn are to be de-
termined from the initial condition.
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The initial condition is V (z, t = 0) = 1. Substituting in (2.2.42)
we have

1 =
∞∑
n=1
n odd

Vn sin
nπz

2�

= V1 sin
πz

2�
+ V3 sin

3πz
2�

+ V5 sin
5πz
2�

+ · · ·

To find V5 , for instance, we multiply both sides by sin 5πz
2� and inte-

grate from z = 0 to z = � . All terms on the right-hand-side become
zero after the integration except the term V5 sin 5πz

2� . We find

∫ �

0
dz sin

5πz
2�

= V5

∫ �

0
dz sin2 5πz

2�
=
�

2
V5

Thus

V5 =
2
�

∫ �

0
dz sin

5πz
2�

In general, we have

Vn =
2
�

∫ �

0
dz sin

nπz

2�
=

4
nπ

[
− cos

nπz

2�

]�
0

=
4
nπ

Therefore

V (z, t) =
∞∑
n=1
n odd

4
nπ

sin
nπz

2�
cos

nπ

2
vt

�
(2.2.43)

is the solution for the voltage on the line for t ≥ 0 .
We now study the solution for several different times at t = 0 ,

t = �/2v , t = �/v , and t = 3�/2v . In Fig. 2.2.10a–d, we sketch the
sum of the first three terms.

At t = 0 , we have

V (z, t = 0) =
4
π

sin
πz

2�
+

4
3π

sin
3πz
2�

+
4
5π

sin
5πz
2�

+ · · ·

The sum over all of the terms should give back the initial condition of
V (z, t ≤ 0) = 1 .
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a) t = 0 b) t = �
√
LC/2

c) t = �
√
LC

z = 0

d) t = 3�
√
LC/2

z = �z = 0 z = �

Figure 2.2.10 Superposition of normal modes.

At t = �/2v , we have

V (z, t = �/2v) =
4
π

sin
πz

2�
cos

π

4
+

4
3π

sin
3πz
2�

cos
3π
4

+
4
5π

sin
5πz
2�

cos
5π
4

+ · · ·

At t = �/v , we have V (z, t = �/v) = 0 .

At t = 3�/2v , we have

V (z, t = 3�/2v) =
4
π

sin
πz

2�
cos

3π
4

+
4
3π

sin
3πz
2�

cos
9π
4

+
4
5π

sin
5πz
2�

cos
15π
4

+ · · ·

We see that the wave travels back and forth along the line.
If we add up all terms of the series for V (z, t) , we should obtain

the result in Fig. 2.2.11. This is seen by solving the problem in the
time-domain as illustrated in Section 4.3. At time t = 0 when the
switch is closed, a positive traveling wave is generated to satisfy the
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a) t = 0

b) t = �
√
LC
2

c) t = �
√
LC

d) t = 3�
√
LC

2

b) t = �
√
LC
2

e) t = �
√
LC

2
e) t = �

√
LC

2

f) t = �
√
LC



g)



t = �
√
LC

2



Figure 2.2.11 Solution to the initial value problem.
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boundary condition of V = 1+V+ = 0 at z = 0 . This yields V+ = −1
for the time period 0 ≤ t < �/v . The result is Fig. 2.2.11b. At t = �/v ,
the positive traveling wave V+ has reached the open circuit end and
the boundary condition calls for the generation of a negative traveling
wave such that the total current I = (V+ − V−)/Z0 = 0 . Thus V− =
V+ = −1 for the time period �/v ≤ t < 2�/v and the result is shown
in Fig. 2.2.11d. The reflection coefficient Γ = −1 at z = −� gives
V ′

+ = 1 for the period 2�/v ≤ t < 3�/v and the reflection coefficient
Γ = −1 at z = 0 gives V ′

− = 1 for the period 3�/v ≤ t < 4�/v . The
results are shown in Fig. 2.2.11e-g.

Example 2.2.6
Consider a transmission line resonator with length l and terminated

with impedances Rs and Rl as shown in Figure E2.2.6.1.

z = 0 z = �
z

Zo LRRS

Figure E2.2.6.1 Transmission line resonator.

For open-circuited resonators, RS → ∞ and RL → ∞ , we find that the
resonance spatial frequencies are k = nπ/l with n = 0, 1, 2, ..... and the
voltages and currents are

V (z) = V0 cos
nπz

l

I(z) = I0 sin
nπz

l

The currents are zero at z = 0 and z = l . The n = 0 mode has zero current
and a constant voltage on the line.

For short-circuited resonators, RS = RL = 0 , the resonance spatial
frequencies are k = (2n+ 1)π/2l with n = 0, 1, 2, ..... and the voltages and
currents are

V (z) = V0 cos
(2n+ 1)πz

2l

I(z) = I0 sin
(2n+ 1)πz

2l

The voltages are zero at z = 0 and z = l .
End of Example 2.2.6
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Problems

P2.2.1
An inductance L0 is defined as

V = L0dI/dt

Consider a transmission line of length � that is short circuited.

z

V

z = −� z = 0

d

Figure P2.2.1.1 Short-circuited transmission line as inductor.

In the limit when −kz = k�� 1 , find Lo .

P2.2.2
Model a stripline as a parallel-plate transmission line with d = 3.16 mm

and w = 3.76 mm, separated by dielectric with permittivity ε = 2.5εo . The
electric and magnetic fields in the stripline are

Ex (z, t) = E0 cos(kz − ωt)
Hy (z, t) = (E0/η) cos(kz − ωt)

(a) What is the characteristic impedance of the line?
(b) What are the voltage and current on the line?
(c) What is the time-averaged power on the line?
(d) If the breakdown electric field of the dielectric field is 2× 107 V/m and

the maximum time-averaged power on the line is 100 kW, will the corre-
sponding maximum electric field strength be below the breakdown field
strength?

P2.2.3
Consider an air-filled TEM transmission line with length l as shown in

Figure P2.2.3.1. The voltage of the source is Vo and the resistor at the source
is Rs = Z0 , where Z0 is the characteristic impedance of the line. The switch
at the load is on for t < 0 , the voltage and current on the line are stationary.

At t = 0 , the switch at z = 0 is suddenly opened.
(a) Sketch the voltage on the line at t = l/2v , where v is the velocity of

wave on the line. Indicate the value of the voltage on the line.
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Zo
t = 0

Rs

Vo

=Zo

z = 0 z = l
z

+

−

Figure P2.2.3.1

(b) Find the time t (> 0) , so that the voltage on the line becomes constant.
What is the value of this constant voltage?

P2.2.4
A time-domain reflectometer (TDR) is used to detect fault on a transmis-

sion line, which could be an underground or undersea cable being damaged at
a distance �f from the generator. Model the fault as a shunt resistance Rf .
A unit step voltage is sent from the generator down the line at time t = 0 .
At time t = 20µs , the voltage reads V = 0.5 V instead of V = 1 V which
lasted from t = 0 to t = 20µs . Assuming that the insulating material for
the transmission line has a relative permittivity of ε = 2.25 and its charac-
teristic impedance is Z0 = 90 Ω , determine the distance of the fault from the
generator �f and Rf .

P2.2.5

A break in a high-voltage DC power line occurs at z = 0 at time t = 0
(because of a falling tree) [Figure P2.2.5.1]. The line was carrying a DC
voltage Vo and DC current Io before the break occurred. The tree is non-
conducting.

Power line

Wind

Power line

Tree

Figure P2.2.5.1 DC power line broken by a tree.

(a) Sketch I and V on the line at some time t after the break has oc-
curred, but before any reflections from the source and load ends. The
characteristic impedance of the line is Z0 .

(b) Consider a 600 kV line, carrying a power of 103 megawatts, with a
characteristic impedance of 500 Ω (two-wire line). What is the peak
voltage on the line after the break occurs?

P2.2.6
A very long transmission line with characteristic impedance Z0 and wave

velocity v = c has a shunt resistor of unknown value RL at an unknown
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location z = � . A measurement of the voltage at the input, V0(t) , with a unit
step generator applied to the line, yields the result shown in Fig. P2.2.6.1.

+

− V0(t)
Z0 , v

0 z

Z0

µ(t)

V+ V ′
+

RL

1
2
1
4

∞

t10−8 sec

V−

V0(t)

z = �

Figure P2.2.6.1

(a) What is � ?
(b) What is RL ?
(c) Sketch the voltage and current distribution on the line at the time t =

1.5�/v.

P2.2.7
Consider a transmission line circuit shown in the following figure. At

t = 0 , the switch is disconnected from Position A and connected to Position
B.

Vs = 1 Volt

t = 0

+

−

A B

z = 0 z = l

3ZoZo

Zo

Figure P2.2.7.1

(a) Find the reflection coefficient at the load (at z = l).
(b) Make labelled sketches of the total voltage V (z) on the line, 0 < z < l ,

at
(i) t < 0
(ii) t = l/2v
(iii) t = 2l/v

where v represents the velocity of propagation on the transmission line.
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P2.2.8
A resonator is built using a section of coaxial cable as shown in Fig-

ure P2.2.8.1, where the ends are short circuits.

a
b

�

εo µo

Figure P2.2.8.1

(a) Find the lowest resonant frequency ωo of the resonator.
(b) Find the length � for a resonator with a frequency of 1.5 MHz.
(c) Introduce a gap of d (d � �) at the end of the resonator as shown in

Figure P2.2.8.2 and model it as a transmission line with a capacitive
load, Co . What is Co ?

a
b

�

εo µo
d

Figure P2.2.8.2

(d) Find the lowest resonant frequency ωo of the modified resonator in terms
of a , b , d and � .

(e) Find the length � for a resonator with a frequency of 1.5 MHz.

P2.2.9
(a) Consider a polyethylene (ε = 2.25ε0) filled coaxial cable with an inner

diameter of 0.81 mm and an outer diameter of 2.946 mm. Assume the
E-field is E = ρ̂E0/r and the H -field is H = φ̂E0/ηr . Derive the per-
unit-length capacitance and inductance of the coaxial cable and show
that the impedance of the transmission line is 60√

εr
ln b

a . What is the
corresponding impedance for the given parameters?

(b) The attenuation due to finite conductivity is proportional to Pd/2Pf ,
where Pd is the power dissipated and Pf is the power flow along the
transmission line. Show that for coaxial cable, it is proportional to ( 1

a +
1
b )/ ln b

a . Show that for minimum loss, x = a/b is determined from
xex+1 = 1 , which yields x = 0.2785 . What is the impedance?
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(c) Model the coaxial cable as a parallel plate waveguide with periodic
boundary and show that the cutoff frequency of the next higher-order
waveguide mode above TEM is: fc � vTEM

π(a+b) , where vTEM is the ve-
locity of the TEM waves in the medium that fills the space between the
conductors. (Hint: Use the mean radius for the effective circumference).
Find fc of the given coaxial cable.

(d) A section of coaxial cable is closed at both end [Figure P2.2.9.1], what
is the lowest resonant frequency?

L,C

l

a

a′

δ

Figure P2.2.9.1

(e) A gap with distance δ is introduced at one end of the resonator [Fig.
P2.2.9.1]. What is Co ? Find the new fundamental natural frequency of
the transmission line.

P2.2.10
A lossless transmission line of length � is open-circuit at both ends

Determine the normal mode voltage and currents on the line, normalized
such that Vn(z = 0) = 1 . What are the corresponding natural frequencies?
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2.3 Sinusoidal Steady State Transmission Lines

A. Sinusoidal Steady State

At sinusoidal steady state with angular frequency ω , voltage V (z, t)
and current I(z, t) can be written as

V (z, t) = Re{V (z)ejωt} (2.3.1)
I(z, t) = Re{I(z)ejωt} (2.3.2)

where V (z) = A(z)ejα(z) and V (z) = B(z)ejβ(z) are called phasors
which are complex functions of z only.

The transmission line equations
∂

∂z
V (z, t) = −L ∂

∂t
I(z, t) (2.3.3)

∂

∂z
I(z, t) = −C ∂

∂t
V (z, t) (2.3.4)

can be cast in complex form by using (2.3.1) and (2.3.2). We find
∂

∂z
V (z) = −jωLI(z) (2.3.5)

∂

∂z
I(z) = −jωCV (z) (2.3.6)

where V (z) and I(z) are both complex.
Eliminating V (z) and I(z) from (2.3.5) and (2.3.6), we obtain(

∂2

∂z2
+ ω2LC

) {
V (z)

I(z)

}
= 0 (2.3.7)

The general solutions for V (z) and I(z) are

V (z) = V+e
−jkz + V−e

jkz (2.3.8)

I(z) =
1
Z0

(V+e
−jkz − V−ejkz) (2.3.9)

The first term represents a wave traveling in the +ẑ direction and the
second term a wave traveling in the −ẑ direction. Substituting (2.3.8)
and (2.3.9) in (2.3.7), we find the dispersion relation

k2 = ω2LC (2.3.10)

Substituting (2.3.8) and (2.3.9) in (2.3.5) and (2.3.6), we find

Z0 =
√
L/C (2.3.11)

as the characteristic impedance of the transmission line.
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B. Complex Impedance

Impedance is defined as the ratio of voltage to current.

Z =
V

I
(2.3.12)

In electric circuits, capacitance Co is defined by the relation

I(t) = Co
dV (t)

dt
(2.3.13)

and the inductance Lo by the relation

V (t) = Lo
dI(t)

dt
(2.3.14)

we write

V (t) = Vo cos(ωt + α) = Re{Voe
jαejωt} = Re{V ejωt} (2.3.15)

I(t) = Io cos(ωt + β) = Re{Ioe
jβejωt} = Re{Iejωt} (2.3.16)

Eqs. (2.3.13) and (2.3.14) become

Re{Iejωt} = CoRe{jωV ejωt} (2.3.17)

Re{V ejωt} = LoRe{jωIejωt} (2.3.18)

which gives, omitting the time convention ejωt

I = jωCoV (2.3.19)

V = jωLoI (2.3.20)

The impedances for the capacitance and the inductance are thus

Z =
1

jωCo
(2.3.21)

Z = jωLo (2.3.22)

A complex impedance is written as Z = R + jX. The real part R is called the
resistance, and its imaginary part X is called the reactance. Thus capacitances
and inductances are reactive elements. Admittance is the inverse of the impedance
Y = 1/Z = G+ jB. The real part G is called conductance and imaginary part B is
called susceptance. For a resistor R, an inductor L0, and a capacitor C0 in series,
the impedance is Z = R + jωL0 − j/ωC0.
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Complex Reflection Coefficient at the Load
Consider the transmission line in Fig. 2.3.1 which is terminated

with a load impedance ZL. The convention for transmission lines at
sinusoidal steady state is to put the coordinate zero at the load. For a
line of length � , the load is at z = 0 and the generator is at z = −� .

We write the general solution to the transmission line equations
as

V (z) = V0(e−jkz + ΓLejkz) (2.3.23)

I(z) =
V0

Z0
(e−jkz − ΓLejkz) (2.3.24)

ΓLV0 e jkz

ZL

z = 0
z

V0 e
−jkz

z = −�

Figure 2.3.1 Transmission line with termination ZL.

We define a generalized impedance Z(z) as

Z(z) =
V (z)
I(z)

= Z0
e−jkz + ΓLejkz

e−jkz − ΓLejkz
(2.3.25)

where Z(z) is a complex function of z instead of a simple complex
number as in circuit theory. At z = 0 , Z(z = 0) = ZL , we have

ZL =
V (0)
I(0)

= Z0
1 + ΓL
1− ΓL

(2.3.26)

which gives

ΓL =
ZL − Z0

ZL + Z0
=
ZLn − 1
ZLn + 1

(2.3.27)

We call ΓL the load reflection coefficient, where

ZLn = ZL/Z0 (2.3.28)
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is the normalized load impedance.
Consider the following three cases:

Case A) For an open circuit load, ZL →∞ . We find

ΓL =
1− 1/ZLn
1 + 1/ZLn

= 1

Case B) For a short circuit load, ZL = 0 , and we find ΓL = −1 .
Case C) For a matched load, ZL = Z0 . We have ZLn = 1 and ΓL = 0 .

Thus for a matched load, there is only a forward traveling wave and
no reflected backward traveling wave. All the power will be delivered
to the load impedance.

Complex Input Impedance

The generalized impedance Z(z) in (2.3.25) as defined for every point
z on the line is

Z(z) =
V (z)
I(z)

= Z0
e−jkz + ΓLejkz

e−jkz − ΓLejkz

= Z0
(ZLn + 1)e−jkz + (ZLn − 1)ejkz

(ZLn + 1)e−jkz − (ZLn − 1)ejkz

= Z0
2ZLn cos kz − j2 sin kz
−j2ZLn sin kz + 2 cos kz

= Z0
ZLn − j tan kz
1− jZLn tan kz

(2.3.29)

At the load z = 0 and Z(z = 0) = ZL is the load impedance. At the
input terminal, z = −� , Z(z = −�) is the input impedance. We find

Z(−�) =
V (−�)
I(−�) = Z0

ZLn + j tan k�
1 + jZLn tan k�

(2.3.30)

Case A) For an open circuit load (ZLn → ∞) we find the input
impedance

Z(−�) = Z0
1 + j tan k�/ZLn
1/ZLn + j tan k�

=
Z0

j tan k�
(2.3.31)



184 2. Transmission Lines

d

w

�

Figure 2.3.2 Parallel-plate transmission line with length �.

When k�� 1 , we can approximate tan k� ≈ k� . As k� = 2π�/λ, k��
1 means the transmission length � is very small compared to a wave-
length λ . Consider the parallel-plate transmission line with length �
[Fig. 2.3.2]. The capacitance per unit length is C = ε w/d and the to-
tal capacitance is C0 = ε w �/d . We see that the input impedance
becomes, making use of the dispersion relation k = ω

√
LC , and

Z0 =
√
L/C ,

Z(−�) =

√
L

C

1
jω
√
LC�

=
1

jωC0

This is the impedance of a capacitor in circuit theory. In general, an
impedance is expressed in terms of the resistance R and the reactance
X :

Z = R+ jX

The impedance is capacitive if X < 0 and inductive if X > 0 . For
the above parallel-plate transmission line X = −1/ωC0 is smaller than
zero and thus the reactance is capacitive.

As � increases, we plot (2.3.31) in Fig. 2.3.3. It is observed that
for π/2 < k� < π or λ/4 < � < λ/2 , the parallel plates are in
fact inductive. Whether the input impedance of the parallel plates is
capacitive or inductive critically depends on their length.

This is an important illustration of why ordinary circuit theory,
which is a limiting case of the general theory, will not be valid at
high frequencies or when k� is not much less than one. The input
impedance of a transmission line repeats itself every half wavelength,
or k� = nπ . A capacitive input impedance becomes inductive and an
inductive input impedance becomes capacitive when � is increased by
multiples of π/k = λ/2 .
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Inductive

Capacitive

π/2 π 2π3π/2 5π/2 3π

X( )−�

k�

Figure 2.3.3 Reactance for open circuit transmission line.

Case B) For a short circuit load, ZLn = 0 . We find the input impedance

Z(−�) = jZ0 tan k�

The reactance X = Z0 tan k� is sketched in Fig. 2.3.4.

π/2 π 2π3π/2 5π/2 3π

X = Z0 tan k�

k�

Figure 2.3.4 Reactance for short circuit transmission line.

Case C) For a matched load, ZLn = 1 . We find the input impedance
Z(−�) = Z0 . Thus a matched line has a generalized impedance equal
to the characteristic impedance at every point on the line.
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C. Time Average Power

From (2.3.23) and (2.3.24)

V (z) = V0(e−jkz + ΓLejkz) (2.3.32)

I(z) =
V0

Z0
(e−jkz − ΓLejkz) (2.3.33)

we assert that, assuming V0 is real and ΓL = |ΓL|ejγ ,

V (z, t) = Re{V (z)ejωt}
= V0(cos(ωt− kz) + |ΓL| cos(ωt− kz + γ)) (2.3.34)

I(z, t) = Re{I(z)ejωt}

=
V0

Z0
(cos(ωt− kz)− |ΓL| cos(ωt− kz + γ)) (2.3.35)

compose of waves traveling in the ẑ and −ẑ directions.
The instantaneous power is

P (z, t) = V (z, t)I(z, t)

=
V 2

0

Z0
{V0(cos2(ωt− kz)− |ΓL|2 cos2(ωt− kz + γ))} (2.3.36)

The complex power is defined as

V (z)I∗(z) =
V 2

0

Z0
{1− |ΓL|2 + [ΓLe−jkz − (ΓLejkz)∗]} (2.3.37)

The time average power is

< P > =
1
2π

∫ ∞

0
d(ωt)P (z, t) =

V 2
0

2Z0
{1− |ΓL|2}

=
1
2
Re{V I∗} (2.3.38)

Example 2.3.1 Applying (2.3.38) to (2.3.8) and (2.3.9), we find

< P > =
1

2Zo
Re{V+V

∗
+ − V−V ∗

− − (V+V
∗
−e

j2kz − V−V ∗
+e

−j2kz)}

=
1

2Zo
Re{V+V

∗
+ − V−V ∗

−}

as (V+V
∗
−e

j2kz − V−V ∗
+e

−j2kz) is purely imaginary. Thus the power at any
point is equal to the difference between the forward and backward travelling
waves.

End of Example 2.3.1
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D. Generalized Reflection Coefficient

A generalized reflection coefficient Γ(z) for every point z on the trans-
mission line can be defined from (2.3.32)

V (z) = V0

(
e−jkz + ΓLejkz

)
= V0e

−jkz [1 + Γ(z)] (2.3.39)

where
Γ(z) = ΓLej2kz (2.3.40)

is the generalized reflection coefficient.
The magnitude |ΓL| of the load reflection coefficient

ΓL =
ZLn − 1
ZLn + 1

is no greater than one, |ΓL| ≤ 1 , when the characteristic impedance
Z0 is real. From (2.3.40) we also have |Γ(z)| ≤ 1 for all z .

|1 + Γ(z)|

Γ(z)

1
Re Γ(z)

Im Γ(z)

z decreasing
towards generator

Figure 2.3.5 Motion of Γ(z) on complex Γ-plane.

We interpret (2.3.40) by means of a complex Γ-plane plot on which
we draw a line representing Γ(z) at point z [Fig. 2.3.5]. The magni-
tude of the voltage is proportional to the length of the line |1+Γ(z)| . As
z decreases, the point is moving towards the generator or the source,
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z = 0

z

Vmin

| V0 |

Vmax

|V(z)|

ZL

λ/4z = −�

z = −λ/2

z

zz

Figure 2.3.6 Plot of voltage standing wave pattern.

remembering the convention that the load is at z = 0 and the source
or generator is at z = −� . In Fig. 2.3.6, we plot the magnitude

|V (z)| = |V0||1 + Γ(z)|

The result is called a voltage standing wave pattern. Notice the pattern
is periodic and repeats itself for every 2kz = 2π or a distance of λ/2 .
The maximum voltage amplitude occurs at points when Γ(z) = |ΓL| ,
|V (z)| = |V0|(1 + |ΓL|) . The minimum voltage amplitude occurs at
points when Γ(z) = −|ΓL| , |V (z)| = |V0|(1 − |ΓL|) . We define a
voltage standing wave ratio (VSWR) as

VSWR =
Vmax
Vmin

=
1 + |ΓL|
1− |ΓL|

(2.3.41)

The distance separating Vmax and Vmin is λ/4 . It follows that when
the load is an open or short circuit, ΓL = ±1 and VSWR→∞ . For
a matched load, ΓL = 0 and VSWR = 1 .
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Example 2.3.2
Consider a voltage standing wave pattern (VSWP) on a transmission

line as shown in Fig. 2.3.6. Let VSWR = 3 and the characteristic impedance
Z0 = 50 Ω . The voltage Vmax = 3Vmin is at z = −λ/8 . Find the load
impedance ZL .

Solution: From

Vmax

Vmin
=

1 + |ΓL|
1− |ΓL|

= 3

we find the magnitude of ΓL , |ΓL| = 1/2 .

Γ(z) = ΓLe
2jkz ⇒ Γ(z = −λ/8) = ΓLe

2j( 2π
λ )(−λ/8) =

1
2
⇒ ΓL =

1
2
ejπ/2

Thus the normalized load impedance

ZLn =
1 + ΓL

1− ΓL
=

2 + j

2− j =
(2 + j)2

5
= 0.6 + j0.8.

The load impedance is ZL = 50(0.6 + j0.8) Ω = (30 + j40) Ω .
The complex voltage and current at the load are

VL = V+(1 + ΓL) (E2.3.2.1)

IL =
V+

Z0
(1− ΓL) (E2.3.2.2)

The time-averaged power dissipated at the load ZL is

PL =
1
2
Re[VLI∗L]

The complex voltage and current at the input are

V (−�) = V+(ejk� + ΓLe
−jk�) (E2.3.2.3)

I(−�) =
V+

Z0
(ejk� − ΓLe

−jk�) (E2.3.2.4)

The time-averaged power dissipated in the line is

P =
1
2
Re[V (−�)I∗(−�)] =

1
2
Re[VLI∗L]

End of Example 2.3.2
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E. Normalized Complex Impedance (Smith Chart)

The generalized reflection coefficient ΓL has a maximum amplitude
of unity. Thus the whole usable complex ΓL plane is restricted to a
circle of radius one. On this complex Γ plane we define a normalized
complex impedance

Zn(z) =
V (z)
Z0I(z)

=
1 + Γ(z)
1− Γ(z)

= Rn + jXn (2.3.42)

At each point within the unit circle on the complex Γ plane, we as-
sign a pair of numbers Rn and Xn according to (2.3.42). The result
is called the Smith chart which was constructed by Philip H. Smith
(1905–1987) in 1936 and published in 1939, originally called the reflec-
tion chart or circular chart. It serves as an analog computer reading
normalized impedance for every generalized reflection coefficient rep-
resentable within a unit circle on the complex Γ plane.

From (2.3.42), we can determine Rn and Xn in terms of the real
and imaginary parts of Γ = ΓR + jΓI . From equation (2.3.42), which
is known as the bilinear transformation, we find

Rn + jXn =
1 + ΓR + jΓI
1− ΓR − jΓI

=
(1 + ΓR + jΓI)(1− ΓR + jΓI)

(1− ΓR)2 + Γ2
I

which yields

Rn =
1− Γ2

R − Γ2
I

(1− ΓR)2 + Γ2
I

Xn =
2ΓI

(1− ΓR)2 + Γ2
I

The above two equations can be re-arranged to give

(
ΓR −

Rn
1 +Rn

)2

+ Γ2
I =

(
1

1 +Rn

)2

(ΓR − 1)2 +
(

ΓI −
1
Xn

)2

=
(

1
Xn

)2
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0.3 1 3

0.4

−0.4

2

−2

4

−4

R = 0

X = 1

X = −1

Figure 2.3.7 Smith chart.

Thus on the complex Γ-plane, each value of Rn gives rise to a circle
centered at ΓR = Rn/(1+Rn ) and ΓI = 0 with a radius of 1/(1+Rn)
and each value of Xn produces a circle centered at ΓR = 1 and
ΓI = 1/Xn with a radius of |1/Xn| . The loci of constant Rn and Xn
are plotted within the unit circle of |Γ| ≤ 1 and the result is the Smith
chart [Fig. 2.3.7].

Exercise 2.3.1 In Example 2.3.2, we can locate on the Smith chart the
position of Γ = j0.5 and find that the normalized impedance is Zn = 0.6 +
j0.8 . It is seen that VSWR = 3 occurs on the real axis coincident with the
R = 3 locus, where voltage is maximum. Thus rotating counterclockwise an
angle of π/2 , we obtain the location of ΓL and read from the Smith chart
the value of ZLn = 0.6 + j0.8 .

End of Exercise 2.3.1
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F. Transmission Line Resonators

Consider a transmission line resonator with length l and termi-
nated with impedances Zs and ZL as shown in Figure 2.3.8. The
transmission line equations are given by

V (z) = V+e
−jkz + V−e

jkz

I(z) =
V+

Zo
e−jkz − V−

Zo
ejkz

z = 0
z

Zo ZLZs

z = �−

Figure 2.3.8 Transmission line resonator.

At z = 0 , V (0) = ZLI(0) gives

V+ + V− = ZLn(V+ − V−)

where ZLn = ZL/Z0 . Thus

V−
V+

=
ZLn − 1
ZLn + 1

= ΓL (2.3.43)

At z = −l , V (−l) = −ZSI(−l) gives

V+e
jkl + V−e

−jkl = −ZSn(V+e
jkl − V−e−jkl)

where ZSn = ZS/Z0 . Thus

V+e
jkl

V−e−jkl
=
Zsn − 1
Zsn + 1

= ΓS (2.3.44)

Multiplying (2.3.43) and (2.3.44), we find the resonance condition

ej2kl = ΓLΓS (2.3.45)
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For short-circuited resonators, ZS = ZL = 0 , ΓS = ΓL = −1 , and
V− = −V+ . We find that the resonance spatial frequencies are

k = nπ/l

and the resonance frequencies are

ω = nπ/l
√
LC

with n = 0, 1, 2, ..... The voltages and currents are

V (z) = V+e
−jkz + V−e

jkz = V0 sin
nπz

l

I(z) =
V+

Zo
e−jkz − V−

Zo
ejkz = j

V0

Z0
cos

nπz

l

where V0 = −j2V+ . The voltages are zero at z = 0 and z = l . For
the n = 0 mode, V0 = 0 .

z = 0z = �
z

−

RL�Z0 Z0

Figure 2.3.9 Transmission line resonator with small loss.

The resonator voltage and current will decay in time when there
is a small loss in the resonator. In Fig 2.3.9, we assume a small load
resistance RL � Z0 . From the resonance condition in (2.3.45), we find
by assuming k = nπ/l + jkI

ej2kl = e−2kI l ≈ 1− 2kI l + ... = −ΓL = −ZLn − 1
ZLn + 1

≈ 1− 2
RL
Z0

+ ...

It follows that kI l = RL/Z0 and ω = nπv/l+ jkIv with ωI = jkIv =
jRLv/Z0 = jRL/L . Thus the voltage and current attenuate in time
with the factor e−(RL/L)t .
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Example 2.3.3
Consider a series R,L,C circuit with R �

√
L/C in Fig. E2.3.3.1,

KVL gives

V = RI + L
dI

dt
+ Vc

+

−
V L

C
−
+

R

CV

I

Figure E2.3.3.1 Series R L C circuit.

where Vc is the voltage across the capacitor, which is related to I by I =
CdVc/dt . Thus the differential equation for the circuit is

dV

dt
= R

d

dt
I + L

d2

dt2
I +

1
C
I

We let the solution be

V = Vse
st

I = Ise
st

The terminal voltage Vs is then related to the current Is in the circuit by

Vs = (R+ sL+
1
sC

)Is =
s2 + (R/L)s+ 1/LC

s/L
Is =

(s− s+)(s− s−)
s/L

Is

We find, for R�
√
L/C ,

s± = − R

2L
± j

√
1
LC
−

(
R

2L

)2

= −ωI ± j
√
ω2

0 − α2
r ≈ −ωI ± jω0

Is =
s/L

(s+ ωI)2 + ω2
0

Vs

where ω0 = 1/
√
LC is the resonant frequency and

ωI =
R

2L
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gives the attenuation rate of the voltage and current in the circuit, e−ωI t .
At s = jω0 ,

Is(s = jω0) =
Vs(ω0)
R

The dissipated power is

Pd(ω0) =
R

2
|Is(s = jω0)|2 =

|Vs(ω0)|2
2R

The stored energy is

WT =
1
2
L|I(s = jω0)|2

We see that

ωI =
R

2L
=

1
2R|I|2

2 · 1
2L|I|2

=
Pd

2WT

The quality factor

Q =
ω0WT

Pd
=

ω0

2ωI
=

(R/L)
1/
√
LC

=

√
L/C

R

At s = j(ω0 ± ωI) ,

|I(s = j(ω0 ± ωI))| ≈
∣∣∣∣ jω0Vs(ω0)/L
(ωI ± jωI)(j2ω0 ± jωI + ωI)

∣∣∣∣ ≈ |Vs(ω0)|√
2R

The dissipated power is

Pd(ω0 ± ωI) =
R

2
|I(s = j(ω0 ± ωI))|2 =

|Vs(ω0)|2
4R

=
Pd(ω0)

2

The half-power point occurs at ω = ω0±ωI = ω0±∆ω . Thus the half-power
point bandwidth is

BW = 2ωI

It is seen that the quality factor

Q =
ωo
2ωI

=
ωo
BW

=

√
L/C

R
=
ωoWT

Pd

is expressible in terms of inverse attenuation rate, inverse bandwidth, res-
onator circuit elements, and stored energy over dissipated power.

End of Example 2.3.3
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Problems

P2.3.1
Convert the following time domain expressions into their complex equiv-

alents in the frequency domain, where we have defined

A = Re
[
Aejωt

]
Example : A = sinωt A = −j

(a) Find A. (b) Find A.

(i) A = 3 sin
(
ωt− π

4

)
(i) A = jejπ/4

(ii) A = x̂ sinωt− ŷ2 cosωt (ii) A = x̂+ ŷ3j
(iii) A = cosφ cosωt (iii) A = A0e

jφ + j

P2.3.2
The result of a measurement of the voltage standing wave pattern on

a transmission line with source impedance Z0 = 50Ω and characteristic
impedance Z0 = 50Ω is illustrated in Figure P2.3.2.1.

|V (z)|

Vmax

Vmin

z

4m 0.5m

25m

V SWR =
Vmax

Vmin
= 2.0

Figure P2.3.2.1 Voltage standing wave pattern.

(a) From the given data, determine the wavelength and load impedance ZL .
(b) What is the input impedance at the source Z(z = −25 m) ?
(c) Determine the complex load voltage VL = V (z = 0) in terms of Vs .
(d) What is the time-averaged power dissipated in the load ZL ?

P2.3.3
The “current standing wave pattern” of a TEM transmission line with

characteristic impedance Z0 = 50 Ω , permeability µ0 and permittivity ε =
4ε0 is shown in Figure P2.3.3.1.

(a) What is the frequency of excitation f = ω/2π ?
(b) Calculate the reflection coefficient ΓL .
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|I(z)|

Imax = 3 amps
|I(0)|

Imin = 1 amp

z

6 cm 1 cm

Figure P2.3.3.1

(c) Determine the load impedance ZL in Ω .
(d) What is the time-average power flow along the line? Give a numerical

answer.

P2.3.4

Show that the VSWR=Rn with Rn ≥ 1 on the real ΓR axis.

P2.3.5

Quarter-wave transformers are primarily used as intermediate matching
sections. Consider a transmission line of characteristic impedance Z1 con-
nected to a pure resistive load of impedance ZL = RL through a section
of transmission line having characteristic impedance Z2 of length � . (see
Figure P2.3.5.1). Show that when � = λ/4 and Z2 =

√
Z1ZL, the reflection

coefficient Γ = 0 .

Z1 Z2 ZL
Γ

�

Figure P2.3.5.1

P2.3.6

Consider the TEM transmission line system connected to a sinusoidal
voltage source as shown in Figure P2.3.6.1.
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Vo
−

+

Zo

ZAZBZC

λ/8

2Zo

λ/2

ZL =
Zo (1− j)

3λ/4

Zo

Zo

−

+

−

+

−

+

VAVBVC

Figure P2.3.6.1

(a) Find the impedance ZA in terms of Z0 .
(b) Find the impedance ZB in terms of Z0 .
(c) Find the impedance ZC in terms of Z0 .
(d) Show that the time average power dissipated in ZC is |Vo|2/8Z0 . As-

sume Z0 is real.
(e) Find the voltage VL across the load ZL in terms of Vo and use VL to

calculate the time average power dissipated in the load ZL in terms of
Vo and Zo . Assume Zo is real.

P2.3.7

Consider the transmission line circuit shown below [Figure P2.3.7.1].
2Z0

Z0 ZLZinV0 cosωt
+

−
⇒

�1 �2

Z0

Z0

�3

Figure P2.3.7.1

(a) Given Zin = Z0/2, what minimum non-zero length �1, if any, will maxi-
mize power dissipated in the load ZL . If none exists, state “none exists.”

(b) Let ZL = (0.8 − j1.4)Z0 . Determine the shortest distance �2 and the
shortest corresponding length �3 such that Zin = Z0/2 .

(c) State the constraints, if any, on ZL (in terms of ZL or ΓL) such that
Zin can be made to be Z0/2 . If no constraints exist, state “none exist.”

P2.3.8

Consider now the TEM transmission line resonator circuit shown oper-



2.3 Sinusoidal Steady State Transmission Lines 199

ating near the lowest order resonant frequency [Figure P2.3.8.1].

Z0

+

−
VS

= bZ 0 b� 1

Z0, L, C RL = aZ0

a� 1

− �
z

0

Z0, L, C

RS

Figure P2.3.8.1 Internal and external Q.

(a) What is internal QI = ω0WT /Pd ?
(b) What is external QE = ω0WT /Pe ?

P2.3.9
Consider an air-filled transmission line with characteristic impedance Zo

to be connected with a capacitor Co and inductor Lo as illustrated in Figure
P2.3.9.1. The operating angular frequency of the transmission line system is
ω . The transmission line equations are given by

V (z) = V+e
−jkz + V−e

jkz, I(z) =
V+

Zo
e−jkz − V−

Zo
ejkz

C

z = 0 z = �
z

Z
0 0 L0

Figure P2.3.9.1

(a) Show that V−
V+

= e−2jφ , where φ = tan−1 ωCoZo .
(b) Show that the natural spatial frequency kn of the n-th order normal

mode for this resonator satisfies the following equation

cot (kn�− φ) = ckn
Lo
Zo

where c = 3 × 108 m/s is speed of light for the air-filled transmission
line.
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(c) Let � = 1 m. Find the natural temporal frequency f in MHz of the
lowest order normal mode for
(i) Co = 0 and Lo = 0 ;
(ii) Co = 0 and Lo =∞ .

(d) Let Co = 0 and � = 1 m. With no restriction of Lo , find the range
of possible operating frequencies (in MHz) where there can only be one
normal mode existing on the line.

P2.3.10
In the transmission line circuit shown in Fig. P2.3.10.1, the system is

driven at the lowest non-zero resonant frequency (where l is equal to λ
2 ). In

this problem, first use the perturbation approach to calculate the real part of
the input impedance, and then compare the result with the calculation using
the Smith chart.

RL = 0.05Z0

=
λ

2

Z( )

�

z0
z

��z

Figure P2.3.10.1

(a) Calculate the complex eigenfrequencies ω = ωR− jωI using a perturba-
tion approach to find ωR . Calculate the real part of the input impedance
Z at the frequency where l = λ

2 by assuming that only the “resonant”
term need to be included in the mode expansion for Z . Evaluate Z

Z0

numerically for z0
l = 1

6 ,
1
4 ,

1
3 , and 1

2 .
(b) The input impedance can also be evaluated on the Smith chart. Compare

the results with the approximate results in (a) for the same z0/l .
(c) The resonator is driven by a shunt current source of amplitude Is applied

at z = w . The source frequency ω is varied around ω1 . Assuming small
loss, write down the modal expansion and indicate the dominant term.
Hence plot |V (z = w)| as a function of ω and indicate how Qs can
be obtained experimentally from such plots for the loaded and unloaded
resonator.
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2.4 Lumped Element Transmission Lines

We have derived from Maxwell equations the transmission line equa-
tions

dV

dz
= −jωLI (2.4.1)

dI

dz
= −jωCV (2.4.2)

from two-conductor transmission lines, in particular from a parallel-
plate transmission line. We now show that (2.4.1) and (2.4.2) can be
found from a circuit model approximating that of a continuous line.
Take a small section of length ∆z and approximate it with a series
inductor with inductance L∆z and a shunt capacitor with capacitance
C∆z [Fig. 2.4.1].

L∆z I(z) I(z + ∆z)

V (z)C∆z V (z + ∆z)

∆z

L, C

L∆z L∆z

C∆z C∆z

+

−

+

−

Figure 2.4.1 Lumped element approximation of transmission line.

We apply KVL (Kirchhoff voltage law) and KCL (Kirchhoff current
law) to the lumped element section and obtain

V (z + ∆z)− V (z) = −jωL∆z I(z)
I(z + ∆z)− I(z) = −jωC∆z V (z)

Keeping the first term to order ∆z by letting ∆z → 0 , we find

lim
∆z→0

V (z + ∆z)− V (z)
∆z

= −jωL I(z)

lim
∆z→0

I(z + ∆z)− I(z)
∆z

= −jωC V (z)

which give rise to the transmission line equations (2.4.1) and (2.4.2).
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A. Lumped Element Line

We now directly use KVL and KCL to derive and study the behavior
of waves on a lumped element line as shown in Fig. 2.4.2. Each section
has a physical length � . Applying KVL and KCL to the nth section
of the line, we have

Vn+1 − Vn = −jωL0 In+1 (2.4.3)
In+1 − In = −jωC0Vn (2.4.4)

L0

C0
Vn Vn+1

In In+1 In+2

+

−

L0 L0 L0

C0 C0 C0

+

−

� �

Figure 2.4.2 Lumped-element transmission line.

Consider a positive traveling wave similar to e−jkz on a continuous
line. Identifying kz = kn� = nθ with θ = k� as phase shift along each
cell, we write

Vn = V+e
−jnθ (2.4.5)

In = I+e
−jnθ (2.4.6)

Substituting (2.4.5) and (2.4.6) in (2.4.3) and (2.4.4), we find

V+

(
e−j(n+1)θ − e−jnθ

)
= −jωL0 I+e

−j(n+1)θ (2.4.7)

I+

(
e−j(n+1)θ − e−jnθ

)
= −jωC0 V+e

−jnθ (2.4.8)

Multiplying (2.4.7) and (2.4.8) and eliminating V+ and I+ , we obtain
the dispersion relation

sin2 θ

2
=

1
4
ω2L0C0 =

ω2

ω2
0

(2.4.9)

where
ω0 =

2√
L0C0

(2.4.10)
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π−π
θ

ω0

ω

k�= ω
√
LC�

Figure 2.4.3 Dispersion relation for low-pass transmission line.

The dispersion relation (2.4.9) is plotted in Fig. 2.4.3.
In the low frequency limit ω � ω0 , we approximate

ω

ω0
= ± sin

θ

2
≈ ±θ

2

where we use the upper sign when θ is positive, corresponding to a
wave traveling in the positive direction, and the lower sign when θ is
negative, corresponding to a wave traveling in the negative direction,
so that ω is always positive.

Identifying θ = k� , we find by using (2.4.10)

k =
2ω
�ω0

= ω

√
L0

�

C0

�
= ω
√
LC

with L = L0/� and C = C0/� as inductance and capacitance per unit
length. The lumped element line thus behaves as a continuous line in
the low frequency limit.

Example 2.4.1 Delay line using lumped element line.
The velocity of propagation on a continuous line is v = ω/k = 1/

√
LC =

1/
√
µε = 3× 108 m/s for µ = µo and ε = εo . For the lumped element line,

assume L0 = 10−4 H, C0 = 10−8 F, and � = 10−2 meter. We find the velocity
v = �/

√
L0C0 = 104 m/s. Thus the lumped element line can be used as a delay

line.
End of Example 2.4.1
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When ω > ω0 , the phase shift θ must be a complex number; we
write

θ = θR − jθI
The dispersion relation (2.4.9) becomes

sin
θR − jθI

2
= sin

θR
2

cosh
θI
2
− j cos

θR
2

sinh
θI
2

=
ω

ω0

We have
cos

θR
2

sinh
θI
2

= 0

sin
θR
2

cosh
θI
2

=
ω

ω0

The above equations give the solution θR = π and θI = 2 cosh−1 ω
ω0

.
The voltage on the nth cell is

Vn = V+e
−jn(θR−jθI) = V+e

−nθIe−jnθR

The term e−jnθR signifies a phase shift from the nth cell to the
(n+ 1) th cell, the term e−nθI signifies there is an amplitude attenua-
tion from cell to cell as well. Since high frequency (ω > ω0) waves are
attenuated and low frequency (ω < ω0) waves pass with no attenua-
tion, the lumped element line in Fig. 2.4.2 is a low-pass filter.

In the limit ω � ω0 , the dispersion relation for the low pass
lumped element line gives

cosh
θI
2

=
1
2

(
eθI/2 + e−θI/2

)
≈ 1

2
eθI/2 =

ω

ω0
=

1
2
ω
√
L0C0

We thus have
eθI/2 = ω

√
L0C0

The ratio of Vn+1/Vn gives
Vn+1

Vn
= −e−θI =

−1
ω2L0C0

From elementary circuit theory, considering the (n + 1) th cell with
In+2 = 0 , the voltage Vn is divided on the inductor with impedance
jωL0 and Vn+1 across the capacitor with impedance 1/jωC0 . We
have

Vn+1

Vn
=

1/jωC0

jωL0 + 1/jωC0
≈ 1/jωC0

jωL0
=

−1
ω2L0C0

Thus at very high frequencies, the inductors behave like open circuits,
and the capacitors approach short circuit.
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B. Dispersion Relations for Lumped Element Lines

Consider a general lumped element line shown in Figure 2.4.4. The
impedance Zt = R0 + X0 and the admittance Yt = G0 + jB0 . KVL
and KCL give

Vn+1 − Vn = −Z In+1 (2.4.11)
In+1 − In = −Y Vn (2.4.12)

Z

Vn

In In+1

+

−

Z Z Z

Y Vn+1
Y YY

+

−

Figure 2.4.4 A general lumped element line.

With the traveling wave solution as in (2.4.5) and (2.4.6),

In = I+e
−jnθ

Vn = V+e
−jnθ

we obtain from the dispersion relation

sin2 θ

2
= −1

4
Z Y (2.4.13)

It reduces to (2.4.9) when Z = jωL0 and Y = jωC0 .

Example 2.4.2
Study the wave behavior on a lumped element line with Z = 1/jωC0

and Y = 1/jwL0 shown in Figure E2.4.2.1.
In

Vn

C

L

+

−

0

0

Figure E2.4.2.1 High-pass lumped element line.
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ω

ω0

θ

Figure E2.4.2.2 Dispersion curve for high-pass lumped element line.

The dispersion relation (2.4.13) gives

sin2 θ

2
=

1
4ω2L0 C0

=
ω2

0

ω2
, ω0 =

1
2
√
L0 C0

(E2.4.2.1)

It is seen that θ is real for ω > ω0 and θ is complex when ω < ω0

[Fig. E2.4.2.2]. High frequency (ω > ω0) passes and low frequency (ω < ω0)
is cutoff. This is because at high frequencies, the capacitor behaves like a
short circuit and inductors approach open circuit.

From the dispersion curve for the high-pass filter shown in Fig. E2.4.2.2,
we see that for ω > ω0 , the group velocity is negative when the phase velocity
is positive and vice versa. Thus the group velocity and the phase velocity of
a traveling wave on the line are in opposite directions and the line is called a
backward wave line.

End of Example 2.4.2

The effect of loss on a transmission line causes attenuation and
dispersion of a propagating wave. With dispersion, different frequen-
cies propagate with different phase velocities which lead to distortion
of any non-sinusoidal wave form. Both the attenuation and distortion
resulting from loss in transmission lines were responsible for impeding
the development of long distance communication of speech in the early
days of the telephone. In 1893, Oliver Heaviside developed the trans-
mission line theory based on Maxwell equations. Until that time, the
transmission line was described by a diffusion equation, which was for-
mulated in circuit terms, involving a distributed series R and parallel
C network. Taking proper account of the inductance, Heaviside noticed
that the effects of attenuation and phase distortion both decrease as in-
ductance is increased. He thus proposed that telephone lines be loaded
periodically with lumped inductors, which was experimentally verified
in 1900 by Pupin of Columbia University.
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Instead of a continuous transmission line loaded with Pupin coils
Lp , we model the transmission line between the Pupin coils as lumped
inductance and capacitance [Fig. 2.4.5]. This model is valid if the coils
are much less than a wavelength apart. We have

Y = jωC0

Z = jω(L0 + Lp) +R0

Lp

R L

C

+

−

I In In+1

Vn Vn+1

Lp Lp
+

−

0

0

00

Figure 2.4.5 Transmission line loaded with Pupin coils.

We obtain from the dispersion relation (2.4.13)

sin2 θ

2
= −1

4
Z Y =

1
4
[ω2(L0 + Lp)C0 − jωR0C0]

Assuming θ is very small, sin2 θ
2 ≈ ( θ2)

2
. For R0/ω(L0 + Lp) � 1 ,

we find from f(x) = (1 + x)1/2 = f(0) + f ′(0)x + f ′′(0)x2/2 + .... =
1 + x/2− x2/8 + ..... , with x = −jR0/ω(L0 + Lp) ,

θ = ± ω
√

(L0 + Lp)C0

[
1− j R0

ω(L0 + Lp)

] 1
2

≈ ± ω
√

(L0 + Lp)C0

[
1 +

R2
0

8ω2(L0 + Lp)2

]
∓ jR0

2

√
C0

L0 + Lp

Thus the effect of increasing Lp is to reduce both attenuation and dis-
tortion. However the above analysis requires |θ| � 1 which is equiv-
alent to having the operating frequency well below cutoff. For speech
communication, we are interested in the propagation of signals up to
12 kHz. Assuming R0 = 0 , we are requiring 12×103π

√
(L0 + Lp)C0 �

1 . This requirement imposes an upper limit on Lp .
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C. Periodically Loaded Transmission Lines

First consider the two-port description of a transmission line as shown
in Figure 2.4.6. The transmission line equations are written in terms
of V+ and V− as

V (z) = V+e
−jkz + V−e

jkz

I(z) = Y0(V+e
−jkz − V−ejkz)

V (0) V (z)

I(0) I(z)

+

−

+

−

Figure 2.4.6 Two-port description of a transmission line.

At z = 0,
V (0) = V+ + V−
I(0) = Y0(V+ − V−)

which can be solved for V+ and V− .

V+ =
1
2
[V (0) + Z0I(0)]

V− =
1
2
[V (0)− Z0I(0)]

and we have

V (z) = V (0) cos kz − jZ0I(0) sin kz
I(z) = −jY0V (0) sin kz + I(0) cos kz

or [
V (z)
I(z)

]
=

[
cos kz −jZ0 sin kz

−jY0 sin kz cos kz

] [
V (0)
I(0)

]

for the two-port transmission line.
Consider a periodically loaded transmission line as shown in Fig.

2.4.7. Treating the transmission line section of the nth cell as a two-
port network, we have

Ṽn+1 = Vn cos k�− jZ0In sin k� (2.4.14a)
Ĩn+1 = −jY0Vn sin k�+ In cos k� (2.4.14b)



2.4 Lumped Element Transmission Lines 209

where by virtue of KCL

Ĩn+1 = Y Vn+1 + In+1 (2.4.15a)
Ṽn+1 = ZĨn+1 + Vn+1 = (ZY + 1)Vn+1 + ZIn+1 (2.4.15b)

To obtain the dispersion relation, we notice that Vn+1 = Vne
−jθ and

In+1 = Ine
−jθ . From (2.4.14) and (2.4.15), we obtain

Vn{(ZY + 1)e−jθ − cos k�} =− {Ze−jθ + jZ0 sin k�}In
In{e−jθ − cos k�} =− {Y e−jθ + jY0 sin k�}Vn

In In+1

Vn Vn+1

�

Ĩn+1

Y

Z

Vn+1

~
+ + +

− − −
Y

Z

Y

Z

Figure 2.4.7 Periodically loaded transmission line.

Multiplying the two equations and eliminating VnIn , we find the dis-
persion relation

2 cos θ = (ZY + 2) cos k�+ j(ZYo + ZoY ) sin k� (2.4.16)

Observe that when both Z and Y are reactive, the right-hand side
of (2.4.16) is real, but when the absolute value is greater than unity,
θ is complex and the wave is evanescent on the line.

Example 2.4.3
Consider a periodically loaded transmission line as shown in Fig. E2.4.3.1.

We substitute into (2.4.16) Z = 0 and Y = jωC0 , we obtain the dispersion
relation

In In+1

Vn C0 Vn+1

�

Ĩn+1

Figure E2.4.3.1 Periodically loaded transmission line.
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cos θ = cos k�− ωC0

2Y0
sin k� (E2.4.3.1)

Observe that when the absolute value of the right-hand-side of (E2.4.3.1) is
greater than unity, θ is complex and the wave is evanescent on the line.

Case A) When ωC0 � Y0 , the dispersion relation (E2.4.3.1) allows a real
solution for θ only when k� ≈ nπ , i.e., � is close to an integer multiplier of
half wavelength. Let

k� = nπ + δ(θ)

It follows that cos(k�) ≈ cos(nπ) = (−1)n and sin k� ≈ (−1)nδ(θ) . From
(E2.4.3.1), we find

cos θ = cos k�− k�C0

2C�
sin k� ≈ (−1)n(1− nπ

2
C0

C�
)δ(θ)

For odd n , the trigonometric identity cos θ = 2 cos2 θ
2 − 1 yields

δ(θ) =
4C�
nπC0

cos2
θ

2

For even n , the trigonometric identity cos θ = 1− 2 sin2 θ
2 yields

δ(θ) =
4C�
nπC0

sin2 θ

2

Thus the maximum value of δ(θ) is 4C�/nπC0 .

k�

−π π
θ

δ(θ)

2π

3π

π

Figure E2.4.3.2 Periodically loaded transmission line as band-pass filter.
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A plot of k� versus θ is shown in Fig. E2.4.3.2. Propagation is possible
only for very narrow frequency bands. We find the bandwidths

�ω
ω
≈ δ

nπ
=

4C�
(nπ)2C0

� 1

Thus the capacitive loaded transmission line is a band-pass filter.

Case B) ωCo � Yo . The dispersion relation is plotted in Figure E2.4.3.3 for
−π ≤ θ ≤ π . As ωCo/Yo = 0 , cos θ = cos k� , and k� = 2mπ ± θ . When
the transmission line is lightly loaded with small lossless capacitive elements
spaced periodically along the line, it can be used as a notch filter which rejects
very narrow bands of the frequency spectrum while passing the remainder of
the band.

ωC0
Y0

2π

π

= ω
√
LC�

θ

stop bands

ππ

k�

Figure E2.4.3.3 Bandpass lumped element line.

At θ = 0 , we let k� = 2nπ − δ . From (E2.4.3.1), we find

1 = cos δ +
ωC0

2Y0
sin δ ≈ 1− 1

2
δ2 +

ωCo

2Yo
δ =

[
1− 1

2
δ

(
δ − ωCo

Yo

)]

Thus k� = 2mπ and k� = 2mπ − ωCo/Y0 .
At θ = ±π , we let k� = (2m+ 1)π − δ . From (E2.4.3.1), we find

−1 = − cos δ +
ωC0

2Y0
sin δ ≈ −1 +

1
2
δ2 +

ωCo

2Yo
δ =

[
−1 +

1
2
δ

(
δ − ωCo

Yo

)]

Thus k� = (2m+ 1)π and k� = (2m+ 1)π − ωCo/Y0 .
End of Example 2.4.3
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Example 2.4.4
Let Z = jωL0 and Y = jωC0 . We find from (2.4.16)

2 cos θ = (2− ω2L0C0) cos k�− ω(L0Yo + C0Zo) sin k�

For k�� 1 , we obtain

sin2 θ

2
≈ (k�)2

4

(
1 +

C0

C�
+
L0

L�
+
LoC0

L�C�

)
=
ω2

ω2
0

where ω0 = 2/
√
L�C�+ C0L�+ LoC�+ LoCo . It is seen that θ is real when

ω ≤ ω0 . The velocity on the line is v = �/
√
L�C�+ C0L�+ LoC�+ LoCo .

For ω > ω0 , θ is imaginary and the wave is evanescent on the line. When
the transmission line section length is very small, it is equivalent to a low-pass
filter with inductance L�+ L0 and capacitance C�+ C0 .

End of Example 2.4.4

Problems

P2.4.1

The “high pass filter” type of lumped line shown in Fig. E2.4.2.1 does
not support propagating waves for ω < ω0 = 1/(2

√
L0C0) .

(a) With the assumed voltage dependence

V−n = V+e
−jnθre−nθI

what are θr and θI for ω < ω0 ? Sketch θr and θI as a function of ω
for ω < ω0 .

(b) In the limit ω � ω0 , find an approximate expression for V−n+1
V−n

and
indicate how this result can be derived from simple circuit considerations.

P2.4.2

I0 I1 I2 In

C
L

a

a′

V1 V2 V3 Vn

+

−

+

−

+

−

+

−
0

0

Figure P2.4.2.1
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(a) Determine the dispersion relation for the backward wave line shown in
Fig. P2.4.2.1. That is, assume Vn = Ae−jnθ, In = Be−jnθ and deter-
mine θ(ω) . Sketch θ(ω) for ω > ω0 = 1

2
√
L0C0

.
(b) For a given ω > ω0 , the result in part (a) yields two real values of

θ (excluding values which differ by 2nπ). Determine the impedance,
Z = Vn

In
, for each of these modes and show that the time-averaged power

flow is in the direction opposite the phase velocity.
(c) A voltage source vs(t) = Vs sinω0t is connected to terminal pair a−a′ .

Determine the steady-state vn(t) .
(d) Suppose the source connected to a− a′ is given by

vs(t) = Vs
sinω1t

ω1t
sinω0t

where ω1 � ω0 . Determine vn(t) .

P2.4.3
Consider the backward wave line shown in Figure P2.4.3.1. Derive a

expression for the characteristic impedance of this line, z+ = Vn/In for the
mode with positive phase velocity (exp−jnθ) and for a frequency in the
propagating region (ω > ωh) . Repeat for the mode with negative phase
velocity. What is the time-average power carried by the line in each of these
cases? Is the sign of the power what you would expect?

a

a′

L0

C0

In

Vn

+

−

Figure P2.4.3.1

P2.4.4
(a) Determine the propagation constant θ(ω) , for the lumped transmission

line shown in Figure P2.4.4.1. Show that the result can be placed in the
form

sin2 θ

2
=
ω2 − ω0

2

ω2
1

where ω2
0 and ω2

1 are appropriate constants.
(b) For what range of ω will the line support a propagating wave, i.e., admit

real θ solutions?

P2.4.5
Consider the lumped element line shown in Figure P2.4.5.1.
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V V1 V2

+ + +

− − −

+ +

− −

I1 I2 Ik Ik+1

Vk Vk+1
C1 C1 C1 C1

C C C CL L L L 00000000

Figure P2.4.4.1

L

In

Vn

+

−
CL1

0

0

Figure P2.4.5.1

(a) Derive an expression for the propagation constant θ(ω) . Show that the
result can be written in the form

sin2 θ

2
=
ω2 − ω2

1

ω2
0

What are the constants ω0 and ω1 ?
(b) Over what frequency band does the line support “propagating” waves

(admit real θ solutions)? Sketch θ vs. ω for L1 = L0 .

P2.4.6
It is sometimes very useful to use a lumped element model for a trans-

mission line that is actually a continuous structure. One question that arises
is how finely we should subdivide the line into equivalent lumped-element sec-
tions to have a reasonably accurate model. The following problem illustrates
these ideas in power system applications.
(a) Develop and plot a general chart of phase angle error of a lumped element

transmission line versus the ratio of frequency to cutoff frequency. The
error is defined as

Phase shift for length of actual line−Phase shift for equivalent lumped section
Phase shift for length of actual line

Limit the plot to frequencies less than the cutoff frequency.
(b) Model a power transmission line with L = 1.45 mH/mile and C =

0.021µF/mile . Given a line using 10 mile lumped sections, at what fre-
quency will the error defined in part (a) be equal to 5%?
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2.5 Transmission Line Modeling

A. Modeling Reflection and Transmission

Consider a linearly polarized wave with electric field

E = ŷEy = ŷE0e
−jkxx−jkzz

incident from a medium with µ and ε , upon a half-space medium
with µt and εt as shown in Figure 2.5.1.

x

y
z

θr

θi

θt

µ, ε µt, εt

Figure 2.5.1 Reflection and transmission at a plane boundary.

The associated magnetic field H is obtained from the Maxwell equa-
tion

H =
1

−jωµ∇× E =
1

jωµ

{
x̂
∂

∂z
Ey − ẑ

∂

∂x
Ey

}

= (x̂
−kz
ωµ

+ ẑ
kx
ωµ

)E0e
−jkxx−jkzz

= x̂Hx + ẑHz

The boundary condition at the interface z = 0 requires that the total
tangential E and H be continuous for all x .

In the region z ≥ 0 with µz and εt , the transmitted fields are

Et = ŷEty = ŷTE0e
−jktxx−jktzz

Ht = x̂Htx + ẑHtz = (x̂
−ktz
ωµt

+ ẑ
ktx
ωµt

)TE0e
−jktxx−jktzz

where T denotes transmission coefficient.
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In the region z ≤ 0 with µ and ε , there is also a reflected wave
with

Er = ŷEry = ŷRE0e
−jkrxx+jkrzz

Hr = x̂Hrx + ẑHrz = (x̂
krz
ωµ

+ ẑ
krx
ωµ

)RE0e
−jkrxx+jkrzz

where R denotes reflection coefficient.
The boundary condition at z = 0 requires that

Ey + Ery = Ety

Hx +Hrx = Htx

which gives

e−jkxx +Re−jkrxx = Te−jktxx (2.5.1)
kz
ωµ

e−jkxx − krz
ωµ

Re−jkrxx =
ktz
ωµt

Te−jktxx (2.5.2)

Since the above equations must be satisfied for all x , we conclude that

kx = krx = ktx

This is known as the phase matching condition. Equations (2.5.1) and
(2.5.2) become

1 +R = T

kz
ωµ
− krz
ωµ

R =
ktz
ωµt

T

we find
R =

1− µktz/µtkz
1 + µktz/µtkz

T =
2

1 + µktz/µtkz
The reflection and transmission problem can be modeled as a trans-
mission line with characteristic impedance Z = ωµ/kz connected to
a transmission line with characteristic impedance Zt = ωµt/ktz as
shown in Figure 2.5.2.

Z Zt

z

Figure 2.5.2 Transmission line modeling of reflection and transmission.
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Example 2.5.1
(a) Consider a uniform plane wave in free space normally incident upon a

perfect conductor. As a function of z , plot the standing wave patterns,
|E(z)| and |H(z)| , due to the superposition of the incident and reflected
waves.

(b) Now consider a slab of material of thickness d , permeability µ1 , and
permittivity ε1 , placed λ/4 away from the perfect conductor as shown
in Figure E2.5.1.1.

µ0, ε0

Einc

σ →∞

perfect
conductor

z

µ0, ε0

d
λ0

4

µ1, ε1

Figure E2.5.1.1

Employing the transmission line analogy [Fig. 2.5.2], the impedance as
viewed from the front surface of the material Z(z = −d−λ/4) where the
wave strikes, may be expressed in terms of the terminating impedances,
the thickness and propagation constant of the material [Fig. E2.5.1.2].

η0 η1

d λ0/4

z = 0
z

η0

Figure E2.5.1.2

What is Z(z = −d− λ/4) ? In the case of a thin film, |k1d| � 1 , show
that

Z(z = −d− λ/4) ∼= −j η1

k1d

where the characteristic impedances η0 =
√
µ/ε0 and η1 =

√
µ1/ε1 .
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(c) Let the thin film be a conducting material with conductivity σ1 and a
corresponding complex dielectric constant ε1 = ε1R[1 − jσ1

ωε1R
] . In the

limit of high conductivity, σ1
ωε1R

� 1 , and small thickness, |k1d| � 1 ,
show that

Z(z = −d− λ/4) ∼= 1
σ1d
≡ R1

In transmission line terms, this corresponds to a resistance R1 placed
λ0/4 in front of a short-circuit transmission line with characteristic
impedance η0 =

√
µ/ε0 [Fig. E2.5.1.3].

η0

λ0/4 z = 0
z

η0

z =

R1

−

Figure E2.5.1.3

(d) For what value of R1 is there a perfect match for a normally incident
plane wave? For high-frequency applications it is often desirable to re-
duce or eliminate spurious reflections from metallic objects placed in the
vicinity of radiating systems. Thus a thin conducting film may be utilized
for this purpose if placed appropriately in front of a metallic surface.

(e) At the frequency 1 GHz, with µ1 = µ0, ε1R = ε0, σ1 = 5 mho/meter,
determine the thickness d to achieve the value of R1 of part (d). Verify
that σ1

ωε1R
� 1 and |k1d| � 1 are satisfied.

Solution:

(a) At z = 0 : Ei + Er = 0→ Er = −Ei

{
Ei = x̂E0e

−jkz

Hi = ŷE0
η0
e−jkz →

{
Er = −x̂E0e

jkz

Hr = ŷE0
η0
ejkz

E = Ei + Er = −x̂2jE0 sin kz

H = Hi +Hr = ŷ2
E0

η0
cos kz

The standing wave patterns for |E(z)| and |H(z)| are shown in Fig. E2.5.1.4.
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|E (z)|

z
−λ/2

|H(z)|

−λ/4

Figure E2.5.1.4

(b) In the transmission line [Figure E2.5.1.2]:

Z(z) = Z0
ZL − jZ0 tan kz
Z0 − jZL tan kz

Z(0) = 0 Z(−λ
4
) = η0

0 + jη0 tan
(
−π

2

)
η0

→∞

Z(−d− λ

4
) = η1

Z(−λ
4 ) + jη1 tan k1d

η1 + jZ(−λ
4 ) tan k1d

=
−jη1

tan k1d

|k1d| � 1 ⇒ Z(−d− λ

4
) � −jη1

k1d

(c)

ε = ε1R

(
1− j σ1

ωε1R

)
� −j σ1

ω
for

σ1

ωε1R
� 1

Z(−d− λ0

4
) =
−jη1

k1d
=
−j

√
µ1/ε1

ω
√
µ1ε1d

=
−j
ωε1d

∼= 1
σ1d
≡ R1

(d)

Γ(−λ
4
) =

R1 − η0

R1 + η0
= 0⇒ R1 = η0

(e)

R1 =
1
σ1d

= 377 ⇒ d = 0.53 mm

σ1

ωε1R
=

5
2π(109)(8.85× 10−12)

∼= 90� 1

|k1d| =
∣∣∣∣ω√µ0ε0

√
1− j σ1

ωε1R
· d

∣∣∣∣
∼=

∣∣∣∣ 2π109

3× 108
(−j
√

90)(0.53× 10−3)

∣∣∣∣ ∼= 0.1� 1

End of Example 2.5.1
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B. Modeling Antenna Radiation

The radiated electric field E and magnetic field H can be determined
by using the radiation fields of a Hertzian dipole, which has been mod-
eled as a pair of charges ±q separated by an infinitesimal distance
and oscillating at angular frequency ω . Let the linear antenna be ori-
ented along the z-axis with separation ∆z . For a Hertzian dipole with
dipole moment q∆z cosωt situated at the origin, we have determined
the electric and magnetic fields E and H in the radiation field very
far away from the dipole, kr � 1 :

E(r, t) = −θ̂η kωq∆z
4πr

sin θ cos(kr − ωt)

H(r, t) = −φ̂kωq∆z
4πr

sin θ cos(kr − ωt)

Using time convention ejωt , we take time derivative and obtain the
current moment d(q∆z cosωt)/dt = −ωq∆z sinωt = Re{jωq∆zejωt} .
Converting the above solution to the complex phasor notation, we have

E(r) = θ̂η
jkI∆z
4πr

sin θe−jkr (2.5.3)

H(r) = φ̂
jkI∆z
4πr

sin θe−jkr (2.5.4)

where I∆z = jωq∆z and η =
√
µo/εo is the characteristic impedance

for free space.

Linear Antennas
A linear antenna can be formed by bending an open-circuited two-wire
transmission line. The commonly used linear antenna is a half-wave-
length dipole. In Fig. 2.5.3 we illustrate the current distribution on a
half-wavelength dipole by folding λ/4 section of each wire of a two-
wire transmission line. We have

I(z) = I0 sin
[
k(
�

2
− | z |)

]
(2.5.5)

where � = λ/2 for the half-wavelength dipole antenna. The procedure
can be used to construct linear antennas of any length � .
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I

λ/4r

I(z)

z

λ/4

λ/4

r

Figure 2.5.3 Current distribution on a half-wavelength dipole.

Radiation Patterns of Linear Antennas
To calculate the radiation field of a linear antenna, we divide the

antenna into many infinitesimal segments as shown in Fig. 2.5.4. Since
the observation point is far away, the vector r originating from the
segment ∆z at z is parallel to the position vector r from the origin.
Furthermore, the electric field ∆E due to the segment dipole at z is
also pointing in the θ̂-direction. We approximate the distance R by

R ≈ r − z cos θ (2.5.6)

x

y

z
z cos θ

E ≈ θ̂Eθ

to observation
point�/2

− �/2

z

R

r

Figure 2.5.4 Calculation of radiation electric field by superposition.
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The electric field ∆E due to I(z)∆z at z is then

∆E ≈ θ̂η
jkI∆z
4πR

sin θe−jkR ≈ θ̂η
jkI∆z
4πr

sin θe−jkrejkz cos θ (2.5.7)

Notice that we neglected z cos θ in the denominator but retained it in
the exponential because it is important there when ∆z is of the order
of π , the exponential term can change from ej0 = 1 to ejπ = −1 .

The total electric field E is obtained by superposition of contri-
butions from all segments on the linear antenna. We integrate over the
length of the antenna to obtain

E = θ̂Eθ = θ̂η
jk sin θ

4πr
e−jkrf(θ) (2.5.8)

where

f(θ) =
∫ �/2

−�/2
dzI(z)ejkz cos θ (2.5.9)

is called the current moment of the linear antenna. The magnetic field
H is obtained in a similar manner. In terms of Eθ ,

H = φ̂
1
η
Eθ

Thus, the task of the calculation of the far fields of a linear antenna is
reduced to the evaluation of the current moment f(θ) in (2.5.9).

For a linear antenna with a current distribution given in (2.5.5),
we find

f(θ) =
∫ �/2

−�/2
dzI(z)ejkz cos θ =

∫ �/2

−�/2
dzI0 sin

[
k(
�

2
− | z |)

]
ejkz cos θ

=
∫ �/2

0
dzI0 sin

[
k(
�

2
−z)

]
ejkz cos θ+

∫ 0

−�/2
dzI0 sin

[
k(
�

2
+ z)

]
ejkz cos θ

=
∫ �/2

0
dz 2I0 sin

[
k(
�

2
− z)

]
cos [kz cos θ]

=
∫ �/2

0
dzI0

{
sin

[
k�

2
− kz(1− cos θ)

]
+ sin

[
k�

2
− kz(1 + cos θ)

]}

=I0

{
cos

[
k�
2 − kz(1− cos θ)

]
k(1− cos θ)

+
cos

[
k�
2 − kz(1 + cos θ)

]
k(1 + cos θ)

}�/2
0

=
2I0

k sin2 θ

{
cos(

k�

2
cos θ)− cos(

k�

2
)
}

(2.5.10)
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The electric field is therefore

Eθ = η
jk sin θ

4πr
e−jkrf(θ) = η

jI0e
−jkr

2πr sin θ

{
cos

(
k�

2
cos θ

)
− cos

(
k�

2

)}
(2.5.11)

As θ → 0 , L’Hôpital’s rule gives Eθ = 0 . Thus there is no electric
field along the direction of the linear antenna.

For a half-wavelength dipole with � = λ/2 and k� = π , (2.5.11)
becomes

|Eθ| =
ηI0

2πr sin θ
cos

(π
2

cos θ
)

Figure 2.5.5 Radiation pattern for λ/2 linear antenna.

The radiation pattern is sketched in Figure 2.5.5. For � = 3λ/2 ,
Equation (2.5.11) becomes

| Eθ |=
ηI0

2πr sin θ

∣∣∣∣cos
(

3π
2

cos θ
)∣∣∣∣

The radiation pattern is sketched in Figure 2.5.6. We see that the null
angles are at θ = 0, cos−1 1/3 , and π .

θ
cos−1 1

3

Figure 2.5.6 Radiation pattern for 3λ/2 linear antenna.
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Example 2.5.2
Consider a linear antenna with current distribution I(z) . The radiation

far fields are given by

E = θ̂η
jk sin θ

4πr
e−jkr

∫ �/2

−�/2

dzI(z)ejkz cos θ = θ̂Eθ

H = φ̂
1
η
Eθ

The directive gain is defined as

G (θ, φ) =
〈S〉

Pr
/
4πr2

and the radiation resistance can be calculated from

Rr =
2Pr
I2
o

Find the total radiated power Pr , the directive gain G(θ, φ) and radiation
resistance Rr for the following current distributions
(a) Hertzian dipole, I(z) = Io , �→ 0 and Io� = constant ,
(b) Triangular shape I(z) = Io (1− |2z/�|) and k�� 1 .

Solution:〈
S
〉

=
1
2
E ×H∗

= r̂
1
2η
|Eθ|2 = r̂

η

2

∣∣∣∣∣k sin θ
4πr

∫ l/2

−l/2

dzI(z)ejkz cos θ

∣∣∣∣∣
2

The total radiated power is

Pr =
∫ 2π

0

dφ

∫ π

0

r2 sin θdθ 〈S〉

(a) Eθ = η jk sin θ
4πr e−jkrIo� and 〈S〉 = η

2 |Iol|
2
(

k
4πr

)2
sin2 θ . Thus

Pr = πη |Iol|2
(
k

4π

)2 ∫ π

0

sin θdθ sin2 θ =
4π
3
η

(
kIol

4π

)2

G (θ, φ) = 3
2 sin2 θ and Rr = 2Pr

I2o
= 20 (kl)2 . where we have used

η = 120πΩ .
(b)

〈S〉 =
η

2

∣∣∣∣∣k sin θ
4πr

∫ l/2

−l/2

dzI(z)ejkz cos θ

∣∣∣∣∣
2

≈ η

8

∣∣∣∣kIol4πr

∣∣∣∣
2

sin2 θ

Pr = 40
∣∣kIol

4

∣∣2 , G (θ, φ) = 3
2 sin2 θ , and Rr = 5 |kl|2 .

End of Example 2.5.2
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C. Array Antennas

Radiation Patterns of Array Antennas
We now calculate the radiation field of an array antenna consisting

of Hertzian dipoles on the x-y plane. Assume N dipole antennas are
aligned on the x-axis with separation d and all pointing in the ẑ-
direction [Fig. 2.5.7]. The 0th dipole is situated at x = a . Let the
dipoles have uniform phase shift α so that the dipole moment for the
nth dipole is I�ejnα . Since the observation point is far away, the vector
R originated from the dipole at x = a+ nd is parallel to the position
vector r from the origin. The electric field ∆E due to the dipole at
x = a + nd is pointing along the θ̂-direction. We approximate the
distance R by

R = r − (a+ nd) cosφ (2.5.12)

The electric field ∆E due to (n+ 1)th dipole at x = a+ nd is then

∆E ≈θ̂η jkI�e
jnα

4πR
e−jkR ≈ θ̂η

jkI�ejnα

4πr
e−jkrejk(a+nd) cosφ

I� I�ejα I�ej2α I�ej(N−1)α

x

y

d da

φ

Rr̄

Figure 2.5.7 Dipole antenna array.

Notice that we neglected (a+nd) cosφ in the denominator but retained
it in the exponential term.

The total electric field E is obtained by superposition of the con-
tributions from all Hertzian dipole antennas. The electric field of the
antenna array is the sum from all dipoles.

E = θ̂η
jkI�

4πr
e−jkrejka cosφ

N−1∑
n=0

ejn(kd cosφ+α)

= θ̂η
jkI�

4πr
e−jkrejka cosφF (φ) (2.5.13)
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where F (θ, φ) is known as the array factor.

F (φ) =
N−1∑
n=0

ejn(kd cosφ+α) =
1− ejN(kd cosφ+α)

1− ej(kd cosφ+α)
(2.5.14)

The magnitude of the array factor is calculated to be

|F (φ)| =
∣∣∣∣∣sin [N(kd cosφ+ α)/2]

sin [(kd cosφ+ α)/2]

∣∣∣∣∣ (2.5.15)

Notice that principal maxima of |F (φ)| occur at kd cosφ + α = 0
where |F (φ)| = N . In the following we shall sketch radiation patterns
on the xy-plane for various dipole configurations.

Example 2.5.3
Sketch radiation patterns in the xy-plane for the following dipole arrays:

(a) Two-dipole array with α = 0 and d = λ/2 .
(b) Two-dipole array with α = π and d = λ/2 .
(c) Two-dipole array with α = 0 and d = λ .
(d) Three-dipole array with α = 0 and d = λ/2 .
(e) Four-dipole array with α = 0 and d = λ/2 .

Solution:
(a) The radiation pattern for the two-dipole array with α = 0 and d = λ/2

is shown in Fig. E2.5.3.1. The corresponding array factor for the two-
dipole array with α = 0 and d = λ/2 is, by virtue of (2.5.14) and
(2.5.15),

|F (φ)| =

∣∣∣∣∣1 + ejπ cosφ

∣∣∣∣∣ =

∣∣∣∣∣ sin [π cosφ]

sin [
π

2
cosφ]

∣∣∣∣∣

λ

2
a b

⇒

Figure E2.5.3.1 Radiation pattern of two dipoles in phase.
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The principal maxima occur in the broadside direction along the y-axis,
where at φ = ±π/2 , F (φ = ±π/2) = 2 , the two dipoles radiate in
phase and constructively interfere. In the endfire direction along the x̂-
direction, where φ = 0, andπ , dipole a radiates 1 while dipole b gives
ejπ = −1 due to the dipole separation of d = λ/2 . We have F (φ) = 0 .
The radiation pattern is null since the two dipoles destructively interfere.

(b) The radiation pattern for the two-dipole array with α = π and d = λ/2
is shown in Fig. E2.5.3.2. The corresponding array factor is

|F (φ)| =

∣∣∣∣∣1− ejπ cosφ

∣∣∣∣∣ =

∣∣∣∣∣ sin [π(cosφ+ 1)]
sin [π(cosφ+ 1)/2]

∣∣∣∣∣
λ

2
a b

⇒
ejπ1

Figure E2.5.3.2 Radiation pattern of two dipoles with α = π.

The radiation pattern yields a null in the broadside direction of φ =
±π/2 as the two dipoles destructively interfere. In the endfire direction
of φ = 0andπ , the radiation pattern is maximum because as dipole a
radiates 1 , dipole b also gives ej2π = 1 due to its own phase of π and
the phase of π coming from the dipole separation of d = λ/2 . Thus the
two dipole fields constructively interfere.

(c) The radiation pattern for the two-dipole array with α = 0 and d = λ
is shown in Fig. E2.5.3.3. The corresponding array factor is

|F (φ)| =

∣∣∣∣∣1 + ej2π cosφ

∣∣∣∣∣ =

∣∣∣∣∣ sin [2π cosφ]
sin [π cosφ]

∣∣∣∣∣

λ

a b
⇒

60◦

Figure E2.5.3.3 Radiation pattern of two dipoles separated by λ.

It is seen that the radiation pattern has a null in the direction of π/3 .
The field produced by dipole a and that produced by dipole b differ in
phase equivalent to a path length of λ cosπ/3 = λ/2 .
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(d) The radiation pattern for the three-dipole array with α = 0 and d = λ/2
is shown in Fig. E2.5.3.4. The corresponding array factor is

|F (φ)| =

∣∣∣∣∣1 + ejπ cosφ + ej2π cosφ

∣∣∣∣∣ =

∣∣∣∣∣ sin [3π cosφ/2]
sin [π cosφ/2]

∣∣∣∣∣

a b
⇒λ

2

cos−1 2
3

c

λ

2

Figure E2.5.3.4 Radiation pattern of three dipoles in phase.

It is seen that there is a null in the direction of φ = cos−1 2/3 . In
the broadside direction of φ = ±π/2 , the three dipoles constructively
interfere. In the endfire direction, the electric field amplitude is 1/3 of
the principal maximum in the broadside direction because two of the
three dipoles destructively interfere.

(e) The radiation pattern for the four-dipole array with α = 0 and d = λ/2
is shown in Fig. E2.5.3.5. The corresponding array factor is

|F (φ)| =

∣∣∣∣∣1 + ejπ cosφ + ej2π cosφ + ej3π cosφ

∣∣∣∣∣ =

∣∣∣∣∣ sin [2π cosφ]

sin [
π

2
cosφ]

∣∣∣∣∣

λ/2
φ

λ/2 λ/2
a b c d

cos−1 1
2

Figure E2.5.3.5 Radiation pattern of four-dipole array.

In the broadside direction, all four dipole fields constructively interfere
to yield the principal maxima. The null in the endfire direction can be
understood because dipoles a and b destructively interfere and dipoles
c and d also destructively interfere. In the direction of φ = cos−1 = 1/2 ,
dipoles a and c produce a null and so do dipoles b and d .

End of Example 2.5.3
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D. Array Pattern Multiplication

The radiation pattern of an array of antennas may be obtained by using
the technique of pattern multiplication. To illustrate the pattern mul-
tiplication method, consider four dipoles pointing in the ẑ-direction,
spaced λ/2 apart with equal amplitude and phase.

We treat the two dipoles separated by λ/2 as a single unit denoted
by the symbol

⊙
. The unit pattern is shown in Fig. E2.5.3.1. The four-

dipole array as shown in Fig. 2.5.8 is the convolution (denoted by ⊗
in Fig. 2.5.8) of the unit

⊙
and the group consisting of two elements

separated by distance λ. The group pattern is shown in Fig. E2.5.3.3.
The resultant radiation pattern is obtained by multiplication of the
unit pattern and the group pattern as shown in Fig. 2.5.9.

λ

2
λ

2
λ

λ

2
where

λ

2
λ

Figure 2.5.8 Four-dipole array as convolution of two-dipole arrays.

λ

Figure 2.5.9 Multiplication of group and unit patterns.

The radiation pattern is identical to that in Fig. E2.5.3.5.
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Example 2.5.4
The following five dipole antennas are all pointing in the ẑ-direction. The

amplitude of the center dipole is twice as the other four. Sketch the radiation
patterns in the x-y plane.

Solution: Using the pattern multiplication technique, we treat the five-
dipole array as a group of two units separated by one wavelength. Each
unit consists of three dipole antennas with the unit pattern as shown in
Fig. E2.5.3.4. The dipole array is shown as the convolution of a group of two
units in Fig. E2.5.4.1.

λ

2

1 2
λ

2
λ

2
λ

2

1 11

λ

λ

2
λ

2
where

Figure E2.5.4.1 Five-dipole array as convolution of group of two units.

60◦
cos−1( 2

3 )

cos−1( 2
3 )

60◦

λ

Figure E2.5.4.2 Radiation pattern of five-dipole array.

The group consists of two elements separated by a distance of λ . The group
pattern is shown in Fig. E2.5.3.3. The resultant radiation pattern is the multi-
plication of the group pattern and the unit pattern as shown in Fig. E2.5.4.2.

End of Example 2.5.4
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Example 2.5.5
A two-dimensional array consisting of six dipoles on the xy-plane is

shown in Fig. E2.5.5.1. The three-dipole array forms a unit which convolves
with a group of two-elements separated by one wavelength.

λ

2
λ

2

λ

λ

2
λ

2
where

λ

2
λ

2

λ

Figure E2.5.5.1 Six-dipole two-dimensional array.

The group pattern is Fig. E2.5.3.3 rotated by 90 degrees. The unit
pattern is shown in Fig. E2.5.4.1. The resultant pattern is the multiplication
of the group and the unit patterns as shown in Fig. E2.5.5.2.

30◦
48◦

Figure E2.5.5.2 Radiation pattern of the six-dipole array.

The six-dipole two-dimensional array can also be obtained by convolution
of the two-dipole pair separated by one wavelength as a unit with the group
consisting of three elements. The group pattern in Fig. E2.5.5.2 becomes the
unit pattern and the unit pattern becomes the group pattern. Interchanging
the group and unit patterns in Fig. E2.5.5.2, the resultant pattern remains
the same.

End of Example 2.5.5
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Example 2.5.6 Binomial array.
To construct an array antenna with no side lobes, consider the following

synthesis procedure. Noticing that the radiation pattern of two dipoles sepa-
rated by a half-wave-length has no side lobes, we make the two dipole array
a unit separated by λ/2 . The resultant pattern is shown in Fig. E2.5.6.1.

Figure E2.5.6.1 Multiplication of two two-dipole array patterns.

which corresponds to an array shown in Fig. E2.5.6.2.

λ

2

1 1
λ

2
λ

2
λ

2

2

Figure E2.5.6.2 Resultant array consisting of three elements.

Treat the array in Fig. E2.5.6.2 as a unit. Multiplying the unit pattern with
the same group pattern of two-dipoles, the resultant pattern is shown in
Fig. E2.5.6.3.

Figure E2.5.6.3 Resultant pattern of array with no sidelobes.

which corresponds to an array shown in Fig. E2.5.6.4.

λ

2

1 3
λ

2
λ

2
λ

2

31 1
λ

2
λ

2

2 1
λ

2

Figure E2.5.6.4 Resultant array consisting of four elements.
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Again repeat the process by making the above array as a unit, we obtain
a resultant pattern that is more sharply peaked and the corresponding array
has the amplitudes 1 4 6 4 1 . Thus, we conclude that an array antennas with
binomial coefficients as amplitudes will have no sidelobes.

Mathematically, the array factor for the binomial array can be obtained
in the following fashion:

|F (φ)| =
∣∣1 + CN

1 e
jπ cosφ + CN

2 e
j2π cosφ + .....+ CN

N e
jNπ cosφ

∣∣
=

∣∣(1 + ejπ cosφ)N
∣∣ =

∣∣∣2 cos(
π

2
cosφ)

∣∣∣N
For N = 1 , the above equation is equivalent to the expression obtained for
two dipoles.

End of Example 2.5.6

Example 2.5.7
The total electric field E for the dipole array in Figure 2.5.7 was obtained

by superposition of the contributions from all Hertzian dipole antennas.

E = θ̂η
jkI�

4πr
e−jkrejka cosφ

N−1∑
n=0

ejn(kd cosφ+α) (E2.5.7.1)

The distance from the dipole to the observation point is
R = r − (a+ nd) cosφ (E2.5.7.2)

The result in (E2.5.7.1) can also be obtained from the following integral sim-
ilar to (2.5.8)

E = θ̂
jωµ

4πr
e−jkr

∫ ∞

−∞
dxI(x)ejkx cosφ (E2.5.7.3)

with the source

I(x) =
N−1∑
n=0

δ(x− a− nd)ejnα

We find the array factor

F (φ) =
∫ ∞

−∞
dxI(x)ejkx cosφ (E2.5.7.4)

For the four dipoles in the previous Example with α = 0 and d = λ/2 , we
have

I(x) = δ(x) + δ(x− d) + δ(x− 2d) + δ(x− 3d) (E2.5.7.5)
The array factor becomes

F (φ) = 1 + ejπ cosφ + ej2π cosφ + ej3π cosφ

End of Example 2.5.7
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Example 2.5.8
The array factor

F (φ) =
∫ ∞

−∞
dxI(x)ejkx cosφ (E2.5.8.1)

is seen to be the Fourier transform of the current distribution I(x) .
For the source distribution of four dipoles with α = 0 and d = λ/2 ,

and

I(x) = I� [δ(x) + δ(x− d) + δ(x− 2d) + δ(x− 3d)] (E2.5.8.2)

we can write I(x) in the form of convolution as follows:

I(x) = I�

∫ ∞

−∞
dx′ [δ(x− x′) + δ(x− x′ − 2d)][δ(x′) + δ(x′ − d)] (E2.5.8.3)

which is graphically represented as

λ

2
λ

2
λ λ

2
λ

2

Figure E2.5.8.1

Eq. (E2.5.8.3) and the above Figure illustrates the convolution of a two-
dipole array with separation one wavelength with another two-dipole array
with half-wavelength separation.

The array factor (E2.5.8.3) then becomes

F (φ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dx′ [δ(x− x′) + δ(x− x′ − 2d)][δ(x′) + δ(x′ − d)]ejkx cosφ

=
∫ ∞

−∞
du[δ(x− x′) + δ(u− 2d)]ejku cosφ

∫ ∞

−∞
dx′ [δ(x′) + δ(x′ − d)]ejkx′ cosφ

= [1 + ej2kd cosφ][1 + ejkd cosφ]

where we substitute the variable x − x′ = u . The radiation pattern as rep-
resented by |F (φ)| is illustrated in Figure 2.5.9, which is the multiplication
of the radiations of the two dipole arrays. This is the result of the Fourier
transform (E2.5.8.3) of the convolution in (E2.5.8.3).

End of Example 2.5.8
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E. Equivalence Principle

Equivalence principle is useful in formulating problems for finite “re-
gions of interest” by replacing all “regions of no interest” with equiva-
lent sources. Current sheets are important conceptual tools to be placed
on the surfaces of the regions of interest to generate equivalent prob-
lems that have identical solutions to the original problem. According
to the equivalence principle, we can place current sheets on the bound-
aries of the regions of interest, or we can place image sources in the
regions of no interest. The solutions of the equivalent problems are
identical in the regions of interest but in the regions of no interest, the
solutions will be different and incorrect. With judicious design of an
equivalence problem, many complicated problems can be reformulated
to facilitate the solutions.

Radiation by Current Sheets
Consider a plane wave

E = x̂ηH0e
−jkz

H = ŷH0e
−jkz (2.5.16)

propagating in an unbounded space. We can designate z ≥ 0 as the
region of interest and formulate an equivalent problem by placing a
current sheet with

Js = −x̂2H0

E =

−x̂

ηHoe
jkz

H =

ŷ

Hoe
jkz

Js = 2Ho

E =

x̂

ηHoe
−jkz

H =

−ŷ

Hoe
−jkz

z = 0

x̂

y

Figure 2.5.10 Current sheet for the reflected wave.
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at z = 0 . The current sheet produces the original plane wave for
z > 0 . In the half-space z < 0 , however, the current sheet produces a
plane wave

E = x̂ηH0e
jkz

H = −ŷH0e
jkz (2.5.17)

propagating in the −ẑ direction, which is different from the original
plane wave. Thus the two problems are equivalent in the region of
interest but different in the region of no interest.

Image Theorem
Consider dipole antennas placed in front of a perfectly conducting half-
space as shown in Fig. 2.5.11. We can replace the conducting half-
space with images of the dipole antennas. For the dipole parallel to
the surface, the image dipole is also parallel to the surface but in the
opposite direction, such that the tangential electric field at z = 0 is
zero. In order to have zero tangential electric field on the surface, the
image of the dipole perpendicular to the surface is also perpendicular
to the surface but points in the same direction.

σ →∞

Region of
interest

Region of
no interest

Region of
interest

Region of
no interest

Figure 2.5.11 Image dipole antennas.

The region of interest for this case is the half-space containing the
original dipole. In the region of no interest, which was occupied by the
perfect conductor, now contains the image dipole. Thus the solutions
to the problem of dipoles in front of the conducting half-space are only
valid in the region of interest.
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Example 2.5.9
Consider a dipole antenna placed in front of a perfectly conducting half-

space as shown in Fig. E2.5.9.1.

σ →∞

Region of interest

σ →∞

Figure E2.5.9.1 Images of a dipole in between two conductors.

In order to satisfy the boundary condition of zero tangential electric field
on the surfaces of both perfect conductors, multiple images are required. It is
important to note that the solution of fields due to all the dipoles is only valid
in the region of interest. The region of interest is in between the conductors
containing the original dipole. The region of no interest was occupied by the
perfect conductors and the fields are zero there.

End of Example 2.5.9

Fourier Optics and Diffraction
Consider a plane wave incident upon a slit of width � as shown in
Figure 2.5.12. The problem is to obtain the diffracted field to the right
of the slit, which is designated as the region of interest. To the left
of the slit for z < 0 , the incident plane wave can be replaced by
a current sheet with Js = −x̂2H0 . We assume that the slit width is
large enough so that the slit open region can be replaced by the current
sheet of width � . With the same far-field approximation as (2.5.6) and
(E2.5.7.2), we find

R ≈ r − y sin θ (2.5.18)

and write the far field electric field in terms of the current moment per
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unit length in x as F (θ) such that E = x̂AF (θ) with

F (θ) =
∫
dyJs(y)ejky sin θ (2.5.19)

Js = 2Hox̂E = x̂ηHoe
−jkz

H = ŷHoe
−jkz

z

Region of
interest

Region of
interest

� �

−

θ
22

y y

R

r

Figure 2.5.12 Diffraction by a slit.

H

E k

2�

|E|

Figure 2.5.13 Diffraction pattern.

where the factor A contains e−jkr and other parameters such as dis-
tance and spatial frequencies.

Equation (2.5.19) states that the electric field is a Fourier trans-
form of Js . This is a simple formula in Fourier optics. For the example
of diffraction by a slit, we find

F (θ) =
∫ �

−�
dy H0e

jky sin θ = 2�H0
sin[k� sin θ]
k� sin θ

(2.5.20)
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The diffraction pattern is plotted in Fig. 2.5.13. Far away from the slit,
y/z � 1 , approximate sin θ ≈ y/z . We see that nulls of the diffraction
pattern occur at k�y/z = nπ . Compare the above result with that of
an N -dipole array with separation d along the y-axis. In the limit of
N →∞ , d→ 0 , and Nd = 2� , we find the array factor

|F (θ)| =
∣∣∣∣∣sin(N2 kd sin θ)
sin(1

2kd sin θ)

∣∣∣∣∣ ≈
∣∣∣∣N sin[k� sin θ]

k� sin θ

∣∣∣∣
which is of the same form as (2.5.20).

In Figure 2.5.14, we plot the diffraction pattern for three slits.

. .
 .

. .
 .

. .
 .

. .
 .

Figure 2.5.14 Diffraction by three slits.

The plot illustrates the pattern multiplication technique. First, the
three slits are treated as a gate function multiplying an infinite impulse
train and then convolving with one slit. The Fourier transform is then
the result of the transform of the gate function convolving with the
multiplication of the transforms of the infinite impulse train and one
single slit.
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Problems

P2.5.1
Consider a material of thickness d , permittivity ε1 , coating a material

with permittivity ε2 . The frequency is f = 3× 108 Hz.
(a) For a plane wave at normal incidence, the transmission line analogy

shown in Figure P2.5.1.1 may be applied to this problem. Determine the
equivalent transmission line parameters Z0, Z1, Z2 , where d is specified
in terms of λ1 , the wavelength in region −d < z < 0.

Z0 Z1 Z2

z = −d z = 0

Figure P2.5.1.1

A uniform plane wave is normally incident on this material with

Ei = ŷE0e
−jk0z

where E0 is a real constant and k0 = ω
√
µ0ε0.

(b) For d = 1
8 m, give the expression for the transmitted electric field Et and

the time-average Poynting vector
〈
St

〉
for z > 0 in terms of E0, ω, µ0 ,

and ε0.
(c) Repeat (b) for d = 1

4 m.

P2.5.2
A plane wave with wavelength λ is incident from free space upon a layer

of dielectric medium with permittivity ε = 4ε0 .
(a) When the incident angle is θ = 15◦ , what is the transmitted angle θt ?
(b) When the wave is at normal incident (θ = 0◦) , find a cascaded transmis-

sion line equivalent to the problem. What is the length of the transmission
line representing the dielectric layer? What is the reflection coefficient Γ ?

P2.5.3
Owing to corrosion and tarnishing problems, metallic reflectors may

prove unsuitable at optical frequencies for applications requiring exposure
to the atmosphere. An alternative is the use of dielectric mismatching to
build up high reflectivity. A typical scheme illustrated below uses alternating
layers of high dielectric material, H , and low dielectric material, L , each
layer being one-quarter wavelength thick (in the dielectric).
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(2m+ 1) H HL
n = 1.46

air

layers

Substrate
quartz

H

Figure P2.5.3.1

Using refractive indices nH = 1.6 and nL = 1.2 , find the power reflec-
tion coefficients for m = 6 , and m = 25 . Modeling the structure by using
transmission line sections [Figure P2.5.3.1].

P2.5.4

A microwave radiometer can measure thermal radiation at microwave
wavelengths, the intensity being directly proportional to the average physical
temperature of the radiating matched load. Such a device is to be used to
measure the internal temperature of hospital patients; but is necessary to
match the sensor impedance to that of the patient. The problem is modelled
in Figure P2.5.4.1.

Z0Z0

microwave
radiometer

Zp Zp is impedance 
of patient

Figure P2.5.4.1

The radiometer is temporarily replaced by a signal generator at the fre-
quency of interest. The VSWR measured in the transmission line is then 2
and the voltage standing minimum is located λ/8 from Zp.

(a) What percentage of the signal generator power is reflected from Zp ?
(b) What is Zp if Z0 = 50 Ω ?
(c) A single inductor L is to be placed in series with the transmission line to

match the load. What is the closest distance to the patient the inductor
should be placed and what value of L , if any, should be used in order
to produce a match? The frequency (ω) of operation is 1010 rad/sec.

P2.5.5

A BALUN is a term used by antenna engineers to describe a device which
transforms an unbalanced to a balanced transmission line. (An “unbalanced”
coaxial line is one in which the magnitude of the total current in the outer
conductor is not equal to the current in the inner conductor; that is, in which
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Input
H

C

D′

Za RL

F

E�

D

�

Z0

Z0

Figure P2.5.5.1

there is current flow on the outside of the outer conductor.) Figure P2.5.5.1
shows a coaxial balun proposed by W. K. Roberts in 1957.

The antenna is modelled as a resistive load RL (equal to the “radia-
tion resistance”). The two coaxial cables are identical and have characteristic
impedance Z0 . The outer conductors of the two coaxial cables are shorted
at one end and these outer conductors form a two-wire transmission line of
characteristic impedance Za . An equivalent circuit can be drawn as shown
in Figure P2.5.5.2. (Convince yourself that this circuit is equivalent to the
physical arrangement above.) In answering the following questions, consider
the case where Za = RL.

H

C

D′

RL

�

D

Z0

Z0

��

Z

F

E

VS Za

E
′

′
F

Figure P2.5.5.2

(a) Show, from the equivalent circuit, that the impedance looking into the
terminals D-F is

Z = RL sin2 k�+ j cot k�
(
RL sin2 k�− Z0

)
.

(b) The line is perfectly matched if Z = Z0 . Assume Z0 = 50 Ω and RL =
Za = 70 Ω ; determine k� such that the line is perfectly matched.

(c) This balun is useful for matching a balanced circuit to an unbalanced
circuit of nearly the same impedance over a wide frequency range. Show,
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from the above formula for Z , that the first two frequencies for a perfect
match have a ratio of approximately 2 : 1 for the given data in (b).

(d) Assume the coaxial cables are one quarter wavelength long, i.e., k� =
π/2 . Show that VSWR = 1.4 for the given data in (b).

P2.5.6

A “turnstile” antenna consists of two Hertzian dipoles oscillating at an
angular frequency ω and situated at right angles to each other as shown in
Fig. P2.5.6.1. The antenna have current distributions given by Ī1 = x̂I and
Ī2 = ŷjI , respectively.

jI�

I�

x
φ

(ρ, φ)

y

z

antenna 1

antenna 2

mast

Figure P2.5.6.1

(a) Using the spherical coordinate system, show that in the far field kr � 1,
E � −jω[θ̂Aθ + φ̂Aφ].

(b) Find the total electric field in the far-field (kρ � 1) in the x-y plane
with θ = π/2. Show that the real space-time dependence of the electric
field is of the form cos (ωt+ φ− kρ). Note that
x̂ = r̂ cosφ sin θ − φ̂ sinφ+ θ̂ cosφ cos θ

ŷ = r̂ sinφ sin θ + φ̂ cosφ+ θ̂ sinφ cos θ.
(c) Find the radiation power pattern in the x-y plane.
(d) Calculate the power density radiated in the +ẑ direction in the far field.

P2.5.7

The migratory patterns of Caribou in Alaska are to be monitored by
means of small attached transmitters. Periodically the transmitter radiates
a coded pulse train with a total radiated power of 10 watts at 300 MHz.
Assume the transmitting antenna is an isotropic radiator (with gain 1), but
the receiving antenna is an array with 30 dB gain (gain in dB is 10 log10 gain).
The receiver is matched to the antenna which has an impedance of 50 Ω and
can detect the coded signals if the voltage across the receiver terminals is
greater than 1 µV . Assuming the path is line-of-sight, at what distance can
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the Caribou be tracked? Can they be tracked from a synchronous satellite at
36,000 km altitude?

P2.5.8
In the United States, broadcasting to the general public is regulated

by the Federal Communications Commission (FCC), which allocates fre-
quencies and establishes technical standards. Three general classes of broad-
cast stations have been established. Standard broadcast stations (amplitude
modulation-AM) are licensed for operation on channels spaced by 10 kHz and
occupying the band from 535 to 1605 kHz. Frequency modulation (FM) broad-
cast stations are authorized for operation on 100 allocated channels, each 200
kHz wide, extending consecutively from 201 on 88.1 MHz to channel 300 on
107.9 MHz. Television broadcast stations (operating with vestigial-sideband
amplitude modulation of the visual carrier and frequency modulation of the
aural carrier) are authorized for commercial and educational operation on
designated channels 2–83, each 6 MHz wide, extending from 54–806 MHz.
(See reference: Reference Data for Radio Engineers, Howard W. Sams & Co.,
ITT, 1983.)

The electromagnetic waves radiated by AM stations have the E field
perpendicular to the ground and parallel to the antenna towers (vertical polar-
ization). Most FM stations broadcast with circular polarization. For television
broadcasting, the E field is parallel to the ground (horizontal polarization).

The induced current on a receiving antenna is largest when the antenna
is aligned with the electric field. Given are three wire antenna configurations.
For each type of broadcast, AM, FM, and TV, specify which configuration(s)
gives maximum reception [Figure P2.5.8.1].

⊥−→ to ground

(i) (ii) (iii)

Figure P2.5.8.1

P2.5.9
Consider an elementary ground-to-air communication system with an

airplane flying parallel to the ground at an altitude d . The path of the
airplane is directly over the transmitting antenna (Pq) . Both receiving (Pa)
and transmitting antennas are short dipoles and remain parallel during the
flight and perpendicular to the ground. Assume throughout that d� λ.

(a) Let the total time-average power radiated by the ground antenna be P .
Determine the power received by the receiving antenna on the airplane,
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assuming the receiving antenna is matched. Express your answer in terms
of θ, d, λ, and P . For what value of θ is the received power maximized?

(b) Assume 10 kW is radiated, the receiver sensitivity is 10−10 watts (i.e.,
the minimum detectable signal is 10−10 watts) and the wavelength is 10
cm. How far away from the transmitter will the signal be detectable in
the airplane? (Hint: For r � d, d/ cos θ = r � x and sin θ � 1.)

P2.5.10
(a) Find an expression for the far field electric field due to the traveling wave

current distribution

I(z) = I0e
−jkz

along a terminated wire antenna of length L .
(b) Show that the magnitude of the electric field for large distances from the

antenna is given by

|Eθ| =
30I0 sin θ
r(1− cos θ)

[2− 2 cos(kL(1− cos θ))]1/2.

(c) Sketch the radiation pattern in the plane containing the antenna if L is
equal to 3/2 wavelengths.

P2.5.11
A radio station is located on the coast, west of a city, as shown in

Figure P2.5.11.1a. The transmitting antenna tower may be modeled as a
Hertzian dipole antenna of dipole moment Io� .

Io�

Ocean

Antenna
tower

N

E

Io�e
jψ

d

Io�

φ

Coast

Io� Io�e
j

d

60

300

(a)  (b) (c)

Figure P2.5.11.1

(a) The radio station was able to erect another antenna tower. Relative to
the first antenna tower, at what distance d should the second tower be
placed and with what phase difference ψ (−π < ψ ≤ π) should it be
fed, so that there is a null in the radiation pattern in the direction of
the ocean and no “dead” spots in the reception area as shown in Figure
P2.5.11.1b?
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(b) As shown in Figure P2.5.11.1c, consider another radio station which must
serve two cities, sending most of the power over the land area and little
power in the direction of the ocean (a null at φ = 180◦) , with maximum
radiation in the direction of the two cities (φ = ±60◦) , and no nulls, or
“dead” spots, in the reception area (|φ| ≤ 90◦) . Determine the spacing
d of these two antenna towers and the relative phase difference ψ (−π <
ψ ≤ π) to satisfy these requirements.

P2.5.12

Using the pattern multiplication technique, sketch the radiation pattern
in the x-y plane for the dipole antenna array as shown in Figure P2.5.12.1
where all elements are excited with equal amplitudes and phases. Find the
angles for the nulls and indicate them on sketches. The dipoles are all in the
ẑ-direction.

λ

λ/2
x

y

Figure P2.5.12.1

P2.5.13

(a) Construct a binomial array with 3 in-phase Hertzian dipoles along the ẑ
axis. Specify the relative amplitude of excitation for each element.

(b) Sketch the radiation pattern on the xy-plane and identify the null posi-
tions.

(c) A 2D array is created using the binomial array from part (a). The array
is shown in Figure P2.5.13.1. Sketch the group pattern and the total
radiation pattern for an in-phase array and identify the null positions.

λ/2 λ/2

λ/2 x

y

Figure P2.5.13.1

(d) Find the minimum phase shift α between the units such that there will
be no side lobes.
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P2.5.14
(a) An antenna system in free space radiates the following magnetic field in

the far field (kr � 1) region.

H = φ̂j
H0

r
e−jkr sin θ cos(2π sin θ cosφ)e−j2π sin θ cosφ

What is the corresponding electric field in the far-field zone?
(b) The gain function for a transmitting antenna system may be written as

Gt(θ, φ) = 20 sin2 θ cos2(2π sin θ cosφ).

A matched receiver is located 1 km away in the direction θ = 30◦, φ =
90◦ relative to the transmitter. The receiver has a gain of 10 in the
direction of the transmitter. Find the available power received if the
transmitter radiates 1 kilowatt of power at f = 1 GHz.

P2.5.15
(a) Consider an eight-element linear array with dipoles pointing in the ẑ

direction and spaced λ/2 apart with equal amplitude and phase. Using
pattern multiplication, sketch the resultant radiation field pattern in the
x-y plane. Locate the positions of the nulls and maxima.

(b) Consider four dipoles of equal amplitude and phase on the x-y plane
situated at (x = λ/2, y = λ/4), (x = λ/2, y = −λ/4), (x = −λ/2, y =
λ/4), and (x = −λ/2, y = −λ/4). Using pattern multiplication, sketch
the total radiation field pattern in the x-y plane. Locate the positions
of the nulls and maxima.

P2.5.16
An electric dipole antenna with dipole moment I� is oriented in the ẑ

direction and is placed at the corner of a wall as shown in Figure P2.5.16.1.
The ground and the wall are considered to be perfectly conducting and their
areas are assumed to be infinite.

h

d

I�

z

θ

x

σ →∞

r̄

σ →∞

z

x

θo

0

|E|

|E|max

Figure P2.5.16.2

(a) Explain why the radiation field from the dipole antenna is zero every-
where if d = 0 .
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(b) Let h = 0 . The radiation pattern of the electric field |E| is shown in
Figure P2.5.16.2, where the maximum value |E|max appears at θ = 90◦ ,
and the nulls appear at θ = 0 and θo .
(i) What is the value of θo ?
(ii) Find the distance d in terms of wavelength λ .

(c) Let h = 0 . Find the value(s) of d in terms of wavelength λ such that
the radiated power along the x̂ axis is zero.

(d What is the field in region z < 0 , and what is the field in region x < 0 ?

P2.5.17
Two electrically short dipoles of effective height � parallel to the z-axis

are separated by a distance λ along the x-axis. Both dipoles are driven by
currents that have the same amplitude, I0.

Find the expression for the far field E produced by this array in terms
of the phase ψ of the current of dipole 1 with respect to that of dipole 2.
Sketch the radiation in the x-y plane for ψ = 0 and π

2 .

P2.5.18
Two short dipoles, each having an effective length d , and spaced one

wavelength apart, form a simple array. The terminal currents are fed 180◦
out of phase.
(a) Determine the radiating electric field as a function of r , θ , and φ for

r � λ .
(b) Find the time-averaged power density radiated as a function of r , θ , and

φ . For a given θ , at what angle φ is the radiated power a maximum?
(c) Sketch the radiated power density as a function of φ in the plane θ = π

2 .
What is the angle for maximum radiated power?

P2.5.19
Consider a T.V. station operating Channel 25 at 537.25 MHz and radi-

ating a total power of 5 × 103 kW. The radiation pattern in the horizontal
plane is isotropic, with a gain Gr = 3. How much power will be received
by an antenna with a gain of 10 located one mile 1.6 × 103 meters from
the T.V. tower? (Assume that the receiving antenna is matched and has its
polarization directivity optimized).
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Answers

P2.1.1

C0 = Q/V

P2.1.2

I = NqvπR2 gives v = I/NqπR2 = 1/π10−6×8.5×1028×1.6×10−19 =
0.023 mm/sec.

P2.1.3

η = 308Ω and Z0 = 50Ω . V0 ln (b/a) = 250 , Emax = V0/a = 1190 v/m

P2.1.4

(a) For an air-filled coaxial line, η = ηo = 120πΩ . From Z0 = η
2π ln

(
b
a

)
,

we find, for b = a+ d , a = d
e5/6−1

≈ 0.77d, and b = 1.77d.
(b) For a parallel-plate line filled with air, w = 12π

5 d ≈ 7.54 d.
(c) Let Z0 = η

2π ln
(
b
a

)
= 104 Ω . We find b

a = e10
3/6 = 2.41× 1012 which is

too large, and is not practical.
(d) Let Z0 = η

2π ln
(
b
a

)
= 1 Ω . We find b

a = e1/60 = 1.017. The separation
d is too small, and is not practical.

P2.1.5

(a) LC = µε as ET = −
√

µ
ε ẑ ×HT , and HT =

√
ε
µ ẑ × ET .

(b) Z0 = (η0/2π) ln(b/a) , where a and b are the radii of the inner and
outer conductor respectively with b = a+ d.

Z0 = 50Ω =
η0

2π
ln

(
1 +

d

a

)
⇒ a =

[
e

(
2πZ0
η0

)
− 1

]−1

d = 0.769d

(c) Z0 = 50Ω = η0d
w ⇒ w = η0

Z0
d = 12π

5 d .

(d) In order to get Z0 = 1 kΩ , we have, 2πZ0
η0

= 103

60 = 16.7 ⇒ a = 5.78 ×
10−8d . This is not a feasible design.

(e) To get Z0 = 1 Ω for a coaxial line, we have 2πZ0
η0

= 1
60 ⇒ a = 59.5d .

It is not practical. For a parallel plate line, we need w = 377d , which is
practical.

P2.2.1

The solutions for the voltage and current waves are

V (z, t) = V+[cos(kz − ωt)− cos(kz + ωt)] = 2V+ sin kz sinωt

I(z, t) = I+[cos(kz − ωt) + cos(kz + ωt)] = 2I+ cos kz cosωt

We find, in the limit when −kz = k�� 1 ,

L0 = − V+

ωI+
tan kz ≈ Z0

ω
k� = µ

�d

w
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for a parallel-plate transmission line.

P2.2.2

(a) Z0 = d
w

√
µ
ε = 200Ω .

(b) V (z, t) = E0d cos(kz − ωt) ; I (z, t) = (E0w/η) cos(kz − ωt)
(c) P = E2

0wd/2η .
(d) Emax = 2× 106 V/m, below the breakdown field strength.

P2.2.3

(a) At t = 0 , a backward traveling wave V ′
− = V0 is generated such that

I = V0/Z0 − V−/Z0 = 0 . [Fig. A2.2.3.1]

Vo

0 ll/2

V

Figure A2.2.3.1

(b) For t ≥ l/v , V = Vo .

P2.2.4

lf = vt = t/
√
µε = 10µs× 2× 108 m/s = 2000 m

V = V+(1 + ΓL) , ΓL = V/V+ − 1 = − 1
2 , ΓL = RL−Z0

RL+Z0
gives Rf =

RL = 30 Ω

P2.2.5

(a) At the point of the break there is an open circuit (Γ = 1) and the
current is zero. To satisfy the boundary condition at the breakpoint for
t ≥ 0 , two current waves, I+ and I− with value −Io are created. From
I+, V+ = Z0I+ = −Z0Io . From I−, V− = −Z0I− = ZoIo

(b) Pdc = IoVo = 1 × 109 W ⇒ Io = 1
6 × 104 A ⇒ Vpeak = Vo + Z0Io =

1430 kV

P2.2.6

(a) � = 3× 108 m−1 × 1
2 × 10−8 s = 1.5 m

(b) Since V = V+(1 + ΓL) and V = 0.25V, V+ = 0.5V , we find ΓL =
− 1

2 = ZL−Z0
ZL+Z0

. It follows that ZL = 1
3Z0 . Replace the infinite line by

Z0 which is in parallel with RL . From RLZ0
RL+Z0

= Z0
3 , we determine

RL = Z0
2

(c) The voltage and current distribution on the line at time t = 1.5 �/v is
shown in Figure A2.2.6.1

P2.2.7

(a) ΓL = 3−1
3+1 = 1

2
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z

z

V

I

3/4

1/2

1/4

1/2

1/4

��/2 3�/2

��/2 3�/2

Zo

Figure A2.2.6.1

(b) For t < 0 , V (z) = 1× 3Z0
Z0+3Z0

= 3
4 . At t = 2l/v , V (z) = 0 along the

transmission line.
t < 0

V

3/4

l

z 1/4

l/2

t = l/2v t = 2l/v

0

V V

3/4

z z

l

Figure A2.2.7.1

P2.2.8

(a) � = λ/2, λ = 2� ; ko = 2π
2� = π

� ; ωo = koc = πc
�

(b) fo = 1.5MHz⇒ ωo � 9× 106 ; � = πc
ωo

= 100m

(c) Co = πa2εo
d ; C� = 2π�εo

ln(b/a)

(d) tan k� = C�
Co

1
k�

Since d is small, k� � C�
Co

1
k� and ω2

o = c2

�
2d

a2 ln(b/a)

(e) � = c2

ω2
o

2d
a2 ln(b/a)

; a = 3mm, b = 3.3mm ; � � 8mm

P2.2.9

(a) Z0 =
√
L/C = µ

2π ln(b/a)/ 2πε
ln(b/a) = η

2π ln(b/a)r � 50 Ω
(b) Z ∼ 50Ω
(c) fc = 33.9 GHz
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(d) l = λ/2⇒ l = 1
2f0

√
µεω0 = π

l
√
µε

(e) C0 = πa2ε
δ

P2.2.10

V (z, t) = 2A cos (ωt) cos (kz)

I(z, t) =
2A
Z0

sin (ωt) sin (kz)

k� =nπ; ωn =
nπ

�
√
LC

P2.3.1

(a)
(i) A = Re

[
−3jej(ωt−π/4)

]
⇒ A = −3je−jπ/4 = 1√

2
(−3− 3j)

(ii) A = Re
[
ejωt (−jx̂− 2ŷ)

]
⇒ A = −jx̂− 2ŷ

(iii) A = cosφ cosωt = Re
[
cosφejωt

]
⇒ A = cosφ

(b)
(i) A = jejπ/4 ⇒ A = Re

(
jejπ/4ejωt

)
= cos(ωt+ 3π/4)

(ii) A = x̂+ ŷ3j ⇒ A = Re
[
(x̂+ ŷ3j) ejωt

]
= x̂ cosωt− 3ŷ sinωt

(ii) A = Re
[(
Aoe

jφ + j
)
ejωt

]
= Ao cos(ωt+ φ)− sin(ωt)

P2.3.2

(a) λ = 8 m; ZL = Z0ZLn = 50(0.55− j0.3), Ω = (27.5− j15) Ω
(b) Zn(−25) = 0.55 + j0.3 Z(−25) = (27.5 + j15)Ω
(c) V (−25) = Vs

Z(−25)
Z(−25)+Z0

= V+

[
e−jk(−25) + ΓLe

jk(−25)
]

V+ = Vs
Z(−25)

[Z(−25)+Z0][e−jk(−25)+ΓLejk(−25)]
VL = V+(1 + ΓL) = Vs(0.19− j0.35)

(d)

< P > =
1
2
�{VLI∗L} =

1
2
�

{
VL

V ∗
L

Z∗
L

}
=
|VL|2

2
�

{
1
Z∗
L

}

=
1
2
|Vs(0.19− j0.35)|2�

{
1

27.5 + j15

}
= 0.0022|Vs|2

Note that instead of calculating < P > at the load, the same result can be
obtained by calculating < P > at z = −25 m.

< P > =
|V (−25)|2

2
�

{
1

Z(−25)∗

}
=
|Vs|2|Z(−25)|2

2|Z(−25) + Z0|2
· � {Z(−25)}
|Z(−25)|2

=
|Vs|2�{Z(−25)}
2|Z(−25) + Z0|2

=
|Vs|2

2
27.5

(50 + 27.5)2 + 152
= 0.0022|Vs|2

P2.3.3

(a) 1
2λ = 6 cm, λ = 12 cm, v = c

λ = 1.5·108

0.12 Hz = 1.25 GHz
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(b) ΓL = 0.5e−j2/3π

(c) ZL = ZLnZ0 = (18.5− j25.5) Ω
(d) P = 1

2 · 4 · 50 · 0.75 W = 75 W

P2.3.4

At voltage maximum, the normalized impedance is

Zn(z) =
1 + Γ(z)
1− Γ(z)

=
1 + |ΓL|
1− |ΓL|

= Rn

Thus VSWR = Vmax
Vmin

= 1+|ΓL|
1−|ΓL| = Rn with Rn ≥ 1 on the real ΓR axis.

P2.3.5

Z(z = −λ/4) = Z0
ejk� + ΓLe

−jk�

ejk� − ΓLe−jk�
= Z2

1− ΓL

1 + ΓL

= Z2
(ZL + Z2)− (ZL − Z2)
(ZL + Z2) + (ZL − Z2)

=
Z2

2

ZL
Γ = Z(z=−λ/4)−Z1

Z(z=−λ/4)+Z1
= 0 when Z2 =

√
Z1ZL .

P2.3.6

(a) ZA = Z0(1− j)
(b) ZB = ZA + jZ0 = Z0(1− j) + jZ0 = Z0

(c) ZC = Z0

(d) 〈P 〉 = 1
2
|Vo|2
4Z0

= |Vo|2
8Z0

(e) VC = Vo
2 , VB = jVC = j Vo2 , VA = j Vo2

Zo(1−j)
Zo(1−j)+jZo

= Vo
2 (1 + j)

VL = −VA = −Vo
2 (1 + j) , 〈P 〉 = 1

2
|Vo|2
4Z0
�{1− j} = |Vo|2

8Z0

P2.3.7

(a) When �1 = 0.25λ, Z(z = �1 − �2) =
Z2

0

Zin
= 2Z0 will maximize power.

(b) From the Smith chart �2 = 0.125λ, �3 = 0.074λ (Figure A2.3.7.1).

YnL

∞0 2

ZnL

− j2.0

�2 = 0.125λ

�3 = 0.074λ

Figure A2.3.7.1
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(c) Intersections with the circle Re{Yn} = 2 give |ΓL| =
∣∣∣∣ZL − Z0

ZL + Z0

∣∣∣∣ ≥ 1
3

.

P2.3.8

(a) WT = 2〈We〉 = C�
4 |V0|2 Pd = 1

2RL|I(z = 0)|2 = a|V0|2
2Z0

QI = ω0WT
Pd

= π
4a

(b) WT = 2〈We〉 = C�
4 |V0|2 Pe = 1

2Z0

∣∣∣ V0
1+jb

∣∣∣2 = |V0|2
2Z0(1+b2)

QE = ω0WT
Pe

= π
4 (1 + b2)

P2.3.9

(a) V (0)
I(0) = V++V−

V+−V−
Zo = 1

jωCo
⇒ V−

V+
= 1−jωCoZo

1+jωCoZo
= e−2jφ .

(b) V (�)
I(�) = V+e−jk�+V−ejk�

V+e−jk�−V−ejk�
Zo = jωLo . V−

V+
= e−2jφ ⇒ cot(kn� − φ) =

ckn
Lo
Zo

.
(c-i) cot

(
ωn

�
c

)
= 0 ⇒ ωn

�
c = nπ + π

2 . n = 0 ⇒ f0 = ω0
2π = 75 MHz .

(c-ii) cot
(
ωn

�
c

)
=∞ ⇒ ωn

�
c = nπ . n = 0 ⇒ f0 = ω0

2π = 0 .
(d) cot

(
ω �
c

)
= ωLo

Zo
⇒ 0 < ω �

c <
π
2 , or 0 < f < 75 MHz .

P2.3.10

(a) z0 = 1
6
�; Z

Z0
= 5 z0 = 1

4
�; Z

Z0
= 10

z0 = 1
3
�; Z

Z0
= 15 z0 = 1

2
�; Z0

Z0
= 20

(b) z0 = 1
6
�; Z

Z0
= 5 + j0.4 z0 = 1

4
�; Z

Z0
= 10 + j0.5

z0 = 1
3
�; Z

Z0
= 15 + j0.4 z0 = 1

2
�; Z0

Z0
= 20

(c) The resonator is driven by a shunt current source of amplitude Is applied
at z = w . The source frequency ω is varied around ω1 . Assuming small
loss, write down the modal expansion and indicate the dominant term.
Hence plot |V (z = w)| as a function of ω and indicate how Qs can
be obtained experimentally from such plots for the loaded and unloaded
resonator.

P2.4.1

(a) For ω < ω0, θr = π and ω
ω0

= 1
cosh(θI/2)

.

(b) Vn+1
Vn
� jωL0

jωL0+ 1
jωC0

� −ω2L0C0 (ω2L0C0 � 1)

P2.4.2

(a) sin2 θ
2 = ω2

01
ω2 = 1

4ω2L0C0
.

(b) Z = Vn
In

= A
B = −sgnθ

√
L0
C0
e−j θ2 .

(c) vn(t) = Vs sin (ω0t+ nπ/2)
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(d) vn(t) = Vs sin
(
ω0t+ nπ

2

) sinω1

(
t−

√
2n

ω01

)
ω1

(
t−

√
2n

ω01

)
P2.4.3

〈P 〉positive =
1
2
ReZ|I+|2 = −1

2
|I+|2

√
L0

C0
cos

θ

2
< 0

〈P 〉negative =
1
2
Re (V−I∗−) =

1
2
|I−|2

√
L0

C0
cos

θ

2
> 0

Hence power travels in opposite direction of the phase velocity.

P2.4.4

(b) ω2
0 ≤ ω2 ≤ ω2

1 + ω2
0 .

P2.4.5

(a) ω0 = 2/
√
L0C0; ω1 = 1/

√
L1C0 .

(b) ω2
1 ≤ ω2 ≤ ω2

0 + ω2
1 .

P2.4.6

(a) θa = k� = ω�
√
LC = ω

√
L�C� = 2 ω

ω0
; θL = 2 sin−1 ω

ω0
.

(b) ω ≈ ω0/2 = 18.1× 103 rad/sec⇒ f = 2.88 kHz.

P2.5.1

(a) Z0 = 120πΩ, Z1 =
√

µ0
ε1

= Z0
2 = 60πΩ, Z2 =

√
µ0
ε2

= Z0
4 = 30πΩ

(b) Et = ŷE0
2
3

1

1 +
1
3

(
e−

π
4 j

)
e−j4k0z =

1− j
2
√

2
ŷE0e

−j4k0z

〈
St

〉
=

ẑ

2η2

∣∣Et

∣∣2 =
ẑ

2
4
η0

E2
0

4
=

E2
0

2η0
ẑ

(c) Et = ŷE0
2
3

1− 3
5

1− 1
3

(−j)e−j4k0z = −2
5
jŷE0e

−j4k0z

〈
St

〉
=

ẑ

2η2

∣∣Et

∣∣2 =
ẑ

2
4
η0

(2
5

)2

E2
0 =

8E2
0

25η0
ẑ

Note that
〈
St

〉
= ẑ

E2
0

2η0

[
1− |Γ0|2

]
= ẑ

〈
Sinc

〉 [
1− |Γ0|2

]
P2.5.2

(a) θt = θ = 15◦ because the media on the two sides are the same.
(b) The layer is 1/2 wavelength thick — perfect transmission Γ = 0.

P2.5.3

Let µ = µ0 , n =
√
ε/ε0 , and η =

√
µ0/ε = η0/n , nS = 1.46 , and

model this problem as in Figure A2.5.3.1.
Looking into the substrate, we see an impedance of η0/nS . From the left

of the first dielectric layer, we can use the inversion properties of a quarter-
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Z0 = η0 ZH =
nH

λ

4

ZL =
nL

ZH =
η0

nH
=

η0

nS

η0 η0
ZS

λ

4
λ

4

Figure A2.5.3.1

wave transmission line to give: Zin =
(
η0

nH

)2

· nS
η0

and, back another layer:

Zin =
(
nH
nL

)2 η0

nS
. So, after 2m layers, we get Zin =

(
nH
nL

)2m η0

nS
. And

after the last H layer: Zin =
nS
n2
H

(
nL
nH

)2m

η0 .

The reflection coefficient, Γ , from outside the last layer is:

Γ =
ZL/Z0 − 1
ZL/Z0 + 1

=

nS
n2
H

(
nL
nH

)2m

− 1

nS
n2
H

(
nL
nH

)2m

+ 1
=
−0.9645103 for m = 6
−0.99999935 for m = 25

The power reflection coefficient |Γ|2 =
0.930280 for m = 6

0.9999987 for m = 25
P2.5.4

(a) VSWR = 2 ⇒ |σl| = 1
3 ⇒ σl = − j

3 ⇒ Power reflected
Power incident = |σl|2 = 1

9

z

|V |

Vmax

Vmin

λ
8

|Vmax|
λ
8

|Vmin| |σ l|
=
1
3

σl(z = 0) = −j 1
3

plane of σl

Figure A2.5.4.1

(b) Zp = Z0
1+σl
1−σl

= 50

(
1− j/3

)
(

1+ j/3
) = 40− j30

(c) Zpn = 0.8− j0.6
To connect inductor in series to match the load, we need to go to the

point An = 1− j0.7 at ω = 1010 ⇒ λ = 19 cm � = 0.473λ ⇒ � = 8.9 cm.
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To match An , we need to add in series an inductor of value: Xn = +0.7 ⇒
X = 0.7× 50 = 35 Ω⇒ L = X

ω = 3.5 nH .

P2.5.5

(a) ZDF = Impedance looking into the terminals DF
ZDE = Impedance looking into the terminals DE
ZEF = Impedance looking into the terminals EF
Therefore, we have Z = ZDF = ZDE + ZEF
Open circuit ⇒ Zl =∞⇒ ΓL = 1⇒ Γ(z) = ej2kz

ZDE = Z|z=−� = Z0
1+e−j2k�

1−e−j2k� = −jZ0 cot k�
Short circuit ⇒ ZL = 0⇒ ΓL = −1⇒ Γ(z) = −ej2kz
ZE′F ′ = Z|z=−� = Za

1−e−j2k�

1+e−jk� = jZa tan k� = jRL tan k�

ZEF = RL·ZE′F ′
RL+ZE′F ′ = RL tan2 k�+jRL tan k�

1+tan2 k�
= RL sin2 k�+jRL sin k� cos k�

Z = ZDEZEF = RL sin2 k�+ j cot k�(RL sin2 k�− Z0)
(b) Z = Z0 ⇒ Z0 = RL sin2 k� ⇒ sin2 k� = Z0

RL
= 50

70 ⇒ sin k� = 0.85 ⇒
k� =

{
1.01 + nπ
2.13 +mπ

in radians

(c) k = ω
c ⇒

ω1�
c = 1.01, ω2�

c = 2.13⇒ ω2
ω1

= 2.13
1.01 = 2.11 .

(d) k� =
π

2
⇒ Z = RL = 70 Ω ⇒ ΓL =

Z
Z0
− 1

Z
Z0

+ 1
=

1.4− 1
1.4 + 1

=
1
6
⇒

V SWR =
1 + |ΓL|
1− |ΓL|

=
1 + 1

6

1− 1
6

= 1.4

P2.5.6

(a) For far field, E(r̄) = −jωµ e−jkr

4πr

(
θ̂fθ + φ̂fφ

)
where f(θ, φ) = I� = (x̂+ jŷ)I� = θ̂ejφ cos θI�+ φ̂jejφI� so
E(r̄) = −jωµ I�e−jkr

4πr ejφ
(
cos θ · θ̂ + jφ̂

)
(b) E(r) = φ̂ωµ I�e−jkρ

4πρ ejφ

E(r, t) = Re
{
E(r)ejωt

}
= φ̂ωµ I�

4πρ cos(ωt+ φ− kρ)

(c) < S >= 1
2Re |E|2

η = 1
2η

(
kI�
4πρ

)2

which is a constant independent of the

azimuthal angle φ .

(d) | < S > | = 1
2Re |E|2

η = 1
2η

(
kI�
4πρ

)2

P2.5.7

rmax = λ
4π

√
GrPt
Prec

∼ 7.96× 104 km > 3.6× 104 km

P2.5.8

(a) Figure P2.5.8.1(i) gives the maximum reception for AM.
(b) Figure P2.5.8.1(ii) gives the maximum reception for TV.
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(c) All three configurations gives the same reception for FM.

P2.5.9

(a) The angle of maximum power reception is θ = tan−1
√

2.
(b) rmax ∼ 79.6 km

P2.5.10

(a) I(z) = I0e
−jkz

E = θ̂η jk sin θ
4πr e−jkrf(θ) = θ̂η jk sin θ

4πr e−jkr
∫ L/2

−L/2
dzI(z)ejkz cos θ

(b) |Eθ| = jk(120π) sin θ
4πr

∫ L/2

−L/2
dzI0e

−jkzejkz cos θ

= jk(30) sin θ
jkr(cos θ−1)

[
I0e

jkz(cos θ−1)
]L/2
−L/2

= 30I0 sin θ
r(1−cos θ)2 sin

[
kL
2 (1− cos θ)

]
= 30Io sin θ

r(1−cos θ)2
{

2−2 cos[kL(1−cos θ)]
4

} 1
2

(c) For L = 3
2λ and far field

x

z

θ

Figure A2.5.10.1 L = 3
2λ

|E(r)| ∝ sin θ
1−cos θ sin

[
3π
2 (1− cos θ)

]
=

sin[ 3π2 (1−cos θ)]
tan θ2

P2.5.11

(a) d = λ/4 and ψ = −π/2 .
(b) ψ = π

3 (4m+2n+1), and d = 2λ
3 (m−n−1/2). Let m = 0 and n = −1 ,

we get ψ = −π/3 and d = λ/3 .

P2.5.12

Nulls at φ = ±60◦,±90◦,±120◦

P2.5.13

(a) 1 : 2 :1
(b) 0 and π
(c) 0, π/2 , π . 3π/2
(d) α = π

P2.5.14

(a) E = θ̂
√

µ0
ε0
Hφ = θ̂

√
µ0
ε0
jH0

r e
−jkr sin θ cos[2π sin θ cosφ]e−j2π sin θ cosφ
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(b) Pr = 1000
(

0.3
4π1000

)2
10 · 5 = 28.5× 10−6 W

P2.5.15

(a) The eight-element linear array can be generated by the convolution of
the unit and the group consisting of two dipoles separated by distance
2λ . The unit is a four dipole array with separations of λ/2 . The resul-
tant radiation pattern is the product of the unit pattern and the group
pattern, which has two maxima at ψmax = ±90◦ and fourteen nulls at
ψ = 0,±41.4◦,±60◦,±75.5◦,±104.5◦,±120◦,±138.6◦, 180◦.

(b) The unit is a two dipole array with separation of λ along x -axis. The
group consists two dipoles separated by distance λ/2 and located along
y -axis. The resultant pattern has two maxima at ψmax = 0, 180◦ and
six nulls at ψ = ±60◦,±90◦,±120◦ . The sidelobes between 60◦ and
90◦ , 90◦ and 120◦ , −90◦ and −60◦ , −90◦ and −120◦ are small.

P2.5.16

(a) When d = 0 , the (image) dipoles cancel with each other.
(b) E ∼ sin θ · sin (kd sin θ) . At θ = 90◦ , |E| = |E|max ⇒ kd = nπ + π

2 .
(i) kd sin θo = π ⇒ θo = sin−1 2

2n+1 = sin−1 2
3 ( n = 1 ).

(ii) n = 1 ⇒ kd = 3π
2 ⇒ d = 3

4λ .
(c) kd = nπ ⇒ d = n

2λ (n = 0, 1, 2, · · ·) .
(d) The fields in region z < 0 and x < 0 are zero.

P2.5.17

E(r) = θ̂jωµ Il
2πr e

−jkr+jπ sin θ cosφ+j ψ2 sin θ cos
[
π sin θ cosφ+ ψ

2

]
P2.5.18

(a) E = θ̂ωµI1d2πr e−jkr+jπ sin θ cosφ sin θ sin[π sin θ cosφ]

(b) < S >= 1
2Re

{
E ×H∗

}
= r̂ 1

2η
∣∣kI1d

2πr

∣∣2 sin2 θ sin2[π sin θ cosφ]

π sin θ cosφ = π
2 ⇒ φ = cos−1

(
1

2 sin θ

)
(c) φ = π/3 .

P2.5.19

Arec =
λ2

4π
Grec , (Prec)MAX = ArecSinc , Sinc =

PradGrad

4πr2

Prec =
λ2

4π
GrecGrad

Prad
4πr2

= (
3× 108

537.25× 106
)2

(3× 10)(5× 106)
(16)(π2)(1.6× 103)2

= 0.116 w





3

MEDIA

3.1 Time-Harmonic Fields

A. Continuous Monochromatic Waves

B. Polarization of Monochromatic Waves

C. Time-Average Poynting Power Vector

D. Waves in Conducting Media

E. Waves in Plasma Media

F. Dispersive Media

G. Field Energy in Dispersive Media

3.2 Bianisotropic Media

A. Anisotropic Media

B. Biisotropic Media

C. Bianisotropic Media

D. Symmetry Conditions for Lossless Media

E. Reciprocity Conditions

F. Causality Relations

3.3 kDB System for Waves in Media

A. Wave Vector k

B. kDB System

C. Maxwell Equations in kDB System

D. Waves in Isotropic Media

E. Waves in Uniaxial Media

– 261 –



262 3. Media

F. Waves in Gyrotropic Media

G. Waves in Bianisotropic Media

H. Waves in Nonlinear Media

Answers



3.1 Time-Harmonic Fields 263

3.1 Time-Harmonic Fields

A. Continuous Monochromatic Waves

For electromagnetic waves of a particular frequency in the steady
state, the fields are time-harmonic and are known as monochromatic
waves or continuous waves (CW). The CW cases are important for
three reasons: (i) the CW assumption can be used to eliminate the time
dependence in the Maxwell equations and thus considerably simplify
the mathematics; (ii) once the CW case is solved and a sound under-
standing is developed for the frequency-domain phenomena, Fourier
theory can be applied to study the time-domain phenomena; (iii) CW
representation covers the whole spectrum of electromagnetic waves.
Clearly, a thorough understanding of CW or the time-harmonic case
is essential in the study of all electromagnetic wave phenomena.

In general, for a time-harmonic field with angular frequency ω ,
we let

E(r, t) = Re{E(r) e−iωt} (3.1.1)

where Re denotes the real part of a complex quantity, E(r) is a
complex vector, and e−iωt is the time convention used to denote the
time harmonic dependence.

The complex electric field vector E(r) is a function of position
only and independent of time. In this book we do not use different
symbols to distinguish real quantities such as E(r, t) in the time do-
main and complex quantities such as E(r) in the frequency domain.
Their meanings should be clear from the context. In case of possible
ambiguity, we shall explicitly indicate the complex field quantities to
be functions of r only and the real time-domain fields to be functions
of both r and t.

Similar definitions apply to other field quantities with E replaced
by B, D, H, J, and ρ in (3.1.1).

B(r, t) = Re{B(r) e−iωt} (3.1.2)

D(r, t) = Re{D(r) e−iωt} (3.1.3)

H(r, t) = Re{H(r) e−iωt} (3.1.4)

J(r, t) = Re{J(r) e−iωt} (3.1.5)

ρ(r, t) = Re{ρ(r) e−iωt} (3.1.6)
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Substituting E(r, t) and B(r, t) in Faraday’s law

∇× E (r, t) = − ∂
∂t
B (r, t) (3.1.7)

we obtain
Re

{
[∇× E(r)− iωB(r)]e−iωt

}
= 0 (3.1.8)

This equation is true for all time t.

Note: When the real part of the complex quantity in the square brackets
multiplied by all values of e−iωt is equal to zero, the complex quantity itself
must be equal to zero. Consider Re{Ce−iωt} = 0 where C = CR + iCI

denotes the complex quantity with both CR and CI real. Show that CR = 0
by letting ωt = 0 , and CI = 0 by letting ωt = π/2 .

We find from (3.1.8) that Faraday’s law for time-harmonic fields
becomes

∇× E(r)− iωB(r) = 0 (3.1.9)

Similar arguments apply to other Maxwell equations and we find that
they become, if we omit writing the argument r,

∇× E = iωB (3.1.10)

∇×H = −iωD + J (3.1.11)

∇ ·B = 0 (3.1.12)

∇ ·D = ρ (3.1.13)

This amounts to replacing time derivatives in all Maxwell’s equations
by −iωt and treating all field quantities as complex.

We see that the Maxwell equations for time-harmonic fields no
longer have time dependence, thus mathematically reduced the four
independent variables x, y, z, t to x, y, z . The electromagnetic field
quantities are now dependent on space only. However all field quantities
are now complex. To recover the real space-time dependent field vector,
we simply multiply the complex quantity by e−iωt and take its real
part as shown in (3.1.1).
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B. Polarization of Monochromatic Waves

Considering the time evolution of E(r, t) at r = 0 by letting

E = ER + iEI (3.1.14)

The plane defined by the two vectors ER and EI is called the po-
larization plane. For the time dependent electric field vector, we find
from (3.1.1)

E(t) = Re{(ER + iEI)e−iωt} = ER cosωt+ EI sinωt (3.1.15)

In Figure 3.1.1 we sketch the two vectors ER and EI . At t = 0 ,
E(t) coincides with ER . At ωt = π/2 , E(t) coincides with EI . The
tip of E as a function of time traces out an ellipse. When ER is
perpendicular to EI , one represents the major axis and the other the
minor axis of the ellipse.

The time derivative of E(t) gives

∂E(t)
∂t

= ω[−ER sinωt+ EI cosωt ]

At t = 0 , the time rate of change of the electric field vector is in the
direction of EI . As ωt = π/2 , the time rate of change of E is in the
opposite direction of ER . Thus as time increases, the vector E moves
from ER to EI .

ωt = π/2

EI

t = 0
ER

ωt 3π/2

ωt = π

=

Figure 3.1.1 The polarization plane.

When ER and EI are parallel or anti-parallel to each other, the
total electric field vector represents a linearly polarized wave. For an
electromagnetic wave propagating out of the paper in the direction of
the thumb, the motion of the tip of E(r, t) follows the right-hand
finger. The wave is right-hand elliptically polarized. When ER and
EI are perpendicular to each other and have the same magnitudes,
the wave will be circularly polarized.
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C. Time-Average Poynting Power Vector

The complex Poynting’s theorem is derived by dot-multiplying (3.1.10)
by H

∗ and subtracting the complex conjugate of (3.1.11) dot multi-
plied by E. Making use of the identity H∗ · ∇ × E − E · ∇ × H∗ =
∇ · (E ×H∗), we obtain

∇ · (E ×H∗) = iω
[
H

∗ ·B − E ·D∗]− E · J∗ (3.1.16)

The complex Poynting’s vector S is defined to be

S = E ×H∗ (3.1.17)

However, it is noted that, mathematically, E ×H∗ is not a uniquely
defined quantity as far as Poynting’s theorem is concerned. An arbi-
trary curl field ∇ × A can be added to E × H∗ without changing
(3.1.16). Physically the complex vector S as defined in (3.1.17) has
been identified as a complex power density vector.

The term E · J∗ = E · (J∗c + J∗f ) in (3.1.16) consists of two parts:
one part due to the ohmic current Jc and the other due to the free
current Jf . Equation (3.1.16) can be rearranged to read

−E · J∗f = ∇ · (E ×H∗) + E · J∗c + iω(E ·D∗ −B ·H∗) (3.1.18)

Consider a small volume element V. Equation (3.1.18) states that
the complex power supplied to V by Jf , −E · J

∗
f , is equal to the

divergence of the complex Poynting power flow out of V, ∇· (E×H∗),
plus the complex power dissipated in V, E · J∗c , plus the last term
related to the stored complex electromagnetic energy in V.

While the instantaneous value of the field vectors can be immedi-
ately determined from (3.1.1), the instantaneous value of the Poynting
power density vector cannot be determined from the same rule; the
power flow vector S involves the product of two field vectors. For more
insight into this issue, we let a complex field vector be represented by
two real vectors. We write

E(r) = ER(r) + iEI(r) (3.1.19)

where ER and EI are both real vectors representing the real and
imaginary parts of the complex vector E. Similarly,

H(r) = HR(r) + iHI(r) (3.1.20)
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The instantaneous values for the field vectors are

E(r, t) = Re{E(r)e−iωt} = ER cosωt+ EI sinωt (3.1.21)

and
H(r, t) = HR cosωt+HI sinωt (3.1.22)

The complex Poynting’s vector is

S = E×H∗ = ER×HR +EI ×HI + i(EI ×HR−ER×HI) (3.1.23)

We define the instantaneous Poynting’s vector S(r, t) as

S(r, t) = E(r, t)×H(r, t) (3.1.24)

In view of (3.1.21) and (3.1.22), we have

S(r, t) = ER ×HR cos2 ωt+ EI ×HI sin2 ωt

+(ER ×HI + EI ×HR) sinωt cosωt (3.1.25)

Clearly (3.1.25) is not related to (3.1.23) in any way by the rule for field
vectors as shown in (3.1.1). The instantaneous Poynting’s vector S(r, t)
is a real vector and is time-dependent. To relate S(r) to S(r, t) we
must eliminate the time dependence in S(r, t). This is accomplished
by a time averaging process. We find

<S(r, t)> =
1
2π

∫ 2π

0
d(ωt)S(r, t)

=
1
2

[
ER ×HR + EI ×HI

]
=

1
2
Re

{
S(r)

}
(3.1.26)

where the first equality defines the time average of S(r, t), the sec-
ond equality follows from (3.1.25), and the last equality follows from
(3.1.23). Thus, when the complex Poynting’s power vector S = E×H∗

is known, taking half of its real part yields the time average value of
the instantaneous Poynting’s vector:

<E(r, t)×H(r, t)>=
1
2
Re

{
E ×H∗} (3.1.27)

This rule, in general, applies to the product of any two field quantities.
That is, the time average of the product of two field quantities is equal
to half of the real part of the product of one complex field quantity
and the complex conjugate of the other complex field quantity.
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D. Waves in Conducting Media

Under the time harmonic representation, constitutive elements describ-
ing material media are, in general, complex. Consider a conducting
medium governed by Ohm’s law

Jc = σE

From the Maxwell equation

∇×H = −iωD + Jc + Jf (3.1.28)

where Jf represents the source, we can absorb Jc in D by noting
that D = εE. We find

∇×H = −iω
[
ε+

i

ω
σ

]
E + Jf

Thus we define a new permittivity

εc = ε+ i
σ

ω
(3.1.29)

which is complex and accounts for the conductivity of the medium.
When both ε and σ are real, the conductivity σ then constitutes the
imaginary part of a complex permittivity ε+ iσ/ω.

The Maxwell equations for the conducting medium in source-free
regions with Jf = ρ = 0 are simply

∇×H = −iωεcE (3.1.30)

∇× E = iωµH (3.1.31)

∇ ·H = 0 (3.1.32)

∇ · E = 0 (3.1.33)

The wave equation for E is(
∇2 + ω2µεc

)
E = 0 (3.1.34)

Wave solution E = x̂Ex = x̂E0e
ikz has the dispersion relation

k2 = ω2µεc = ω2µ
(
ε+ i

σ

ω

)
(3.1.35)

as seen from (3.1.29). The spatial frequency k is now complex, we find

k = ω
√
µε

[
1 + i

σ

ωε

]1/2
= kR + ikI (3.1.36)

The solution for a wave propagating in the ẑ directions is

E = x̂E0e
ikz = x̂E0e

−kIz+ikRz (3.1.37)

which attenuates exponentially in the direction of propagation.
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Penetration Depth in Conducting Media
The solution of the electromagnetic fields in a conducting medium

is 


E = x̂E0e
−kIz+ikRz

H = ŷ
(kR + ikI)
ωµ

E0e
−kIz+ikRz

S = ẑ
(kR − ikI)
ωµ

|E0|2e−2kIz

< S > = ẑ
kR
2ωµ
|E0|2e−2kIz

(3.1.38)

The electric field in time-domain is

E(z, t) = x̂Ex(z, t) = Re[x̂E0e
−kIz+ikRze−iωt]

= x̂E0e
−kIz cos(kRz − ωt) (3.1.39)

The wave propagates and attenuates in the ẑ direction. The spatial
variation of Ex(z, t) in (3.1.39) is illustrated in Fig. 3.1.2.

z

Ex(z, t)

(kRz − ωt)cos

e−kIz

Figure 3.1.2 Wave in dissipative medium at t = 0.

The penetration depth is defined as

dp =
1
kI

(3.1.40)

such that the wave amplitude attenuates by a factor of e−1 in a dis-
tance dp . We now consider the two limiting cases of very high conduc-
tivity and very small conductivity.
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For a highly conducting medium with 1	 σ/ωε, we approximate

k = kR + ikI ≈ ω
√
µε

[
i
σ

ωε

]1/2
=

√
ωµσ

2
(1 + i) (3.1.41)

We find the penetration depth

dp =
√

2
ωµσ

= δ (3.1.42)

which is usually a very small number known as the skin depth.
For a slightly conducting medium with σ/ωε 	 1, we can ap-

proximate

k = kR + ikI ≈ ω
√
µε

[
1 + i

σ

2ωε

]
= ω
√
µε+ i

σ

2

(µ
ε

)1/2
(3.1.43)

We find the penetration depth

dp =
2
σ

(
ε

µ

)1/2

(3.1.44)

It is interesting to note that the penetration depth in (3.1.44) is in-
dependent of frequency. However, we have assumed a homogeneous
medium here, at high frequencies there will be large attenuation due
to scattering.

To find a general solution for kR and kI in (3.1.36), we obtain

from the identity
√

1 + iA =
√

1
2(
√

1 +A2 + 1) + i
√

1
2(
√

1 +A2 − 1) ,

kR = ω
√
µε

[
1
2

(√
1 +

σ2

ε2ω2
+ 1

)]1/2

(3.1.45)

kI = ω
√
µε

[
1
2

(√
1 +

σ2

ε2ω2
− 1

)]1/2

(3.1.46)

which reduces to (3.1.41) in the case of highly conducting medium and
reduces to (3.1.43) in the case of slightly conducting medium.
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E. Waves in Plasma Media

Consider a plasma medium, which is a neutral ionized gas consisting
of free electrons and positive ions. Since the ions are much heavier
than the electrons, we assume that only the interaction between the
free electrons and electromagnetic waves need be considered. Let the
electron plasma comprising electrons with density N, electron mass
9.1 × 10−31 kg, and electron charge q = −1.6 × 10−19 coul. We can
derive a constitutive relation for the plasma medium by finding the
polarization vector P = Nqr where N is the number of electrons/m3.

Under an applied electromagnetic wave field, an electron is subject
to the Lorentz force f = q(E + v × B) ≈ qE . The second term is
negligible for v/c	 1, as |B| = |E|/c for a plane wave in free space,
and |v×B| ≈ (v/c)|E| 	 |E| , although v×B and E are in different
directions. From Newton’s second law, we have

qE ≈ f =
d

dt
(mv) = m

d2

dt2
r = −mω2r

which gives the polarization vector

P = Nqr = −Nq
2

mω2
E

From the source-free Maxwell equation

∇×H = −iωD = −iω(εoE + P ) = −iωεo
(

1− Nq2

mεoω2

)
E

we find the permittivity for the plasma medium

εp(ω) = ε0

[
1−

ω2
p

ω2

]
(3.1.47)

and the plasma frequency ωp is defined to be

ωp =

√
Nq2

mε0
≈ 56.4

√
N (3.1.48)

Equation (3.1.47) explicitly displays the frequency dependence of the
permittivity εp. It is noted that εp is always less than εo .
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The wave equation for E is

(
∇2 + ω2µεp

)
E = 0 (3.1.49)

with the dispersion relation

k2 = ω2µoεo

(
1−

ω2
p

ω2

)
(3.1.50)

For ω > ωp , the solution of a plane wave propagating in the ẑ direc-
tion is 



k =
ω

c

√
1−

ω2
p

ω2

E = x̂E0e
ikz

H = ŷ
k

ωµ
E0e

ikz

S = ẑ
k

ωµ
|E0|

< S > = ẑ
k

2ωµ
|E0|2

(3.1.51)

For ω < ωp , k is imaginary. The solution (3.1.51) becomes




k = ikI = i
ω

c

√
ω2
p

ω2
− 1

E = x̂E0e
−kIz

H = ŷ
ikI
ωµ
E0e

−kIz

S = ẑ
−ikI
ωµ
|E0|e−2kIz

< S > = 0

(3.1.52)

This result of zero time-average power is significant. The wave that
attenuates exponentially in the ẑ direction and transmits no time-
average power is called an evanescent wave.
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Phase and Group Velocities
In a dispersive medium, the spatial frequency k is a nonlinear

function of the temporal frequency ω . A plasma medium is a dispersive
medium with the dispersion relation

k(ω) =
ω

c

√
1−

ω2
p

ω2

when ω > ωp . In a dispersive medium, consider a field composed of two
waves with slightly separated temporal frequencies ω1 = ωo + δω and
ω2 = ωo − δω . The corresponding spatial frequencies are k1 = ko + δk
and k2 = ko − δk . We write

Ex(z, t) = cos(k1z − ω1t) + cos(k2z − ω2t)

= 2 cos
(
k1 + k2

2
z − ω1 + ω2

2
t

)
cos(δkz − δωt)

= 2 cos(koz − ωot) cos(δkz − δωt)

z

Ex(z, t)

(kR z − ω0t)

(∆kRz −∆ω0t)cos

cos 0

Figure 3.1.3 Wave in dispersive medium at t = 0.

where we used the identity cosA + cosB = 2 cos A+B
2 cos A−B

2 . In
Fig. 3.1.3, we plot Ex(z, t) , which shows a propagating wave cos(kz−
ωt) with a modulated amplitude cos(δkz− δωt) . The modulated am-
plitude propagates with the group velocity vg = δω/δk . The car-
rier cos(kz − ωt) propagates with the phase velocity vp = ω/k . In
general, for a narrow-band signal, the group velocity is defined as
vg = 1/(∂k/∂ω) .
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Example 3.1.1
Consider a narrow-band signal propagating in a plasma medium with

dispersion relation

k(ω) =
√
µoεo(ω2 − ω2

p)

In Fig. E3.1.1.1, we plot the ω-k diagram for the plasma medium. The phase
velocity is found to be

vp =
ω

k
=

c√
1− ω2

p/ω
2

ω

ωp

tan−1 vp

tan−1 vg

tan−1 c

k

Figure E3.1.1.1 Dispersion relation for plasma media.

which corresponds to the slope of a line from the origin to the dispersion
curve. The group velocity is

vg =
1

∂k/∂ω
= c

√
1− ω2

p/ω
2

which corresponds to the tangent to the dispersion curve. Notice that vgvp =
c2 . Thus, while the signal propagates with the group velocity which is always
smaller than the velocity of light, the phase velocity is larger than the velocity
of light.

End of Example 3.1.1
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Example 3.1.2
The source waveform is a sinusoidally modulated sine wave:

Es(t) = cosωM t sinωCt

with ωM 	 ωC at z = 0 propagates in the +ẑ direction inside a plasma
medium with the dispersion relation k2 = (ω2 − ω2

p)/c
2 .

(a) Use the appropriate trigonometric identity to write Es(t) as a sum of
sinusoidally varying signals. What is E(z, t) for z > 0 ? Write the ex-
pression for E(z, t) as a product of sinusoids.

(b) If ωM = 0.1ωC , and ωC =
√

2ω0 , sketch the wave form E(z, t) vs. z
for several values of the time t . With what speed does the modulation
envelope move?

Solution:

(a) Es(z = 0, t) = cosωM t sinωCt = 1
2

[
sin(ωC+ωM )t+sin(ωC−ωM )t

]
.

Define ω1 = ωC + ωM , ω2 = ωC − ωM . Then

E(z, t) =
1
2

[
sin(ω1t− k1z) + sin(ω2t− k2z)

]
= cos

1
2

[
(ω1 − ω2)t− (k1 − k2)z

]
sin

1
2

[
(ω1 + ω2)t− (k1 + k2)z

]
= cos

[
ωM t−

(k1 − k2)
2

z
]

sin
[
ωct−

(k1 + k2)
2

z
]

= cosωM
[
t− ∆k

∆ω
z
]

sinωc
[
t− ko

ωc
z
]

where ω1−ω2 = 2ωM ≡ ∆ω , k1− k2 ≡ ∆k , k1 + k2 ≡ 2ko , and ω1 +ω2 =
2ωc .

(b)

ωM = 0.1ωc ωp = 1√
2
ωc

ω1 = ωc + ωM = 1.1ωc ω2 = ωc − ωM = 0.9ωc
k2
1 = [(1.1)2−0.5]ω2

c
c2

∼= (0.84)2 ω
2
c

c2
k2
2 = [(0.9)2−0.5]ω2

c
c2

∼= (0.56)2 ω
2
c

c2

ko =
1
2
(k1 + k2) =

1
2
(0.84 + 0.56)

ωc
c
∼= 1√

2
ωc
c

∆k = k1 − k2 = (0.84− 0.56)
ωc
c

= 0.28
ωc
c

∆ω = ω1 − ω2 = 0.2ωc

Thus

E(z, t) = cos
[
ωM (t−

√
2
c
z)

]
sin

[
ωc(t−

1√
2c
z)

]
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At t = 0, E(z, t) = − cos
[
ωc
10

(
√

2
c
z)

]
sin

[
ωc

1√
2c
z
]

At t =
2π
ωc
, E(z, t) = − cos

[
ωc
10

(t−
√

2
c
z)

]
sin

[
ωc

1√
2c
z
]

At t =
5π
ωc
, E(z, t) = cos

[
ωc
10

(t−
√

2
c
z)

]
sin

[
ωc

1√
2c
z
]

V (z, t)

t0 = 0

t0 =
2π
ωc

= T

t0 =
5
2
T

v

−v

z

T

√
2 T

√
2 to

v

−v

v

−v

V

V

z

z

20π√
2ωc

10π√
2ωc

√
2

√
2
to

vo

vo

20π√
2ωc

vo

20π√
2ω
vo

vo

vo

vo

vo

10π√
2ωc

vo

Figure E3.1.2.1

The modulation envelope moves with the speed vg ≡ c√
2

whereas the carrier

wave moves with the speed vph ≡
√

2c . Thus vph = 2vg.
End of Example 3.1.2
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Example 3.1.3
Consider a group of plane waves with different angular frequencies propa-

gating along the ẑ direction in a dispersive medium. Assume that all angular
frequencies are in the neighborhood of a center frequency ω0 . We can express
the wavenumber k around ω0 ,

k(ω) = k(ω0) + (ω − ω0)
[
δk(ω)
δω

]
ω=ω0

+
1
2
(ω − ω0)2

[
δ2k(ω)
δω2

]
ω=ω0

+ · · · (17)

For a narrow-band signal, we can retain only the first two terms. The space–
time dependence of the group of plane waves becomes

eik(ω)z−iωt = eik(ω0)z−iω0te
−i(ω−ω0)

{
t−z

[
dk(ω)
dω

]
ω=ω0

}

which can be viewed as a wave propagating with phase delay Tp = k/ω0 and
group delay Tg = dk(ω)/dω .

We can construct a ω−k diagram, plotting ω as a function of k . Figure
E3.1.1.1 shows the ω-k diagram for an isotropic plasma medium. The slope
of the straight line from the origin to a point on the curve at ω = ω0 then
represents the phase velocity vp , and the slope at ω = ω0 represents the
group velocity vg . We find

vp =
1√

µoεo
(
1− ω2

p/ω
2
)

and

vg =

√
1− ω2

p/ω
2

√
µoεo

It is seen that vp is larger than the velocity of light c = (µoεo)−1/2 and
that vpvg = c2 . For a nondispersive medium, the ω-k curves are straight
lines starting from the origin, and the phase delay and the group delay are
the same, as are the phase velocity and the group velocity.

End of Example 3.1.3
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F. Dispersive Media

Time dispersion is a common phenomenon for most media in the pres-
ence of time-varying fields. As an example, the permittivity of water
drops from 80εo to approximately 1.8εo as the frequency increases
from static to the optical range. The reason for this decrease is that
the alignment of water molecules, which possess permanent dipole mo-
ments, is much more ineffective at optical frequencies than in slowly
varying fields. In the same fashion, both conducting media and plasma
medium are dispersive media as they are described by permittivities
which are functions of frequency.

The equation of motion for a bounded electron under the action
of an electric field is

qE = m
[
d2r

dt2
+ γ

dr

dt
+ ω2

or

]

where γ is the damping constant which is small compared with the
binding or resonant frequency ωo . The polarization vector is then

P = Nqr = − Nq2/m

ω2 − ω2
o + iωγ

E

From the source-free Maxwell equation written as

∇×H = −iω(εoE + P ) = −iωεd(ω)E

we determine the permittivity

εd(ω) = εo

[
1−

ω2
p

ω2 − ω2
o + iωγ

]
(3.1.53)

where ω2
p = Nq2/mεo . In the high frequency limit ω 
 ωo , the per-

mittivity reduces to (3.1.47).
For conductors, ωo = 0 , we have

εd(ω) = εo

[
1−

ω2
p

ω2 + iωγ

]
(3.1.54)

From (3.1.54), let εp = εo(1+ iσ/ω) , we find that in the low frequency
limit,

σ = εo
ω2
p

γ − iω ≈ εo
ω2
p

γ
=
Nq2

mγ
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For copper, σ ≈ 7 × 107 mho, with N = 8 × 1028 m−3 , we find γ ≈
3.2×1013 Hz. For an insulator, ωo �= 0 , the polarization vector at very
low frequency is given by P = εoω2

pE/ω
2
o = Nq2E/mω2

o .
Normal dispersion is when εR = Re [εd(ω)] increases with ω . In

the frequency range when εR = Re [εd(ω)] decreases with ω , it is called
anomalous dispersion. Anomalous dispersion occurs in the neighbor-
hood of resonant frequency (ω = ωo) when the imaginary part of
εd is appreciable which causes power dissipation known as resonant
absorption. From (3.1.53), we find

εd(ω) = εR + iεI

= εo

[
1−

(ω2 − ω2
o)ω

2
p

(ω2 − ω2
o)2 + (ωγ)2

]
+ i

ωγω2
p

(ω2 − ω2
o)2 + (ωγ)2

(3.1.55)
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Figure 3.1.4 Real and imaginary parts of permittivity,
ωp = 1010, ωe = 8× 109, γe = 109.

To determine when εR ≤ 0 , we find from (3.1.55)

(ω2 − ω2
o)

2 − (ω2 − ω2
o)(ω

2
p − γ2) + ω2γ2 ≤ 0 (3.1.56)

For γ = 0 , we see that εR is negative when ω2
0 ≤ ω2 ≤ ω2

0 + ω2
p .
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Example 3.1.4
In studying the negative permeability of artificial metamaterial, O’Brian

and Pendry [2002] proposed the model of a split ring resonator (Fig. E3.1.4.1).
The fractional area occupied by rings of radius R is f . Let the applied
magnetic field be H0 . Consider a two-dimensional configuration, a surface
current Jφ = Hext−Hint is induced. The macroscopic average magnetic field
intensity Have = Hext = H0 + fJφ . Note that fHint + (1 − f)Hext = H0 .
The effective permeability is thus

µeff = µo
H0

Hext
= µo

Hext − fJφ
Hext

= µo

[
1− fJφ

Hext

]
(E3.1.4.1)

E1

E2

Hint Hext

−+

d

ẑ

dc

+−

*c

Figure E3.1.4.1 Split ring resonator.

Assuming perfect conduction with E1 = 0 , we find

2dcE2 = Vφ =
d

dt

∫∫
dS · µoHint = −iωµoπR2Hint = −iωLgHint

Jφ = *c
d

dt
D2φ = −iω*cεoE2 = −iωC2dcE2

where Lg = µoπR
2 and C = εo*c/2dc . The effective permeability is deter-

mined to be

µeff = µo

[
1− fJφ

Jφ +Hint

]
= µo

[
1− fω2

ω2 − ω2
o

]
(E3.1.4.2)

where ω2
o = 1/LgC . Within the frequency range ω2

o ≤ ω2 ≤ ω2
o/(1 − f) , it

is seen that the effective permeability is negative.
End of Example 3.1.4
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Example 3.1.5
Consider the split ring resonator in [Fig. E3.1.4.1]. When E1 is not zero

inside the metallic wire with very high conductivity whose permittivity is

ε̃ = εo

[
1−

ω2
p

ω(ω + iγ)

]
≈ −εo

[
ω2
p

ω(ω + iγ)

]

We find

Jφ = d
d

dt
D1φ = −iωdε̃E1 ≈ idεo

[
ω2
p

ω + iγ

]
E1

Jφ = *c
d

dt
D2φ = −iω*cεoE2

−iωµoπR2Hint = 2πRE1 + 2dcE2

=
[
−iω 2πR

dεoω2
p

+ γ
2πR
dεoω2

p

+ i
2dc
ω*cεo

]
Jφ = ZJφ (E3.1.5.1)

Hext = Jφ +
i

ωLg

[
−iωLi + γLi +

i

ωC

]
Jφ = (1 + iZ/ωLg)Jφ (E3.1.5.2)

where Lg = µoπR
2 , Li = 2πR/ω2

pεod , and C = εo*c/2dc . The impedance
Z = −iωLi + γLi + i/ωC represents a series of inductance, resistance, and
capacitance.

Eq. (E3.1.4.2) gives

µeff = µo

[
1− f

1 + iZ/ωLg

]
= µo

[
1− fω

2Lg/(Lg + Li)
ω2 − ω2

o + iωΓ

]

where Γ = γLi/(Lg + Li) and ω2
o = 1/(Lg + Li)C . For perfect conductors,

Γ = 0 , and we have

µeff
µo

= 1− f ω
2Lg/(Lg + Li)
ω2 − ω2

o

=
ω2 − ω2

o − fω2Lg/(Lg + Li)
ω2 − ω2

o

It is seen that within the frequency range ω2
o ≤ ω2 ≤ ω2

o/[1−fLg/(Lg+Li)] ,
the effective permeability is negative.

End of Example 3.1.5
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G. Field Energy in Dispersive Media

Poyntings theorem in time-domain as derived from the Maxwell equations gives

∇ · (E ×H) = −H · ∂B

∂t
− E · ∂D

∂t
− E · J = − ∂

∂t
W − E · J (3.1.57)

where −H · ∂B
∂t
−E · ∂D

∂t
= − ∂

∂t
W in (3.1.57) corresponds to the negative time rate

of change of the sum of the magnetic energy and electric energy.
Consider lossless media, where the complex fields E and D are assumed to

have a time dependence. Assuming narrow bandwidth, we express

E(r, t) = Re [E(t)e−iωt] = Re (E0e
−iωt + Eαe−i(ω−α)t)

with E(t) = E0 + Eαeiαt and d
dt

E(t) = iαEαeiαt.

D(r, t) = Re [ε(ω)E0e
−iωt + ε(ω − α)Eαe−i(ω−α)t]

∂

∂t
D(r, t) = Re [−iωε(ω)E0e

−iωt − i(ω − α)ε(ω − α)Eαe−i(ω−α)t]

≈ Re [−iωε(ω)E0e
−iωt − i(ω − α){ε(ω)− α

d

dω
ε(ω)}Eαe−i(ω−α)t]

≈ Re [−iωε(ω)E(t)e−iωt + iα{ε(ω) + ω
d

dω
ε(ω)}Eαe−i(ω−α)t]

= Re [−iωε(ω)E(t)e−iωt +
d

dt
{ d

dω
[ωε(ω)]E(t)}e−iωt]

We write the time-average of the term E(r, t) · ∂D(r, t)/∂t as

< E(r, t) · ∂D(r, t)

∂t
> =

1

4
{E∗

(t) · [−iωε(ω)E(t) +
d

dt
{ d

dω
[ωε(ω)]E(t)}]

+ E(t) · [iωε(ω)E
∗
(t) +

d

dt
{ d

dω
[ωε(ω)E

∗
(t)}]}

=
1

4

d

dt
{ d

dω
[ωε(ω)]}|E(t)|2 =< WE > (3.1.58)

which is the time-average electric energy. Similarly we find

< WT > = < WE > + < WM >

=
1

4

d

dt
{ d

dω
[ωε(ω)]}|E(t)|2 +

1

4

d

dt
{ d

dω
[ωµ(ω)]}|H(t)|2

which is the total time-average electric and magnetic energy.
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Example 3.1.6

Consider the permittivity εp(ω) = ε0

[
1− ω2

p

ω2

]
for a plasma medium.

The electric energy is calculated to be

< WE >=
1
4
d(ωεp)
dω

|E|2 =
εo
4

[
1 +

ω2
p

ω2

]
|E|2 (E3.1.6.1)

End of Example 3.1.6

Example 3.1.7 Energy and group velocities.
Consider a lossless medium with the permittivity and permeability

ε(ω) = εo

[
1−

ω2
p

ω2 − ω2
e

]

µ(ω) = µo

[
1− Fω2

m

ω2 − ω2
m

]
The total stored energy is,

< WT >=
εo
4

[
1 +

(ω2 + ω2
e)ω

2
p

(ω2 − ω2
e)2

]
|E|2 +

µo
4

[
1 +

(ω2 + ω2
m)Fω2

m

(ω2 − ω2
m)2

]
|H|2

=
1
4

[
ε(ω) + εo

2ω2ω2
p

(ω2 − ω2
e)2

]
|E|2 +

1
4

[
µ(ω) + µo

2ω2Fω2
m

(ω2 − ω2
m)2

]
|H|2

=
1
4

[
d[ωε(ω)]
dω

]
|E|2 +

1
4

[
d[ωµ(ω)]
dω

]
ε(ω)
µ(ω)

|E|2 (E3.1.7.1)

The time-average Poynting power density for a plane wave in the medium is

< S >=
1
2
|E|2

√
ε(ω)
µ(ω)

The energy velocity is

vE =
< S >

< WT >
=

2
√
µ(ω)ε(ω)

µ(ω)d[ωε(ω)]
dω + d[ωµ(ω)]

dω ε(ω)

The dispersion relation is k = ω
√
µ(ω)ε(ω) . The group velocity is

vg =
dω

dk
=

2
√
µ(ω)ε(ω)

2µ(ω)ε(ω) + ωµ(ω)dε(ω)
dω + ωε(ω)dµ(ω)

dω

=
2
√
µ(ω)ε(ω)

µ(ω)d[ωε(ω)]
dω + d[ωµ(ω)]

dω ε(ω)
Thus the energy velocity is equal to the group velocity.

End of Example 3.1.7
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Example 3.1.8
Consider dispersive media with very small loss and narrow bandwidth.

We express

E(r, t) = Re[Ee−iωt] =
1
2
(Ee−iωt + E

∗
eiωt)

D(r, t) = Re[De−iωt] =
1
2
(De−iωt +D

∗
eiωt)

where the complex fields E and D are assumed to have a time dependence.
We write the term E(r, t) · ∂D(r, t)/∂t as

E(r, t) · ∂D(r, t)
∂t

=
1
4
(Ee−iωt + E

∗
eiωt) · ∂

∂t
(De−iωt +D

∗
eiωt)

=
1
4

(
E

∗ · ∂D
∂t

+E · ∂D
∗

∂t

)
+

1
4

(
E · ∂D

∂t
e−i2ωt +E

∗ · ∂D
∗

∂t
ei2ωt

)

− iω 1
4
(E ·De−i2ωt − E∗ ·D∗

ei2ωt)− iω 1
4
(E

∗ ·D − E ·D∗
)

(E3.1.8.1)

The last term vanishes when εI ≈ 0 . The second and third terms are zero
upon taking time average. We thus have

< E(r, t) · ∂D(r, t)
∂t

>=<
1
4
(E

∗ · ∂D
∂t

+ E · ∂D
∗

∂t
) > (E3.1.8.2)

Let the electric field be a slowly varying function of time and spans a narrow
frequency range centered at ω . Consider the following:

E(t) = E0 + Eα cosαt;
dE(t)
dt

= −αEα sinαt

We write

D = ε(ω)E0 +
1
2
ε(ω + α)Eαe

−iαt +
1
2
ε(ω − α)Eαe

iαt

It follows that, with f(ω) = −iωε(ω) ,

∂D

∂t
= ε(ω)E0 − i

1
2
(ω + α)ε(ω + α)Eαe

−iαt − i1
2
(ω − α)ε(ω − α)Eαe

iαt

= f(ω)E0 +
1
2
f(ω + α)Eαe

−iαt +
1
2
f(ω − α)Eαe

iαt

≈ f(ω)E(t) +
α

2
df(ω)
dω

Eα[e−iαt − eiαt]

= f(ω)E(t) + α
df(ω)
dω

Eα[−i sinαt]

= f(ω)E(t) + i
df(ω)
dω

dE(t)
dt

= −iωε(ω)E +
d[ωε(ω)]
dω

dE

dt



3.1 Time-Harmonic Fields 285

From (E3.1.8.1), we find

<
1
4
(E

∗ · ∂D
∂t

+ E · ∂D
∗

∂t
) >

=<
1
4

(
− iω(ε− ε∗)|E0|2 + [

d(ωε)
dω

E
∗ · dE
dt

+
d(ωε∗)
dω

E · dE
∗

dt
]
)
>

≈< 1
4
d(ωε)
dω

d

dt
(E · E∗

) >=<
1
4
d

dt

(
d(ωε)
dω
|E|2

)
> (E3.1.8.3)

where we have neglected the imaginary part of ε(ω) . Similarly,

1
4
(H

∗ · ∂B
∂t

+H · ∂B
∗

∂t
) =

d

dt

(
d(ωµ)
dω
|H|2

)
(E3.1.8.4)

Taking time average of (3.1.57) and in the absence of J , we find

∇· < S > = − < E · ∂D
∂t
> − < H · ∂B

∂t
>

= −1
4
(E

∗ · ∂D
∂t

+ E · ∂D
∗

∂t
)− 1

4
(H

∗ · ∂B
∂t

+H · ∂B
∗

∂t
)

= − d
dt

(
1
4
d(ωε)
dω
|E|2 +

1
4
d(ωµ)
dω
|H|2

)
(E3.1.8.5)

We conclude that

< WT > =
1
4
d(ωε)
dω
|E|2 +

1
4
d(ωµ)
dω
|H|2 (E3.1.8.6)

is the electromagnetic field energy for dispersive media.
End of Example 3.1.8

For nondispersive media when ε and µ are real constants,

D = εE

B = µH

(3.1.57) can be written as

∇ · S = − ∂
∂t
WT (3.1.59)

where

WT =
1
2
ε|E|2 +

1
2
µ|H|2 (3.1.60)
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is the total stored electromagnetic field energy. Thus the divergence of the
Poynting power vector density S is equal to the time rate of decrease of
the stored electromagnetic energy. We identify 1

2ε|E|2 = We as the electric
energy and 1

2µ|H|2 = Wm as the magnetic energy. However, when ε and
µ are negative, the energy will be negative. It is imperative, the dispersive
nature of both ε and µ must be considered.

Problems

P3.1.1
Separate the number 10 in two and make their product equal to 125.

P3.1.2
The instruction to a buried treasure site is given as follows: Start from a

wood hanger Γ , walking to tree T1 and turn right at 90 degrees, walk the
same distance and mark the ground A. Back to the wood hanger Γ , walking
to tree T2 and turn left at 90 degrees, walk the same distance and mark
the ground B. The treasure is buried in between markers A and B. Find its
location.

P3.1.3
Consider two real time-harmonic vectors E1(t) and E2(t) represented

by complex spatial vectors E1 and E2 obeying the rule E(t)=Re
{
Ee−iωt

}
.

Let E1 = x̂+ ŷ i and E2 = i(x̂+ ŷ i).

(a) Are both E1 × E2 and E1(t)× E2(t) zero?
(b) Are both E1 · E2 and E1(t) · E2(t) zero?

P3.1.4
For a right-hand circularly polarized wave, the electric field vector in real

space time domain is

E(r, t) = x̂ cos(kz − ωt)− ŷ sin(kz − ωt)

Find the corresponding complex vector.

P3.1.5
An electromagnetic wave with the following electric field

E = x̂ sin
[
k√
2
(y + z)− ωt

]
+

1√
2

[Aŷ + ẑ] cos
[
k√
2
(y + z)− ωt

]

is propagating in a plasma medium characterized by the dispersion relation

k =
1
c

√
ω2 − 4π2 × 1012
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where ω is the frequency in rad/sec, and c is the speed of light in free space.
(a) What is the value of A ?
(b) In which direction is the wave propagating and what is wave vector k ?
(c) What is the polarization of the wave?
(d) The permeability of the plasma medium is µo of free space, what is the

permittivity ε of the medium in terms of ω and permittivity of free
space εo ?

(e) What is the magnetic field vector of the wave ?
(f) What is the Poynting power density vector of the wave ?
(g) Show that the plasma frequency is fp = 106 Hz.
(h) If ω =

√
5π × 106 rad/sec, what is k and what are the phase velocity

vp and group velocity vg ?
(i) If ω =

√
3π× 106 rad/sec, what is k and what is the expression for E ?

(j) If ω =
√

3π×106 rad/sec, what is the group velocity vg and what is the
time-averaged Poynting power density ?

P3.1.6
Consider an x̂ -polarized uniform electromagnetic plane wave in free

space at an angular frequency ω

E1(r) = x̂E0e
iky

(a) Determine the speed and direction of propagation of this wave.
(b) Find the complex expression for the magnetic field H1(r) .
(c) Determine the complex Poynting vector, S1 = E1 ×H

∗
1, and determine

the time average Poynting vector
〈
S1

〉
.

(d) A second x̂ -polarized wave, also of amplitude E0 and at the same angu-
lar frequency ω, is propagating in the −ŷ direction. When this wave is
added to the first wave, there is a null at y = 0 for all t (ET (y = 0, t) =
0) where ET (r) = E1(r) + E2(r) . Determine the complex expression
E2(r) for this second wave.

(e) Let the second x̂ -polarized wave be E3 = (r)x̂E0e
−iky . (This may or

may not be the answer to (d).) Then the total field is E1+E3 = x̂Ex(y) .
Find the positions of the nulls (ky =?) and determine at what speed
the nulls move.

(f) For the field in (e), determine the time-average Poynting vector
〈
S
〉

.

P3.1.7
To shield a room from radio interference, the room must be enclosed in

a layer of copper five skin-depths thick. Note that this will attenuate fields by
a factor of e5 , or about 43 dB. If the frequency to be shielded against is 10
kHz to 1 GHz, what should be the thickness of the copper (in millimeters)?
For copper, ε = ε0, µ = µ0 and σ = 5.8× 107 mho/m.

P3.1.8
(a) At the operating frequency (2.5 GHz) of a microwave oven, the permit-

tivity for bottom round steak is about ε = 40ε0 and the conductivity
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σ = 2 mho/meter. What is the penetration depth? Compare this pen-
etration depth to that of polystyrene foam which has the permittivity
ε = 1.03ε0 and conductivity σ = 4× 10−6 mho/meter.

(b) Earth is considered to be a good conductor when ωε/σ 	 1 . Deter-
mine the highest frequency for which earth can be considered a good
conductor. Assume σ = 5× 10−3 mho/meter and ε = 10ε0 .

(c) Aluminum has ε = ε0 , µ = µ0 and σ = 3.54×107 mho/m. If an antenna
for VHF reception is made of wood coated with a layer of aluminum and
if its thickness ought to be five times greater than the skin depth of the
aluminum at that frequency, determine the thickness of the aluminum
layer. Is ordinary aluminum foil thick enough for that purpose? Use f =
100 MHz. Ordinary aluminum foil is approximately 1/1000 inch thick.

(d) Calculate loss tangents and skin depths for sea water at frequencies 100
Hz and 5 MHz. Sea water can be characterized by conductivity σ =
4 mho/m, permittivity ε = 80ε0 , and permeability µ = µ0 at those
frequencies.

(e) A ship at the ocean surface wishes to communicate electromagnetically
with a deeply submerged vehicle 100 meters below the surface. Consider a
ULF signal at 1 kHz propagating down into the sea water. What fraction
of the incident power density reaches the submerged vehicle?

P3.1.9

(a) An ionized plasma is dispersive; derive its group velocity vg if µ = µ0

and ε = ε0(1 − ω2
p/ω

2) , where ωp =
√

Ne2/mεo, N is the number of
free electrons per cubic meter, e is the charge of an electron (coulombs),
and m is the mass of an electron (kg).

(b) What is the difference in arrival times between a flash of light (λ =
0.5µm) and a simultaneous radio pulse (f = 10 MHz) seen through an
idealized homogeneous ionosphere where ωp = 2π× 8 MHz along a path
of 100 km?

P3.1.10

Pulsars are rapidly rotating neutron stars composed primarily of neu-
trons at nuclear densities. As observed on Earth, these pulsars emit periodic
RF pulses each lasting approximately 10 msec. As these sharp pulses propa-
gate through the interstellar medium, the dispersion introduced by the inter-
stellar plasma slows the pulse envelope more at lower RF frequencies than at
higher frequencies. The first pulsar to be seen visually is located in the Crab
Nebula, and was discovered in 1968 using the data shown in Figure P3.1.10.1.
The sloping lines formed by dense dots represent the envelopes of received
pulse signals. Optical astronomers estimate that the Crab Nebula is approxi-
mately 6×1019 m (6,350 light years) from the Earth. In the following analysis,
use the permittivity for plasma ε = ε0(1− ω2

p/ω
2) and assume ω 
 ωp .

(a) For ω 
 ωp, find expressions for the phase and group velocities.
(b) As shown in Figure P3.1.10.1, note that there is a 1.5 sec dispersion

between frequencies 110 MHz and 115 MHz, i.e., the relative time delay
between the 110 MHz and 115 MHz frequency components arriving at
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earth is 1.5 sec. Use this fact plus the known distance and the expression
for vg to calculate the interstellar electron density (m−3) .

115
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Figure P3.1.10.1

Historical Notes
The pulsar presented in this problem is called Baade’s Star and is the

remnant of a supernova recorded by the Chinese astronomer Toktagu on July
4, 1054. The star was so bright that, for a time, it was visible in the daytime.
The data presented was later used by Taylor, Cocke, and Disney to determine
if the star pulsated at optical as well as radio wavelengths. It did.

Pulsars are very dense neutron stars that are the remains of supernovae.
Unlike our Earth, whose axis of rotation and magnetic axis are more or less
the same, these two axes may be widely separated in a neutron star. The
eccentrically rotating magnetic field creates a time varying current density
as it exerts a force on charged particles in the vicinity of the pulsar. Hence,
radiation!

P3.1.11
The sketch of a simple interferometer is shown in Figure P3.1.11.1. Light

from a source is split into two beams by a semi-transparent mirror. The semi-
transparent mirror has the property of transmitting e−iφt/

√
2 of the incident

electric field and reflecting e−iφr/
√

2 of the incident field. Assume that the
two reflecting mirrors are identical and have the same reflection coefficient of
eiφ0 .

Consider the light source to be emitting light with field amplitude E0 .
The reflected and transmitted fields are as follows

Er = E0

(
e−iφr

√
2

)
eikr·r êr, Hr =

E0

η

(
e−iφr

√
2

)
eikr·rĥr

Et = E0

(
e−iφt

√
2

)
eikt·r êt, Ht =

E0

η

(
e−iφt

√
2

)
eikt·rĥt

(a) Show that the semi-transparent mirror transmits and reflects 1/2 of the
incident power.
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Figure P3.1.11.1

(b) The field goes into the light detector is the sum of the field transversing
paths l1 and l4 and the field transversing paths l2 and l3 , each goes
through one reflection and one transmission from the semi-transparent
mirror and constructively interfere. The field not reaching the detector is
the sum of the field transversing paths l1 and l4 with two transmission
and the field transversing paths l2 and l3 with two reflections from the
semi-transparent mirror. To determine the relationship between φr and
φt , assume ε = εo. The electric field reaching the light detector is

E1 = E0
e−iφt

√
2
eik0l1eiφ0eik0l3

e−iφr

√
2

+ E0
e−iφr

√
2
eik0l3eiφ0eik0l1

e−iφt

√
2

= E0e
i(φ0−φr−φt+k0l1+k0l3)

The electric field not reaching the detector is

E2 = E0
e−iφr

√
2
eik0l3eiφ0eik0l1

e−iφr

√
2

+ E0
e−iφt

√
2
eik0l1eiφ0eik0l3

e−iφt

√
2

= E0e
iφ0+ik0(l1+l3)−i(φr+φt) cos(φt − φr)

Let the power going to the light detector be equal to the incident power,
and the power not going to the light detector be zero. Show that

φt − φr =
π

2
+ lπ

(c) Suppose the region l1 is filled with a plasma with electron density N
with

ε = εo

(
1−

ω2
p

ω2

)
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where ωp =
√
Ne2/mεo , find the power intensity as a function of N

when ωp 	 ω. Neglect reflections from the light detector and the plasma
boundaries. Show that the sum of the power reaching the light detector
plus the power not reaching the detector is equal to the incident power.

P3.1.12
Consider effective permittivity

εd(ω) = εo

[
1−

(ω2 − ω2
o)ω

2
p

(ω2 − ω2
o)2 + (ωγ)2

+ i
ωγω2

p

(ω2 − ω2
o)2 + (ωγ)2

]

made of conducting rods. We can reinterpret ω2
p = Neffq

2/meff εo .
(a) The rods occupy an lattice radius of a . We have

Neff = n
πr2o
a2

What are n and ro ?

(b) To calculate the effective mass, use qE = −iωmeffvr = −iωmeffJ/nq
and J = 2πrH/πr2 . Show by using Faraday’s law that

meff = inq2E/ωJ = πr2nq2
µo
2π

ln
r

a
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3.2 Bianisotropic Media

A. Anisotropic Media

The constitutive relations for anisotropic media are written as

D = ε · E (3.2.1a)
B = µ ·H (3.2.1b)

where ε is the permittivity tensor and ε is the permeability tensor.
Crystals are generally described by symmetric permittivity ten-

sors. In the principal coordinate system, called the principal system, a
uniaxial crystal with z axis as its optic axis has constitutive relation

ε =


 ε 0 0

0 ε 0
0 0 εz


 (3.2.2)

The crystal is positive uniaxial if εz > ε , and negative uniaxial if
εz < ε.

An electron plasma as described in (3.1.47) becomes anisotropic
when an external dc magnetic field B0 is applied. Assume that B0 is
in the ẑ direction. The permittivity tensor takes the form

ε =


ε iεg 0
−iεg ε 0

0 0 εz

 (3.2.3)

where the magnetic field enters the constitutive parameters via the
cyclotron frequency ωc = qB0/m.

An anisotropic medium characterized by a hermitian permittivity
tensor such as (3.2.3) is called gyroelectric or electrically gyrotropic. An
anisotropic medium that is characterized by a hermitian permeability
tensor µ such as

µ =


µ iµg 0
−iµg µ 0

0 0 µz

 (3.2.4)

is called a gyromagnetic medium or a magnetically gyrotropic medium.
An example is a ferrite subject to a dc magnetic field in the ẑ direction
around which the magnetization of the ferrite processes.
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Example 3.2.1 Gyrotropic media.
An electron plasma becomes anisotropic when an external dc magnetic

field B0 is applied. Assume that B0 is in the ẑ direction. Show that the
permittivity tensor is

ε =

 ε iεg 0
−iεg ε 0

0 0 εz

 (E3.2.1.1)

with the constitutive parameters given by

ε = ε0

[
1−

ω2
p

(ω2 − ω2
c )

]
(E3.2.1.2a)

εg = ε0

[ −ω2
pωc

ω(ω2 − ω2
c )

]
(E3.2.1.2b)

εz = ε0

[
1−

ω2
p

ω2

]
(E3.2.1.2c)

Write the constitutive relation as E = κ ·D with

κ = ε
−1

=

 κ iκg 0
−iκg κ 0

0 0 κz


Determine the constitutive parameters κ, κg, and κz.

Solution:
When the wave frequency is much greater than the electron collision

frequency, the collision effect can be neglected and the plasma can be treated
as a lossless medium. Using Lorentz Force Law and Newton’s Law, we have

m
dv

dt
= q(E + v ×B)

Under the time-harmonic excitation and with v much smaller than c, we
find

−iωmv = q(E + v ×B0)

Defining a vector ωc = qB0/m, we write

−iωv =
q

m
E + v × ωc (E3.2.1.3)

Dot multiplying (E3.2.1.3) by ωc , we have

−iωv · ωc =
q

m
E · ωc (E3.2.1.4)
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Cross-multiplying (E3.2.1.3) by ωc and making use of (E3.2.1.4), we have

−iωv × ωc =
q

m
E × ωc + (v × ωc)× ωc

= − q

m
ωc × E + ωc(v · ωc)− vω2

c

= − q

m
ωc × E +

iq

ωm
ωc(ωc · E)− ω2

cv (E3.2.1.5)

Substituting (E3.2.1.5) into (E3.2.1.3), we obtain

J = Nqv

=
Nq

ω2 − ω2
c

[
q

m
ωc × E +

iωq

m
E − iq

ωm
ωc(ωc · E)

]

=
−iωεoω

2
p

ω2 − ω2
c

[
i

ω
ωc × E − E +

1

ω2
ωc(ωc · E)

]
(E3.2.1.6)

From Ampère’s law, we find

∇×H = −iωε0E + J = −iω

{
−iεg ẑ × E + εE +

ω2
pω2

c ε0

ω2(ω2 − ω2
c )

ẑẑ · E
}

= −iωε · E

where εg and ε are as listed in (E3.2.1.2a) and (E3.2.1.2b). Writing ε in the matrix
form (E3.2.1.1), we find

εz = ε0

[
1− ω2

p/ω2

1− ω2
c/ω2

+
ω2

pω2
c/ω4

1− ω2
c/ω2

]
= ε0

[
1− ω2

p

ω2

]

Carrying on the inverse of ε, we find for κ = ε
−1

κ =
ε

ε2 − ε2g
=

1

ε0

[
1− ω2

p/ω2 − ω2
c/ω2

(1− ω2
p/ω2)2 − ω2

c/ω2

]

κg =
−εg

ε2 − ε2g
=

1

ε0

[
ωcω

2
p/ω3

(1− ω2
p/ω2)2 − ω2

c/ω2

]

κz =
1

εz
=

1

ε0

[
1

1− ω2
p/ω2

]

It is easily shown that ε · κ = I.
In the case of an infinitely strong magnetic field, ωc →∞ and we have

ε = ε0 κ =
1

ε0

εg = 0 κg = 0

εz = ε0

(
1− ω2

p

ω2

)
κz =

1

ε0

[
1

1− ω2
p/ω2

]

and the medium becomes a uniaxial plasma.

— END OF EXAMPLE 3.2.1 —
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B. Biisotropic Media

Constitutive relations for biisotropic media take the form

D = εE + ξ H (3.2.5a)
B = µH + ζ E (3.2.5b)

To realize his new network element, the gyrator, Tellegen in 1948 con-
ceived of a medium possessing constitutive relations of the form

D = εE + τH (3.2.6a)

B = µH + τ E (3.2.6b)

where τ2/µε is nearly equal to 1.
Chiral medium is also biisotropic, which has the constitutive rela-

tions

D = εE + i χH (3.2.7a)
B = µH − i χE (3.2.7b)

where χ is the chiral parameter.

Example 3.2.2
The split ring resonator (SRR) in Figure E3.2.2.1 is bianisotropic as a ŷ

directed polarization vector is induced by the applied magnetic field in the ẑ
direction and it is reciprocal. The constitutive relation takes the form:

jout(x)

jin(x)

x = 0

+++
−−−

+++
−−−

Hint
z

y

x

Figure E3.2.2.1 Split ring resonator.
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D =

 εx 0 0
0 εy 0
0 0 εz

 · E +

 0 0 0
0 0 iξ
0 0 0

 ·H

B =

µx 0 0
0 µy 0
0 0 µz

 ·H +

 0 0 0
0 0 0
0 −iξ 0

 · E
End of Example 3.2.2

C. Bianisotropic Media

The constitutive relations for a bianisotropic medium take the form

D = ε · E + ξ ·H (3.2.8a)

B = ζ · E + µ ·H (3.2.8b)

where D depends on both E and H , and so does B .
The constitutive relations for bianisotropic media (3.2.8) in the

EH representation can be written as[
D
B

]
= CEH ·

[
E
H

]
(3.2.9a)

where

CEH =

[
ε ξ

ζ µ

]
(3.2.9b)

is the constitutive matrix under EH representation. To express E
and H in terms of B and D, we write[

E
H

]
= CDB ·

[
D
B

]
(3.2.10a)

where

CDB =
[
κ χ

γ ν

]

=

[
(ε− ξ · µ−1 · ζ)−1 −(ε− ξ · µ−1 · ζ)−1 · ξ · µ−1

−(µ− ζ · ε−1 · ζ)−1 · ζ · ε−1 (µ− ζ · ε−1 · ξ)−1

]

(3.2.10b)

is the constitutive matrix under DB representation.
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D. Symmetry Conditions for Lossless Media

Consider source-free regions in a medium where J = 0 . The time
average of the divergence of Poynting’s vector, in view of the complex
Poynting’s theorem (3.1.16), is

<∇ · S>=
1
2
Re

{
iω(H∗ ·B − E ·D∗)

}
(3.2.11)

We can classify a medium as lossless if

<∇ · S>= 0

as passive if <∇ · S>< 0, and active if <∇ · S>> 0 .
The most general representation of constitutive relations is bian-

isotropic in form. In the EH representation,

D =ε · E + ξ ·H
B =µ ·H + ζ · E

We now apply the complex Poynting’s theorem to derive symmetry
conditions for lossless media. Under time harmonic excitations, the
constitutive matrices ε, ξ, µ, and ζ are usually complex and frequency-
dependent. In general, there are altogether 72 real parameters.

Making use of the relationship Re{C} = 1
2(C+C∗) and substitut-

ing in the constitutive relation for bianisotropic media, we find from
(3.2.11)

<∇ · S> =
1
4

{
iω(H∗ ·B − E ·D∗)− iω(H∗ ·B − E ·D∗)∗

}
=
iω

4

{
H

∗ · (µ ·H + ζ · E)− E · (ε∗ · E∗ + ξ
∗
·H∗)

−H · (µ∗ ·H∗ + ζ
∗
· E∗) + E∗ · (ε · E + ξ ·H)

}
(3.2.12)

In matrix manipulation, using superscript t to represent the transpose

of a matrix, the scalar quantity A · C · B = B · C
t
· A . For the term

H · µ∗ ·H∗ in (3.2.12), for instance, we make use of the relation

H · µ∗ ·H∗ = H∗ · µ+ ·H
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where the superscript + denotes the transpose and the complex con-
jugate of the matrix µ, we find

<∇ · S> =
iω

4

{
E

∗ · (ε− ε+) · E +H∗ · (µ− µ+) ·H

+ E
∗ · (ξ − ζ

+
) ·H +H∗ · (ζ − ξ

+
) · E

}
(3.2.13)

For lossless media, (3.2.13) must vanish for all possible E and H
fields, thus we obtain the lossless conditions

ε
+ = ε (3.2.14a)

µ
+ = µ (3.2.14b)

ξ
+

= ζ (3.2.14c)

The lossless conditions (3.2.14a) and (3.2.14b) state that ε and µ are
hermitian. Each contains six independent complex elements. Since the
diagonal elements must be all real, there are together nine real consti-
tutive parameters. Equation (3.2.14c) relates ξ and ζ; both matrices
have a total of nine independent elements or 18 real parameters. Thus
for a lossless bianisotropic medium, the constitutive relations contain
a total of 21 independent complex elements of which six are pure real,
or altogether 36 real constitutive parameters.

The lossless conditions for the constitutive parameters in the DB
representations as shown in (3.2.10) can be derived to yield

κ
+ = κ

ν
+ = ν

χ
+ = γ

By the same token, we find

P
+

= P

Q
+

= Q

L
+

= −M

for the constitutive parameters in the EB representation.
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E. Reciprocity Conditions

We now derive reciprocity conditions for the constitutive parameters of
bianisotropic media. Consider a source Ja producing electromagnetic
field a as follows:

∇× Ea = iωBa (3.2.15)
∇×Ha = −iωDa + Ja (3.2.16)
∇ ·Ba = 0 (3.2.17)
∇ ·Da = ρa (3.2.18)

Another source Jb producing electromagnetic field b :

∇× Eb = iωBb (3.2.19)
∇×Hb = −iωDb + Jb (3.2.20)
∇ ·Bb = 0 (3.2.21)
∇ ·Db = ρb (3.2.22)

Form the difference of reactions between source a on field b and source
b on field b , we find

∇ ·
[
Ea ×Hb − Eb ×Ha

]
= Hb · ∇ × Ea − Ea · ∇ ×Hb −Ha · ∇ × Eb + Eb · ∇ ×Ha

= iω
[
Hb ·Ba −Ha ·Bb − Ea ·Db + Eb ·Da

]
+ Ja · Eb − Jb · Ea

(3.2.23)

Integrating over the whole space, we find the left hand side

©
∫∫

S
dS ·

(
Ea ×Hb − Eb ×Ha

)
= 0 (3.2.24)

because at an infinite distance away from the source, the E and H
fields are related by

H = r̂ × E/η

and r̂ · E = r̂ ·H = 0 . As a consequence, Ea ×Hb − Eb ×Ha = 0 .



300 3. Media

Equation (3.2.23) becomes

∫∫∫
V
dV

[
Jb · Ea − Ja · Eb

]
= iω

∫∫∫
V
dV (Eb ·Da − Ea ·Db +Ha ·Bb −Hb ·Ba)

= iω
∫∫∫

V
dV

[
Eb · (ε− εT ) · Ea +Ha · (µ− µT ) ·Hb

+ Eb · (ξ + ζ
T
) ·Ha −Hb · (ζ + ξ

T
) · Ea

]
(3.2.25)

We call the medium reciprocal when the left hand side is zero. Thus
the reciprocity condition for the medium is

ε
T = ε (3.2.26a)

µ
T = µ (3.2.26b)

ξ
T

= −ζ (3.2.26c)

The reciprocity condition for the constitutive parameters in the DB
representations as shown in (3.2.10) can be derived to yield

κ
T = κ

ν
T = ν

χ
T = −γ

By the same token, we find

P
T

= P

Q
T

= Q

L
T

=M

for the constitutive parameters in the EB representation.
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F. Causality Relations

We now investigate the relationship between the real and imaginary
parts of the complex permittivity of a dispersive medium. The linear
relationship between fields D and E can be written as

D(t) =
∫ t

−∞
dτ ε(t− τ)E(τ) =

∫ ∞

0
dτ ε(τ)E(t− τ)

The convolution integral signifies that D(t) is determined by E at all
previous times, on account of causality principle. Writing in terms of
Fourier transformations, we have∫ ∞

−∞
dωD(ω)e−iωt =

∫ ∞

0
dτ ε(τ)

∫ ∞

−∞
dω E(ω)e−iω(t−τ)

=
∫ ∞

−∞
dω

[∫ ∞

0
dτ ε(τ)eiωτ

]
E(ω)e−iωt

with the time dependence e−iωt for the fields, the permittivity ε(ω)
is seen to be

ε(ω) =
∫ ∞

0
dτ ε(τ)eiωτ (3.2.27)

Notice that because of causality, the integration range for τ is from
0 to ∞ , and ε(τ) is assumed to be finite throughout the range of
integration.

From the defining equation for ε(ω) , we see that

ε∗(ω) = ε(−ω)

For bianisotropic media, we have all constitutive parameters

ε(ω)∗ = ε(−ω)
µ(ω)∗ = µ(−ω)

ξ(ω)∗ = ξ(−ω)

ζ(ω)∗ = ζ(−ω)

in EH representation and similarly in DB and EB representations.
They are all analytical functions of complex ω on the upper half plane
of ω .
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Example 3.2.3 Anisotropic conducting media.
Consider an anisotropic conducting medium governed by Ohm’s law

Jc = σ · E. From the Maxwell equation

∇×H = −iωD + Jc + Jf (E3.2.3.1)

where Jf represents the source, we can absorb Jc in D by noting that for
a general bianisotropic medium D = ε · E + ξ ·H. We find

∇×H = −iω
[
ε+

i

ω
σ
]
· E − iωξ ·H + Jf

Thus we define a new permittivity tensor

εc = ε+
i

ω
σ (E3.2.3.2)

which is complex and accounts for the anisotropic conductivity of the medium.
End of Example 3.2.3

Problems

P3.2.1
Estimate the conductivity σ = −ρeµe for copper with free-electron

charge density ρe ≈ −1.8×1010 Coul/m3 and mobility µe ≈ 3.2×103 m2/Vs.
For semiconductors, the conductivity is a function of both electron and hole
concentrations and mobilities, σ = −ρeµe + ρhµh . For silicon, ρh = −ρe ≈
0.011 Coul/m3 , µe ≈ 0.12 m2/Vs, and µh ≈ 0.025 m2/Vs.

P3.2.2
Superconductivity was first observed by Kamerlingh Onnes in 1911. In

1933 Meissner and Ochsenfeld discovered that superconducting metals cannot
be penetrated by magnetic fields. Magnetic fields are expelled from a normal
metal when it is cooled to the superconducting state. A macroscopic theory
of superconductivity was developed by London and London in 1935 followed
by the microscopic theory of Bardeen, Cooper, and Schrieffer in 1957.

A simple model of superconductivity calls for an electron plasma with a
very high electron density N .
(a) Show that the penetration depth of a plasma with very large N takes

the form

dp =
√

m

Ne2µo

(b) Let N = 7× 1028 m−3 and calculate dp .
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(c) Compare the above result with the skin depth of a good conductor. Ex-
plain why a very slowly varying magnetic field can penetrate a good
conductor but not a superconductor.

P3.2.3
Consider an electron plasma with collisions, and introduce a collision fre-

quency ωeff ≈ NT−3/2 such that a damping term is introduced and the force
on the electron in the x̂ direction becomes fx = d2(mx)/dt2+ωeff d (mx)/dt.
Derive the constitutive relation and show that

ε = ε0

[
1−

ω2
p

ω2 + ω2
eff

+ i
ω2
pωeff

ω(ω2 + ω2
eff )

]

What are the limiting cases as ωeff/ω →∞ and ωeff = 0 ?

P3.2.4
The constitutive relation for superconductors in weak magnetic fields

can be macroscopically characterized by London equations proposed by two
brothers Fritz and Heinz London in 1935. The first London equation

∂J sup

∂t
= αE

and the second London equation(
∇× J sup

)
= −α1B

where J sup stands for the superconducting current, α = nsq2/m and α1 � α
with ns, m and q denoting, respectively, the number density, the effective
mass, and the charge of the Cooper pairs responsible for the superconductivity
in a charged Boson fluid model.

(a) From the first London equation, derive an equation for Ḃ = ∂B/∂t by
using the static Maxwell equation ∇×H = J sup without the displace-
ment current. Show that

∇2Ḃ = µoαḂ

and deduce that the penetration depth of the time-varying magnetic field
is (µoα)−1/2 .

(b) From the second London equation, derive an equation for B from ∇×
H = J sup and show that the penetration depth of the stationary mag-
netic field is (µoα1)−1/2 . Thus for static fields, both the current and the
magnetic field are confined to a thin layer of the order of the penetra-
tion depth which is very small. The exclusion of a static magnetic field
from a superconductor is known as the Meissner effect experimentally
discovered by Walther Meissner in 1933.
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P3.2.5

In the macroscopic theory of dielectric dispersion, consider the equilib-
rium dipolar polarization to be represented by Ps. When an electric field
E is applied, a distortion polarization P1 is immediately established, but
the remaining dipolar part of the polarization P2 takes time to reach its
equilibrium state. Letting the macroscopic relaxation time be τ, we have

dP2

dt
=

1
τ

(Ps − P1 − P2)

where Ps = (εs − ε0)E, P1 = (ε∞ − ε0)E , and εs and ε∞ are both real
and representative of the permittivity at static and infinite frequencies re-
spectively. For a time-harmonic field with angular frequency ω, we have
P2 = (Ps − P1)/(1− iωτ) .
(a) Prove the following formula for the macroscopic permittivity ε due to

Peter Debye (1884–1966).

ε = ε∞ +
εs − ε∞
1− iωτ (Debye Equation)

ε =
{
ε∞ +

εs − ε∞
1 + ω2τ2

}
+ i(εs − ε∞)

ωτ

1 + ω2τ2

a. b.

εI

εR

εR

εI

−2.0 −1.0 0 1.0 2.0
log(ωτ)

Figure P3.2.5.1

(b) Let ε = εR+iεI and plot εR and εI [Fig. P3.2.5.1a]. Label the values for
εR and εI including the maximum point for εI . What are the numerical
values for water molecules?

(c) Show that εI plotted as a function of εR is a circle. Find the radius of
the Debye semicircle [Fig. P3.2.5.1b] and the points of intersection with
the εR axis.

P3.2.6

In this problem we examine dispersion in the vicinity of a resonant fre-
quency. Show that, if an electron is originally bound to an ion as in an atom,(

d2

dt2
+ gω0

d

dt
+ ω2

0

)
P =

Ne2

m
E
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where P = Nqr is the total dipole moment per unit volume, g is a damping
constant, and ω0 is the characteristic frequency of the electron and accounts
for the restoring force. Derive the complex permittivity

ε(ω) = ε0

(
1 +

ω2
p

ω2
0 − igωω0 − ω2

)
= εR(ω) + iεI(ω)

and plot the real and imaginary parts of ε(ω). Identify the region of normal
dispersion, where εR increases with frequency, and the region of anomalous
dispersion, where εR decreases with frequency. Show that εI is highest at
the resonant frequency ω0. Note: use the approximations ω � ω0, and (ω2−
ω2

0) � 2ω0(ω − ω0).
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3.3 kDB System for Waves in Media

A. Wave Vector k

In source-free and homogeneous regions in isotropic media, electro-
magnetic fields are generated by sources outside these regions, and the
Maxwell equations are

∇× E = iωµH (3.3.1)
∇×H = −iωεE (3.3.2)
∇ · E = 0 (3.3.3)
∇ ·H = 0 (3.3.4)

A wave equation for E can be readily derived by taking the curl of
(3.3.1), introducing (3.3.2), and making use of (3.3.3). We obtain

(
∇2 + ω2µε

)
E = 0 (3.3.5)

∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(3.3.6)

as the Laplacian operator ∇2 in rectangular coordinate system. This
is known as the homogeneous Helmholtz wave equation.

An electric field vector representing an electromagnetic wave prop-
agating in a general direction can be written as

E(r) = Eei(kxx+kyy+kzz) (3.3.7)

which satisfies the homogeneous Helmholtz wave equation.
Substituting (3.3.7) into (3.3.6) yields the dispersion relation

k2
x + k2

y + k2
z = ω2µε = k2 (3.3.8)

We define a vector [Fig. 3.3.1]

k = x̂kx + ŷky + ẑkz (3.3.9)

The vector k is called the wave vector, the propagation vector, or
simply the k vector. By virtue of the dispersion relation (3.3.8), we
see that the magnitude of the k vector is equal to ω(µε)1/2 .
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a1 a2

k

r1

r2

constant
phase
front

k · r1 = kr1 cos a1

= kr2 cos a2

= k · r

1

x

z

Figure 3.3.1 Constant phase fronts of a plane wave.

The scalar product of the wave vector k = x̂kx + ŷky + ẑkz and
the position vector r = x̂x+ ŷy + ẑz gives

k · r = kxx+ kyy + kzz

A constant phase front is determined by k · r = constant , which indi-
cates that the front is a plane perpendicular to the k vector [Fig. 3.3.1].
The electromagnetic wave is called a plane wave.

Substituting the plane wave dependence ei(kxx+kyy+kzz) in (3.3.1)
-(3.3.4), we find the Maxwell equations become, for the plane wave
solution,

k × E = ωµH (3.3.10)

k ×H = −ωεE (3.3.11)

k · E = 0 (3.3.12)

k ·H = 0 (3.3.13)

The dispersion relation
k2 = ω2µε (3.3.14)

The time-average vector power density is

< S >=
1
2
Re

(
E ×H∗) =

1
2
Re



−1
ωε

(k ×H)×H∗ =
k

ωε
|H|2

1
ωµ∗

E × (k∗ × E∗) =
k
∗

ωµ∗
|E|2

(3.3.15)
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We see that when µ and ε are both positive, Poynting’s power vector
is in the same direction as k . From (3.3.10)–(3.3.11), we see that the
three vectors k , E , and H form a right-handed system. If only one of
µ or ε is negative, the wave is evanescent, which is seen from (3.3.14)
as k becomes imaginary.

k

k

D E

B

H

<S>

(a) Positive isotropic medium (b) Negative isotropic medium

z z

E

D

H

B

<S>

Figure 3.3.2 Plane waves in isotropic medium.

In negative isotropic media, µ and ε are both negative, Poynting’s
power vector is in the opposite direction of k . The three vectors k ,
E , and H form a left-handed system. Thus the negative isotropic
medium is also called a left-handed medium (LHM). In this medium,
the Poynting power vector points in a direction that is opposite to the
direction of k . The plane wave is called a backward wave.

Example 3.3.1
In the case of σ/ωε	 1, we find

k = kR + ikI ≈ ω
√
µε

[
1 + i

σ

2ωε

]
= kR

[
1 + i

σ

2ωε

]
We see that if ε < 0 , we must also have kR < 0 in order for kI = σkR/2ωε >
0 so that the wave attenuates in the direction of propagation even though
the phase propagates in the backward direction.

End of Example 3.3.1
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B. The kDB System

We shall now investigate solutions to the Maxwell equations in regions
void of source, namely in regions where J = ρ = 0 .

∇× E = iωB (3.3.16)
∇×H = −iωD (3.3.17)
∇ ·B = 0 (3.3.18)
∇ ·D = 0 (3.3.19)

We also assume homogeneous media where constitutive relations are
independent of spatial coordinates. Plane wave solutions of the form
eik·r are then admissible. With the wave vector k

k = x̂kx + ŷky + ẑkz (3.3.20)

the Maxwell equations (3.3.16)–(3.3.19) become, for the plane wave
solutions,

k × E = ωB (3.3.21)
k ×H = −ωD (3.3.22)
k ·B = 0 (3.3.23)
k ·D = 0 (3.3.24)

We see from (3.3.23) and (3.3.24) that the complex vectors D and B
are always perpendicular to the wave vector k . Let me call this plane,
which is perpendicular to k and contains both D and B , the DB
plane, and establish a coordinate system formed by the three vectors
k , D , and B , the kDB system, noticing that D and B may not
be perpendicular to each other. Since E and H may not lie on the
DB plane, the Poynting vector is in the direction of E × H is not
necessarily in the same direction of k inside an anisotropic medium.
Thus the direction of power flow of a plane wave may not always be in
the direction of the wave vector k .

To facilitate the study and understanding of plane waves in homo-
geneous media whose constitutive relations can be as complicated as
bianisotropic in form, I have designed a systematic approach using the
kDB system. I shall show in detail the propagation characteristics in
several anisotropic and bianisotropic media with the application of the
kDB system.
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The kDB system has unit vectors ê1 , ê2 , and ê3 . Let ê3 be in
the direction of k such that k = ê3k , and ê3 is in the r̂ direction.
In terms of the xyz coordinate system [Fig. 3.3.3], we find

ê3 = r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (3.3.25)

z

ê3

θ

yφ

ê2x

ê1

Figure 3.3.3 The kDB system.

The unit vector ê2 is in the θ̂ direction, we have

ê2 = θ̂ = x̂ cos θ cosφ+ +ŷ cos θ sinφ− ẑ sin θ (3.3.26)

The unit vector ê1 is in the −φ̂ direction which is perpendicular to
both ê2 = θ̂ and ê3 = r̂ . The three unit vectors ê1, ê2, ê3 form a
right-hand coordinate system.

ê1 = ê2 × ê3 = −φ̂ = x̂ sinφ− ŷ cosφ (3.3.27)

which lies in the x-y plane. All three unit vectors are perpendicular
to one another as ê1 · ê2 = ê2 · ê3 = ê3 · ê1 = 0. The three unit vectors
are indicated in Figure 3.3.3. We see that if the x-y plane is rotated
counter-clockwise about ẑ by φ − π/2 , and then rotated about the
new x-axis by θ , the resulting plane perpendicular to k is the DB
plane.

We now establish transformation formulas for components of field
vectors. Let a vector be called A when it is represented by components
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projected onto the xyz coordinate system. We write

A =


Ax

Ay

Az

 (3.3.28)

Let the same vector be called Ak when it is represented by components
projected onto the kDB coordinate system,

Ak =


A1

A2

A3

 (3.3.29)

The relation between the components of A and the components of Ak

is governed by
Ak = T ·A (3.3.30)

Since A and Ak denote the same vector, we find

A1 = ê1 ·A = ê1 · x̂Ax + ê1 · ŷAy + ê1 · ẑAz

= sinφAx − cosφAy (3.3.31)

A2 = ê2 ·A = ê2 · x̂Ax + ê2 · ŷAy + ê2 · ẑAz

= cos θ cosφAx + cos θ sinφAy − sin θAz (3.3.32)

A3 = ê3 ·A = ê3 · x̂Ax + ê3 · ŷAy + ê3 · ẑAz

= sin θ cosφAx + sin θ sinφAy + cos θAz (3.3.33)

where we have made use of (3.3.25)–(3.3.27). Writing (3.3.31)–(3.3.33)
in matrix form and comparing with (3.3.30), we obtain

T =


sinφ − cosφ 0

cos θ cosφ cos θ sinφ − sin θ
sin θ cosφ sin θ sinφ cos θ

 (3.3.34)

The inverse of T is simply calculated as

T
−1

=


sinφ cos θ cosφ sin θ cosφ
− cosφ cos θ sinφ sin θ sinφ

0 − sin θ cos θ

 (3.3.35)

which is seen to be the transpose of T . The result (3.3.35) can be
obtained in three different ways: (i) by directly calculating the inverse
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of T ; (ii) by following a procedure similar to (3.3.31)–(3.3.33) and
using instead the relations Ax = x̂ ·Ak , Ay = ŷ ·Ak , and Az = ẑ ·Ak ;
and (iii) by recognizing that the transformation is orthogonal so that
the inverse of T is equal to the transpose of T . Clearly the product
of (3.3.34) and (3.3.35) is a unit matrix.

The transformation formula established in (3.3.30) applies to any
field vector E, D, B, or H . We must now find formulas that transform
constitutive relations from xyz to kDB . Notice the fact that vectors
D and B take much simpler forms than E and H because D3 =
B3 = 0 . We express the constitutive relations in xyz by relating E
and H to B and D ,

E = κ ·D + χ ·B (3.3.36)
H = ν ·B + γ ·D (3.3.37)

We call these the constitutive relations in the DB representation.

Making use of the transformation formula (3.3.30) we find E = T
−1
·Ek

and similarly for H, D and B . The result is

Ek = (T · κ · T
−1

) ·Dk + (T · χ · T
−1

) ·Bk (3.3.38)

Hk = (T · ν · T
−1

) ·Bk + (T · γ · T
−1

) ·Dk (3.3.39)

We thus obtain

κk = T · κ · T
−1

(3.3.40a)

χk = T · χ · T
−1

(3.3.40b)

νk = T · ν · T
−1

(3.3.40c)

γk = T · γ · T
−1

(3.3.40d)

such that in the kDB system

Ek = κk ·Dk + χk ·Bk (3.3.41)
Hk = νk ·Bk + γk ·Dk (3.3.42)

With the transformation formulas (3.3.30) and (3.3.40)–(3.3.40), we
can now transform all quantities from the xyz coordinate system to
the kDB system.
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C. Maxwell Equations in kDB System

Within the frame of the kDB system, the Maxwell equations for plane
waves inside source-free homogeneous media take the same form as
(3.3.21)–(3.3.24)

k × Ek = ωBk (3.3.43)
k ×Hk = −ωDk (3.3.44)
k ·Bk = 0 (3.3.45)
k ·Dk = 0 (3.3.46)

but with the k vector in the ê3 direction

k = ê3k (3.3.47)

From (3.3.45)–(3.3.46), we find B3 = D3 = 0 . From (3.3.43)–(3.3.44),
we find

ωBk = kê3 × (ê1E1 + ê2E2 + ê3E3)

−ωDk = kê3 × (ê1H1 + ê2H2 + ê3H3)

Making use of the constitutive relations (3.3.41)–(3.3.42), we obtain

ωB2 = kE1 = k(κ11D1 + κ12D2 + χ11B1 + χ12B2)
ωB1 = −kE2 = −k(κ21D1 + κ22D2 + χ21B1 + χ22B2)
ωD2 = −kH1 = −k(ν11B1 + ν12B2 + γ11D1 + γ12D2)
ωD1 = kH2 = k(ν21B1 + ν22B2 + γ21D1 + γ22D2)

We first divide both sides by k and let u = ω/k . Rearranging terms
and writing in matrix form, we obtainκ11 κ12

κ21 κ22

D1

D2

 = −
 χ11 χ12 − u
χ21 + u χ22

B1

B2

 (3.3.48)

 ν11 ν12
ν21 ν22

B1

B2

 = −
 γ11 γ12 + u
γ21 − u γ22

D1

D2

 (3.3.49)

From the above two equations, we can derive the dispersion relations
for the homogeneous media. The procedure is also applicable to dissi-
pative media, where k = x̂kx + ŷky + ẑkz is a complex vector. We first
treat k and the angles θ and φ as though they were real. After the
solution is obtained, we eliminate θ and φ by relating them to the
rectangular components of k in the original xyz coordinate system
and allowing the k vector to be complex.
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D. Waves in Isotropic Media

The constitutive relations for isotropic media in the DB representa-
tion can be written as

E = κD
H = νB

where κ = 1/ε is called the impermittivity and ν = 1/µ is called the
impermeability.

In the kDB system, we find that

Ek = κDk (3.3.50a)
Hk = νBk (3.3.50b)

Substituting in (3.3.48)–(3.3.49), we obtain

κ

D1

D2

 =
 0 u
−u 0

B1

B2

 (3.3.51)

ν

B1

B2

 =
 0 −u
u 0

D1

D2

 (3.3.52)

Eliminating Bk from the above two equations yieldsu2 − κν 0
0 u2 − κν

D1

D2

 = 0 (3.3.53)

In order to satisfy (3.3.53), we have the following four cases:

(A) D1 = D2 = 0
(B) D1 �= 0 and D2 = 0 , u2 − νκ = 0
(C) D1 = 0 and D2 �= 0 , u2 − νκ = 0
(D) D1 �= 0 and D2 �= 0 , u2 − νκ = 0

In order to have non-zero Dk , we must have the dispersion relation

u2 − νκ = 0

Case (A) is a trivial case with zero field. Case (B) is a plane wave
linearly polarized in the ê1 direction and Case (C) is a plane wave
linearly polarized in the ê2 direction. Case (D) represents a plane
wave of any polarization.
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E. Waves in Uniaxial Media

In the principal, xyz, coordinate system of a uniaxial medium the
constitutive relations under DB representation are

E = κ ·D (3.3.54)
H = νB (3.3.55)

where

κ =


κ 0 0
0 κ 0
0 0 κz

 (3.3.56)

is called the impermittivity tensor. The optic axis is in the ẑ direction.
In terms of the permittivity tensor

ε =


ε 0 0
0 ε 0
0 0 εz

 (3.3.57)

we find that κ = 1/ε and κz = 1/εz , since κ = ε−1 . The imperme-
ability is related to the permeability µ by ν = 1/µ . Transforming to
the kDB system, we find from (3.3.40), that

κk = T · κ · T
−1

=


κ 0 0
0 κ cos2 θ + κz sin2 θ (κ− κz) sin θ cos θ
0 (κ− κz) sin θ cos θ κ sin2 θ + κz cos2 θ


(3.3.58)

Since the uniaxial medium has cylindrical symmetry around the z-
axis, the transformed relation is φ -independent as one should expect.
Applying (3.3.48)–(3.3.49), we obtain

κ11 0
0 κ22

D1

D2

 =
 0 u
−u 0

 B1

B2

 (3.3.59)

ν

B1

B2

 =
 0 −u
u 0

D1

D2

 (3.3.60)

Note that χ = γ = 0 and, from (3.3.58), κ11 = κ and κ22 = κ cos2 θ+
κz sin2 θ . Note also that although κ23 and κ33 are both calculated
in (3.3.58), they will not be needed either in applying (3.3.59) or in
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determining Ek from Dk , as illustrated later. Eliminating Bk from
(3.3.59) and (3.3.60),

u2 − νκ11 0
0 u2 − νκ22

D1

D2

 = 0 (3.3.61)

In order to satisfy (3.3.61), we have the following four cases:

(A) D1 = D2 = 0
(B) D1 �= 0 and D2 = 0 , u2 − νκ11 = 0
(C) D1 = 0 and D2 �= 0 , u2 − νκ22 = 0
(D) D1 �= 0 and D2 �= 0 , u2 − νκ11 = u2 − νκ22 = 0

Case (A) implies that there is no field at all.

a. Ordinary and Extraordinary Waves

Case (B) corresponds to a wave which is linearly polarized in the
ê1 direction. Notice from Figure 3.3.4 that ê1 is perpendicular to the
plane formed by the optic axis and the k vector. This linearly polarized
plane wave propagates with the phase velocity

u = ±√νκ11 (3.3.62)

The other field components for the wave are determined from (3.3.60)
and the constitutive relations (3.3.54) and (3.3.55). We find that

ẑ

k

θ

Dk, Ek

Bk, Hk

Figure 3.3.4 Ordinary wave in uniaxial medium.
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Dk = ê1D1 (3.3.63)

Bk = ê2
u

ν
D1 (3.3.64)

Hk = ê2 uD1 (3.3.65)
Ek = ê1 κD1 (3.3.66)

Thus Dk and Ek are in the same direction, as are Bk and Hk

[Fig. 3.3.4]. We call this the ordinary wave in the uniaxial medium.

Example 3.3.2
When both ν and κ are negative and u is positive, we see from

Fig. E3.3.2.1 that the Poynting power vector is in the opposite direction of
the wave vector k .

ẑ

k

θ

Dk

Bk

Hk

x
Ek

<S>

Figure E3.3.2.1 Ordinary wave in uniaxial medium
with negative constitutive parameters.

End of Example 3.3.2

For case (C), the wave is linearly polarized in the ê2 direction. Re-
member that ê2 lies in the plane determined by the optic axis and the
k vector and is perpendicular to the k vector. This linearly polarized
wave propagates with the phase velocity

u = ±√νκ22 = ±[ν(κ cos2 θ + κz sin2 θ)]1/2 (3.3.67)

which is seen to be dependent upon the direction of propagation. The
other field components for the wave are determined from (3.3.60) and
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the constitutive relations (3.3.54) and (3.3.55). We find that

Dk = ê2D2 (3.3.68)

Bk = −ê1
u

ν
D2 (3.3.69)

Hk = −ê1 uD2 (3.3.70)
Ek = ê2 κ22D2 + ê3 (κ− κz) sin θ cos θD2 (3.3.71)

k

θ

ẑ

Ek

Dk

Bk, Hk

z

Figure 3.3.5 Extraordinary wave in a positive uniaxial medium.

We see that Ek and Dk both lie in the plane determined by the
optic axis ẑ and the wave vector k but are no longer in the same
direction. For a positive uniaxial medium, εz > ε , Ek lies between
the vectors k and Dk [Fig. 3.3.5]. As a consequence, the direction of
the Poynting’s vector will not be in the direction parallel to k = ê3k .
This is seen from the cross-product of Ek×H

∗
k . This linearly polarized

wave, the phase velocity of which has magnitude dependent on angle
and direction different from that of the Poynting’s vector, is called an
extraordinary wave in the uniaxial medium.

In order for Case (D) to apply, that is, D1 �= 0 and D2 �= 0 ,
we must have κ11 = κ22 , which cannot hold unless (i) the medium is
isotropic or (ii) the direction of propagation is along ẑ . Thus waves
with polarizations other than linear can propagate only when the k
vector is along the direction of the optic axis. In general, plane waves
inside a uniaxial medium are either an ordinary wave linearly polar-
ized with the D vector perpendicular to the plane determined by the
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optic axis and the k vector, propagating with the phase velocity in
(3.3.62), or an extraordinary wave linearly polarized with the D vector
lying in the plane of the optic axis and the k vector and perpendic-
ular to the k vector, propagating with the phase velocity in (3.3.67).
The result of these two characteristic waves propagating with different
phase velocities in a medium is called birefringence and the medium
is called birefringent. When an electromagnetic wave enters a uniaxial
medium, it decomposes into the two linearly polarized characteristic
waves which propagate with different velocities. This phenomenon is
known as double refraction.

Example 3.3.3
Consider a slab of uniaxial medium with optic axis in the ẑ direction

and with the y axis perpendicular to its front and back surfaces. Let a
linearly polarized plane wave with D = (x̂Do+ẑDe)eiky be normally incident
upon the slab in the ŷ direction [Fig. E3.3.3.1]. We neglect reflections at the
surfaces. Upon entering the medium, the wave is decomposed into an ordinary
wave with D = x̂Do and an extraordinary wave with D = ẑDe . According
to (3.3.62) and (3.3.67), the ordinary and extraordinary waves propagate with
the spatial frequencies

k(o) =
ω√
νκ

k(e) =
ω√

ν(κ cos2 θ + κz sin2 θ)
=

ω√
νκz

z

x

y

d

Deiky

Figure E3.3.3.1 Wave incident on a uniaxial slab.

at θ = π/2 along the y axis. The spatial dependence of the D vector then
becomes

D = x̂Do e
ik(o)y + ẑDe e

ik(e)y
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Thus after propagating a distance of y , the polarization of the incoming wave
has been changed. If Do = De , then at y = 0 , the wave is linearly polarized
in a direction 45◦ with respect to the optic axis. After a distance d such
that (

k(o) − k(e)
)
d =

(2m+ 1)π
2

where m is an integer, the wave becomes circularly polarized. A slab of
such thickness is known as a quarter-wave plate. A polaroid is also a uniaxial
medium where εz has a very large imaginary part such that the extraordinary
wave is drastically attenuated after having been transmitted, whereas the
ordinary wave component is transmitted with only a little attenuation.

End of Example 3.3.3

b. k Surfaces

The dispersion relations in (3.3.62) and (3.3.67) for the ordinary
and extraordinary waves can be converted from their angular depen-
dence to the rectangular components of k in a three-dimensional k
space with the axes formed by kx , ky and kz . Notice that u =
ω/k , k cos θ = kz , and k sin θ = ks where ks is the transverse spatial
frequency representing the transverse component of k . We find that

ω2 = νκk2
z + νκk2

s (3.3.72)

for the ordinary wave and

ω2 = νκk2
z + νκzk2

s (3.3.73)

for the extraordinary wave. Equation (3.3.72) describes a circle and
(3.3.73) describes an ellipse [Fig. 3.3.6]. Rotating them about kz , we
obtain a sphere for the ordinary wave and an ellipsoid for the extraor-
dinary wave.

We now prove that in general the direction of flow of the time-
average Poynting’s vector is also normal to the tangent of the k sur-
faces. Thus the group velocity is in the direction of the energy veloc-
ity which is defined as the time-average Poynting’s vector divided by
the electromagnetic energy density. Mathematically we wish to show
that <S> is perpendicular to the tangent of the k surface, namely
δk · < S >= 0 . First we take the differential of k × E = ωB and
k ×H∗ = −ωD∗ and obtain

δk × E + k × δE = ω δB (3.3.74)
δk ×H∗ + k × δH∗ = −ω δD∗ (3.3.75)
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k

ω/
√
νκ

ω/
√
νκz

kz

ks

direction of < S >
k surface for
ordinary wave

k surface for
extraordinary wave

z

Figure 3.3.6 k surfaces for the ordinary and extraordinary waves
inside a positive uniaxial medium with κ/κz > 1.

We dot-multiply (3.3.74) by H∗ and (3.3.75) by E and then subtract.
Using the vector identity A · (B ×C) = B · (C ×A) = C · (A×B) we
obtain

2δk · (E ×H∗) =ω(H∗ · δB+E · δD∗)+δE · (k ×H∗)−δH∗ · (k × E)

=ω
{
H

∗ · δB + E · δD∗ −D∗ · δE −B · δH∗} (3.3.76)

For the uniaxial medium, we find

2δk · (E ×H∗)= ω
{
E · ε∗ · δE∗−δE · ε∗ · E∗+H∗ · µδH−δH∗ · µH

}
= ω

{
[E∗ · ε · δE]∗ − [E∗ · ε+ · δE] + [H∗ · µ δH]− [H∗ · µ∗δH]∗

}

Using the lossless condition ε+ = ε and µ∗ = µ , we observe that the
right-hand side is a pure imaginary quantity. Since the time-average
Poynting’s vector is equal to one-half times the real part of E ×H∗,
we conclude that

δk · < S >= 0 (3.3.77)

In general we can show that the right-hand side of (3.3.76) is a pure
imaginary quantity for lossless bianisotropic media. Thus, at a point
on the k surface, the direction of the time-average Poynting’s vector
is normal to the surface at that point.
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Example 3.3.4

Plotting the the ellipse Φ = x2 + 2y2 , it can be shown that ∇Φ =
x̂2x+ ŷ4y is pointing in the directions of the expanding ellipse.

Now consider the function

f(Φ, x, y) = Φ(x, y)− x2 − 2y2 = 0

We find df = ∂f
∂Φ (∂Φ

∂x dx+ ∂Φ
∂y dy)+

∂f
∂xdx+ ∂f

∂y dy = 0 or ∂f
∂Φ∇Φ·dr+∇f ·dr = 0

where dr = x̂dx+ ŷdy . Thus ∇Φ = −∇f/ ∂f∂Φ = x̂2x+ ŷ4y .
End of Example 3.3.4

Example 3.3.5

The dispersion relations provide a functional relationship among com-
ponents of the k vector and the angular frequency ω. The equations are
usually quadratic in k for each characteristic wave when there are more than
one. We write in general

f(kx, ky, kz, ω) = 0

In the three-dimensional k space, a quadratic equation describes a two-
dimensional hypersurface. The surface is called the wave surface or simply
the k surface.

We observe that the magnitude of k , as described by the k surface,
may vary as a function of its direction. In a particular direction, the k vector
intersects the k surface at a point. The magnitude of k in this direction is
proportional to the length from the origin to this point. The phase velocity
of a wave in the media is u = ω/k. The group velocity pertaining to the k
surface is

vg = ∇k ω = − ∇k f

∂f/∂ω

Since the vector ∇k f is normal to the k surface f(kx, ky, kz, ω) = 0, we
conclude that, as a wave propagates with phase velocity u along the direction
of k that intersects the wave surface at a point, the group velocity is in a
direction normal to the k surface at that point.

End of Example 3.3.5
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F. Waves in Gyrotropic Media

As another example of the application of the kDB system to the
solution of characteristic waves inside homogeneous media, consider a
gyrotropic medium possessing the following constitutive relations:

H = νB (3.3.78)
E = κ ·D (3.3.79)

where

κ =


κ iκg 0
−iκg κ 0

0 0 κz

 (3.3.80)

One example of such a gyrotropic medium is an anisotropic plasma
with an externally applied dc magnetic field in the ẑ direction. The
constitutive parameters κ , κg and κz have been derived and ex-
pressed in terms of the plasma frequency and cyclotron frequency as
given in Example 3.2.1.

Dispersion Relations and Characteristic Waves
We transform the constitutive matrices to the kDB system by

applying (3.3.40)–(3.3.40). We find νk = ν and

κk = T · κ · T
−1

=


κ iκg cos θ iκg sin θ

−iκg cos θ κ cos2 θ + κz sin2 θ (κ− κz) sin θ cos θ
−iκg sin θ (κ− κz) sin θ cos θ κ sin2 θ + κz cos2 θ

 (3.3.81)

Substituting the values for the constitutive elements in (3.3.48) and
(3.3.49), we obtain κ iκg cos θ

−iκg cos θ κ cos2 θ + κz sin2 θ

D1

D2

 =
 0 u
−u 0

B1

B2


(3.3.82)

ν

B1

B2

 =
 0 −u
u 0

D1

D2


(3.3.83)

Eliminating Bk yields u2 − νκ −iνκg cos θ
iνκg cos θ u2 − ν(κ cos2 θ + κz sin2 θ)

 D1

D2

 = 0 (3.3.84)

From which we determine the dispersion relations and wave character-
istics.
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Faraday Rotation

When the wave propagation direction is along ẑ , we have θ = 0
and (3.3.84) becomes

u2 − νκ −iνκg
iνκg u2 − νκ

D1

D2

 = 0 (3.3.85)

We find
D2

D1
=
u2 − νκ
iνκg

= − iνκg
u2 − νκ

It follows that
u2 − νκ = ±νκg

which gives the magnitudes of the phase velocity

u = ω/k =
√
ν(κ± κg)

The two components of the field vector Dk are related by

D2

D1
= ∓ i

Thus, both characteristic waves are circularly polarized.
The type I wave has a velocity u = (νκ + νκg)1/2 with spatial

frequency

kI = ω/
√
ν(κ+ κg)

and
D2

D1
= − i

which is left-hand circularly polarized.
The type II wave has a velocity (νκ − νκg)1/2 with spatial fre-

quency

kII = ω/
√
ν(κ− κg)

and
D2

D1
= i

which is right-hand circularly polarized.
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Consider a linearly polarized plane wave with D = ê1 2Do propa-
gating in the ẑ direction. Decomposing into superposition of left-hand
and right-hand circularly polarized waves D = ê1 2Do = Do(ê1+ê2 i)+
Do(ê1 − ê2 i) , we write

D(r) = Do(ê1 + ê2 i)eik
IIz +Do(ê1 − ê2 i)eik

Iz

After traveling a distance z0 inside the medium, the two waves are
phase-shifted by different amounts,

D = Do(ê1 + ê2 i)eiφII +Do(ê1 − ê2 i)eiφI

= ê1Do(eiφII + eiφI) + ê2iDo(eiφII − eiφI) (3.3.86)

where

φI = kIz0 =
ωz0√
ν(κ+ κg)

(3.3.87)

φII = kIIz0 =
ωz0√
ν(κ− κg)

(3.3.88)

For the ratio of the two components of Dk , we find

D2

D1
= i
eiφII − eiφI

eiφII + eiφI
= − tan

(φII − φI)
2

+ẑ

ê2

ê1

(φII − φI)/2

(a) (b)

−ẑ
ê1

ê2

(φII − φI)/2

2
ẑ

Figure 3.3.7 Faraday rotation.
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Both components are in phase and the wave is linearly polarized
[Fig. 3.3.7a]. Notice that for an observer viewing into the −ẑ direction,
the incoming wave is rotated clockwise by an angle (φII − φI)/2 .

Now consider the case when the wave is propagating along the −ẑ
direction, we have θ = π and (3.3.84) becomes

u2 − νκ iνκg
−iνκg u2 − νκ

D1

D2

 = 0 (3.3.89)

We find
D2

D1
= −u

2 − νκ
iνκg

=
iνκg
u2 − νκ

It follows that
u2 − νκ = ±νκg

which gives the magnitudes of the phase velocity

u = ω/k =
√
ν(κ± κg)

The two components of the field vector Dk are related by

D2

D1
= ± i

Thus, both characteristic waves are circularly polarized.
The type I wave has a velocity u = (νκ + νκg)1/2 with spatial

frequency

kI = ω/
√
ν(κ+ κg)

and
D2

D1
= i

which is right-hand circularly polarized.
The type II wave has a velocity (νκ − νκg)1/2 with spatial fre-

quency

kII = ω/
√
ν(κ− κg)

and
D2

D1
= − i
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which is left-hand circularly polarized.
Notice that for waves propagating in the −ẑ direction, the ê2 axis

in Figure 3.3.7b is now in the opposite direction to that in Figure 3.3.7a
as seen from the kDB system shown in Figure 3.3.3. Decomposing a
linearly polarized plane wave with D = ê1 2Do into superposition of
left-hand and right-hand circularly polarized waves D = ê1 2Do =
Do(ê1 + ê2 i) +Do(ê1 − ê2 i) , we write

D(r) = Do(ê1 + ê2 i)e−ikIz +Do(ê1 − ê2 i)e−ikIIz

After traveling a distance z = −z0 inside the medium, the two waves
are phase-shifted by different amounts,

D = Do(ê1 + ê2 i)eik
Iz0 +Do(ê1 − ê2 i)eik

IIzo

= ê1Do(eiφI + eiφII) + ê2iDo(eiφI − eiφII) (3.3.90)

where

φI = kIz0 =
ωz0√
ν(κ+ κg)

(3.3.91)

φII = kIIz0 =
ωz0√
ν(κ− κg)

(3.3.92)

For the ratio of the two components of Dk , we find

D2

D1
= −ie

iφII − eiφI

eiφII + eiφI
= tan

(φII − φI)
2

Again we see that for an observer viewing into the −ẑ direction, the
outgoing wave is rotated clockwise by an angle (φII−φI)/2 , as shown
in Figure 3.3.7b. Thus, irrespective of whether the wave is propagating
in the +ẑ or −ẑ direction, the wave is rotated in the same direction
by the same angle.

The phenomenon of rotation of a linearly polarized field vector
when passing through a gyrotropic medium is known as Faraday rota-
tion. For a plasma medium, the electrons circulating along the mag-
netic field lines are responsible for this effect. Faraday rotation also
occurs in ferrites in the presence of external magnetic fields; there the
effect is caused by precession of spin axes around the magnetic field. A
parallel analysis can be carried out for ferrites by using a magnetically
anisotropic model with an impermeability tensor ν .
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Example 3.3.6
From (3.3.84), we find

D2

D1
=
u2 − νκ
iνκg cos θ

= − iνκg cos θ
u2 − ν(κ cos2 θ + κz sin2 θ)

which gives

u2 − νκ =
ν

2

[
(κ− κz) sin2 θ ±

√
(κ− κz)2 sin4 θ + 4κ2

g cos2 θ
]

(E3.3.6.1)

This is the dispersion relation relating ω and k .
The two components of the field vector Dk are related by
D2

D1
=

−2iκg cos θ

(κ− κz) sin2 θ ±
√

(κ− κz)2 sin4 θ + 4κ2
g cos2 θ

(E3.3.6.2)

The expression can be greatly simplified if we define an angle ψ such that

tan 2ψ =
2κg cos θ

(κ− κz) sin2 θ
(E3.3.6.3)

We find that for the characteristic wave with the phase velocity u having the
plus sign in (E3.3.6.1), (E3.3.6.2) becomes

D2

D1
= −i tanψ (E3.3.6.4)

having the spatial frequency

kI = ω
{
νκ+

ν

2

[
(κ− κz) sin2 θ +

√
(κ− κz)2 sin4 θ + 4κ2

g cos2 θ
]}−1/2

We call it the Type I wave in the gyrotropic medium.
For the characteristic wave with the phase velocity u having the minus

sign in (E3.3.6.1), we find from (E3.3.6.2)
D2

D1
= i cotψ (E3.3.6.5)

having the spatial frequency

kII = ω
{
νκ+

ν

2

[
(κ− κz) sin2 θ −

√
(κ− κz)2 sin4 θ + 4κ2

g cos2 θ
]}−1/2

We call it the Type II wave.
Both characteristic waves are elliptically polarized. When κg is zero,

the medium becomes uniaxial and the characteristic waves become linearly
polarized. Both characteristic waves are also linearly polarized when the wave
propagation direction is perpendicular to ẑ and thus θ = π/2 . This bire-
fringence is known as the Cotton-Mouton effect.

End of Example 3.3.6
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Example 3.3.7
The Appleton-Hartree formula for the refractive index, essential to the

study of radio waves in ionosphere [Budden, 1985], can be easily derived from
the above results. The refractive index is defined to be the ratio D1/ε0E1 =
D2/ε0E2. For instance, from (3.3.81), we find E1 = κD1 + iκg cos θD2. From
the first equation of (3.3.84) we also find u2D1 = ν(κD1+iκg cos θD2). Thus
u2D1 = νE1 and n2 = D1/ε0E1 = ε0/νu2. A similar derivation can be made
for n2 = D2/ε0E2 which yields the same results.

In order to be consistent with the Appleton-Hartree formula appeared in
the literature, we first define X = ω2

p/ω
2 and Y = ωc/ω. For the constitutive

parameters, we find

ε0κ =
1−X − Y 2

(1−X)2 − Y 2

ε0κz =
1

1−X
ε0κg =

XY

(1−X)2 − Y 2

It follows that the refractive index

n2 =
ε0
νu2

=
2(1−X)

[
(1−X)2 − Y 2

]
2 [(1−X)2 − Y 2] +X

(
Y 2 + Y 2

L

)
±

√
Y 4
T + 4(1−X)2Y 2

L

where YL = Y cos θ corresponds to the gyrofrequency along the direction of
the B- field and YT = Y sin θ corresponds to that transversal to the B-field
direction.

To further cast the result in a form displaying the effects of the plasma
media on free space for which n = 1 , we write

n2 = 1−
(
1− ε0

νu2

)

= 1−X
2
[
(1−X)2 − Y 2

]
+

(
Y 2 + Y 2

L

)
±

√
Y 4
T + 4(1−X)2Y 2

L

2 [(1−X)2 − Y 2] +X
(
Y 2 + Y 2

L

)
±X

√
Y 4
T + 4(1−X)2Y 2

L

= 1− 2X(1−X)

2(1−X)− Y 2
T ±

√
Y 4
T + 4(1−X)2Y 2

L

(E3.3.7.1)

which is in the familiar form for the Appleton-Hartree formula as derived
from polarization-current arguments. In the absence of the d.c. magnetic field,
YT = YL = 0 and n2 = 1−X . In the absence of the plasma medium X = 0
and n2 = 1 for the free space.

End of Example 3.3.7
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G. Waves in Bianisotropic Media

Consider bianisotropic media with the following constitutive relations:

E =


κ 0 0
0 κ 0
0 0 κz

 ·D +


χ 0 0
0 χ 0
0 0 χz

 ·B (3.3.93)

H =


γ 0 0
0 γ 0
0 0 γz

 ·D +


ν 0 0
0 ν 0
0 0 νz

 ·B (3.3.94)

When χ = γ , this relation reduces to that used by Dzyaloshinskii in
his description of magnetoelectric media.

In the kDB system, the constitutive matrix κk becomes

κk =


κ 0 0
0 κ cos2 θ + κz sin2 θ (κ− κz) sin θ cos θ
0 (κ− κz) sin θ cos θ κ sin2 θ + κz cos2 θ

 (3.3.95)

A similar form holds for the other matrices, χk , γk and νk . Inserting
the corresponding constitutive parameters in (3.3.48) and (3.3.49) and
eliminating Bk , we obtainu2 − ν22κ+ χγν22/ν −(γ22 − χν22/ν)u

−(χ22 − γν22/ν)u u2 − νκ22 + χ22γ22

D1

D2

 = 0 (3.3.96)

where
κ22 = κ cos2 θ + κz sin2 θ

ν22 = ν cos2 θ + νz sin2 θ

χ22 = χ cos2 θ + χz sin2 θ

γ22 = γ cos2 θ + γz sin2 θ

Solving for u and Dk from (3.3.96), although tedious, is straightfor-
ward. We shall now discuss several special cases.

Consider the case with both χ and γ real and the bianisotropic
medium lossless. The lossless condition requires that γ = χ . Charac-
teristic waves are linearly polarized.

Consider the case with both χ and γ imaginary and the bian-
isotropic medium lossless. Let χ → iχ ; then the lossless condition
requires γ = −iχ . We see from (3.3.96) that the characteristic waves
are elliptically polarized.
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Optical Activity in Chiral Media

Chiral media, which characterize many types of polymers, sugar solutions,
andbiological substances, possess the following constitutive relations

E = κD − iχB (3.3.97a)

H = iχD + νB (3.3.97b)

Equation (3.3.97) describes a biisotropic medium. Letting κz = κ, νz = ν, and
χz = χ in (3.3.96), we find for the biisotropic media

(
u2 − κν + χ2 −i2χu

i2χu u2 − κν + χ2

) (
D1

D2

)
= 0 (3.3.98)

We find
D2

D1
=

u2 − νκ + χ2

i2χu
= − i2χu

u2 − νκ + χ2

It follows that
u2 − νκ + χ2 = ±2χu

which gives the magnitudes of the phase velocity

u =
√

νκ± χ

The two components of the field vector Dk are related by

D2

D1
= ∓i

Thus, both characteristic waves are circularly polarized.
The type I wave has a velocity u =

√
νκ + χ with spatial frequency

kI = ω/(
√

νκ + χ)

and
D2

D1
= −i

which is left-hand circularly polarized.
The type II wave has a velocity u =

√
νκ− χ with spatial frequency

kII = ω/(
√

νκ− χ)
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and
D2

D1
= i

which is right-hand circularly polarized.
Consider a linearly polarized plane wave with D = ê12Do propagating in the

ẑ direction. Decomposing into superposition of left-hand and right-hand circularly
polarized waves D = ê1Do = Do(ê1 + ê2i) + Do(ê1 − ê2i), we write

D(r) = Do(ê1 + ê2i)e
ikII z + Do(ê1 − ê2i)e

ikIz

After traveling a distance z0 inside the medium, the two waves are phase-shifted by
different amounts,

D = Do(ê1 + ê2i)e
iφII + Do(ê1 − ê2i)e

iφI

= ê1Do(e
iφII + eiφI ) + ê2iDo(e

iφII − eiφI ) (3.3.99)

where

φI = kIz0 =
ωz0

(
√

νκ + χ)
(3.3.100)

φII = kIIz0 =
ωz0

(
√

νκ − χ)
(3.3.101)

For the ratio of the two components of Dk, we find

D2

D1
= i

eiφII − eiφI

eiφII + eiφI
= − tan

(φII − φI)

2

+

2

(�II − �I) / 2

)b()a(

−
1

22

(�II − �I) / 2

ẑ
ê

ê

ê
ẑ ẑ

1ê

Figure 3.3.8 Optical activity.
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Both components are in phase and the wave is linearly polarized
[Fig. 3.3.7a]. Notice that for an observer viewing into the −ẑ direction,
the incoming wave is rotated clockwise by an angle (φII − φI)/2 .

Now consider the case when wave is propagating along the −ẑ
direction, we have θ = π and (3.3.96) becomesu2 − κν + χ2 −i2χu

i2χu u2 − κν + χ2

D1

D2

 = 0 (3.3.102)

which is identical to (3.3.98). Following same analysis, we find for a
linearly polarized plane wave with D = ê1 2Do , after travelling a dis-
tance of z = −z0 in the ẑ direction, the ratio of the two components
of Dk , we find

D2

D1
= i
eiφII − eiφI

eiφII + eiφI
= − tan

(φII − φI)
2

Notice that for waves propagating in the −ẑ direction, the ê2 axis in
Figure 3.3.7b is now in the opposite direction to that in Figure 3.3.7a.
Thus for an observer viewing into the −ẑ direction, the incoming wave
is rotated counterclockwise by an angle (φII−φI)/2 . The phenomenon
of rotation of a linearly polarized field vector when passing through a
chiral medium is known as optical activity.

A profound difference exists, however, between optical rotation and
the Faraday rotation. A comparison of (3.3.96) with (3.3.84) reveals
that the off-diagonal elements in (3.3.84) change sign when we change
θ from 0 to π , while those in (3.3.96) remain unchanged.

The significance of this difference can be demonstrated as follows:
consider a linearly polarized wave that propagates through a slab of gy-
rotropic medium along the ẑ direction. Assume that, upon exiting, its
polarization vector is rotated 45◦ . If the wave is reflected by a mirror
and re-enters the slab, the polarization vector is rotated a total of 90◦

after the whole journey. Consider the same experiment with the gy-
rotropic medium replaced by a biisotropic medium as discussed above.
On its return path after being reflected by the mirror, the polarization
vector is rotated back to its original position and the net result is no
rotation at all. Because of this difference, we call this rotatory power
optical activity to distinguish it from the Faraday effect. As we shall
see later, the optical activity is reciprocal, whereas the Faraday effect
is nonreciprocal.
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Example 3.3.8

Anisotropic plasma

y k

Ja

B0

< a, b > = 0

< b, a >�= 0
k

φ = 45◦

x

Jb
y

45◦

x

Figure E3.3.8.1 Transmission through an anisotropic plasma slab.

An anisotropic plasma is an example of a nonreciprocal medium. It pos-
sesses a permittivity tensor with ε = ε

+
, which contradicts (3.2.26a) . Con-

sider a slab region filled with the plasma with magnetic field B perpendicular
to the slab [Fig. E3.3.8.1]. Assume that, when a linearly polarized plane wave
is transmitted through the slab, the Faraday rotation causes the field vector
to rotate 45◦ in the increasing φ direction. Let a current sheet with Ja on
one side of the slab produce a plane wave polarized in the direction φ = 0◦,
and a current sheet with Jb on the other side of the slab produce a plane
wave polarized in the direction φ = 45◦. Let Ja be source a and Jb be
source b. The reaction of < a, b > is seen to be zero because the plane wave,
as produced by Jb , is polarized with Eb perpendicular to Ja after trans-
mitting through the slab, while the reaction of < b, a > is nonzero because
Ea and Jb are in the same direction. Thus < a, b > �=< b, a > and the
Faraday rotation effect is nonreciprocal.

The optical activity also rotates polarization vectors, but the effect is
reciprocal. For instance, a quartz crystal exhibits optical rotatory power and
can be described as a bianisotropic medium with constitutive relations satis-
fying (3.2.26). Let the slab region in Figure E3.3.8.1 be filled with an optically
active medium such as quartz. The electric field vector will be rotated 45◦
in increasing φ when transmitted upward and rotated 45◦ in decreasing φ
when transmitted downward. Thus we have the reaction < a, b >=< b, a > .

End of Example 3.3.8
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Example 3.3.9
Writing the constitutive relation in EH representation as

D = εE + iξ0H (E3.3.9.1a)

B = −iξ0E + µH (E3.3.9.1b)
we find

κ = 1/ε(1− ξ20/µε) (E3.3.9.2a)
ν = 1/µ(1− ξ20/µε) (E3.3.9.2b)
χ = ξ0/µε(1− ξ20/µε) (E3.3.9.2c)

The dispersion relation becomes

u =
√
κν ± χ =

1± ξ0/
√
µε

√
µε(1− ξ20/µε)

which yields
k = ω(

√
µε∓ ξ0)

End of Example 3.3.9

Example 3.3.10
The split ring resonator can be modelled as a bianisotropic medium with

the following constitutive relations:

D = ε · E + ξ ·H =

[
εx 0 0
0 εy 0
0 0 εz

]
· E +

[
0 0 0
0 0 0
0 −iξO 0

]
·H (E3.3.10.1a)

B = ζ · E + µ ·H =

[
0 0 0
0 0 iξO
0 0 0

]
· E +

[
µx 0 0
0 µy 0
0 0 µz

]
·H (E3.3.10.1b)

+++
−−−

+++
−−−

x

z

Figure E3.3.10.1 Split ring resonator.
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Transforming into DB representation, we have

E = κ ·D + χ ·B (E3.3.10.2a)

H = γ ·D + ν ·B (E3.3.10.2b)

where

κ =

[
κx 0 0
0 κy 0
0 0 κz

]
=

[
1/εx 0 0

0 1/εy 0
0 0 1/εzD

]
(E3.3.10.3a)

ν =

[
νx 0 0
0 νy 0
0 0 νz

]
=

[
1/µx 0 0

0 1/µyD 0
0 0 1/µz

]
(E3.3.10.3b)

χ = γ
+

=

[
0 0 0
0 0 0
0 χ 0

]
=

[
0 0 0
0 0 0
0 iξ0/µyεzD 0

]
(E3.3.10.3c)

where κz = 1/εzD , νy = 1/µyD , and D = 1−ξ20/µyεz and χ = iξ0/µyεzD .
Transforming into kDB system, we find

κ =

[
κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

]
(E3.3.10.4a)

ν =

[
ν11 ν12 ν13
ν21 ν22 ν23
ν31 ν32 ν33

]
(E3.3.10.4b)

χ = χ

[
0 0 0

sin θ cosφ − sin θ cos θ sinφ − sin2 θ sinφ
− cos θ cosφ cos2 θ sinφ sin θ cos θ sinφ

]
(E3.3.10.4c)

γ = χ

[
0 − sin θ cosφ cos θ cosφ
0 sin θ cos θ sinφ − cos2 θ sinφ
0 sin2 θ sinφ − sin θ cos θ sinφ

]
(E3.3.10.4d)

where

κ11 = κx sin2 φ+ κy cos2 φ (E3.3.10.5a)
κ12 = κ21 = (κx − κy) cos θ sinφ cosφ (E3.3.10.5b)
κ13 = κ31 = (κx − κy) sin θ sinφ cosφ (E3.3.10.5c)

κ22 = (κx cos2 φ+ κy sin2 φ) cos2 θ + κz sin2 θ (E3.3.10.5d)

κ23 = κ32 = (κx cos2 φ+ κy sin2 φ− κz) sin θ cos θ (E3.3.10.5e)

κ33 = (κx cos2 φ+ κy sin2 φ) sin2 θ + κz cos2 θ (E3.3.10.5f)

and similar relations for ν by replacing κ with ν .



3.3 kDB System for Waves in Media 337

Notice that when either the k vector is in the xy -plane with θ = π/2
or when the k vector is in the xz -plane with φ = 0 , κ12 = κ21 = ν12 =
ν21 = χ22 = γ22 = 0 . We now consider such cases by using the kDB system.
We obtainD1

D2

 = −
 0 −u/κ11

(u+ χ21)/κ22 0

B1

B2

 (E3.3.10.6)B1

B2

 = −
 0 (u+ γ12)/ν11
−u/ν22 0

D1

D2

 (E3.3.10.7)

We obtain, noting that γ12 = −χ21 = −χ sin θ cosφ ,u2 − κ11ν22 0
0 u2 − χ2

21 − κ22ν11

D1

D2

 = 0 (E3.3.10.8)

When the k vector is in the xy -plane with θ = π/2 , the dispersion relations
are

ω2 = κyνzk2
x + κxνzk2

y (E3.3.10.9)

ω2 = (κzνy + χ2) k2
x + κzνxk2

y (E3.3.10.10)

In terms of constitutive parameters in EH representation, noting that κz =
/εzD , νy = 1/µyD , and D = 1 − ξ20/µyεz = (µyεz − ξ20)/µyεz , χ =
iξ0/µyεzD , and κzνy + χ2 = 1/εzµyD2 − ξ20/µ2

yε
2
zD

2 = 1/εzµyD , we find

ω2 = k2
x/εyµz + k2

y/εxµz (E3.3.10.11)

ω2 = k2
x/εzµyD + k2

y/εzµxD (E3.3.10.12)

= k2
x/(µyεz − ξ20) + µyk2

y/µx(µyεz − ξ20) (E3.3.10.13)

When the k vector is in the xz -plane with φ = 0 , the dispersion relations
are

ω2 = κyνzk2
x + κyνxk2

z (E3.3.10.14)

ω2 = (κzνy + χ2) k2
x + κxνyk2

z (E3.3.10.15)

ω2 = k2
x/εyµz + k2

z/εyµx (E3.3.10.16)

ω2 = k2
x/εzµyD + k2

z/εxµyD (E3.3.10.17)

= k2
x/(µyεz − ξ20) + εzk2

z/εx(µyεz − ξ20) (E3.3.10.18)

The characteristic waves are linearly polarized.
End of Example 3.3.10
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Example 3.3.11
Wave vector in any direction,

T =

 sinφ − cosφ 0
cos θ cosφ cos θ sinφ − sin θ
sin θ cosφ sin θ sinφ cos θ

 ;Y =

 y yg 0
−yg y 0
0 0 yz


Y =

 y yg cos θ yg sin θ
−yg cos θ y cos2 θ + yz sin2 θ (y − yz) sin θ cos θ
−yg sin θ (y − yz) sin θ cos θ y sin2 θ + yx cos2 θ


Lossless κ = κ

+
, ν = ν

+
, γ = χ

+
. Reciprocal κ = κ

T
, ν = ν

T
, γ = −χT κ κf 0

κf κ 0
0 0 κz

 ;

 ν 0 0
0 ν 0
0 0 νz

 ;

−iχ 0 0
0 −iχ 0
0 0 −iχz

 ;

 iχ 0 0
0 iχ 0
0 0 iχz


κ11 κ12

κ21 κ22

D1

D2

 = −
 χ11 χ12 − u
χ21 + u χ22

B1

B2


 ν11 0

0 ν22

B1

B2

 = −
 γ11 γ12 + u
γ21 − u γ22

D1

D2


κ11 κ12

κ21 κ22

D1

D2

 =
−iχ11 −u

u −iχ22

 1
ν11
iχ11

1
ν11
u

− 1
ν22
u 1

ν22
iχ22

D1

D2


=

 1
ν22
u2 + 1

ν11
χ2

11 −i(χ11
ν11

+ χ22
ν22

)u
i(χ11

ν11
+ χ22

ν22
)u 1

ν11
u2 + 1

ν22
χ2

22


 1

ν22
u2 + 1

ν11
χ2

11 − κ11 −i(χ11
ν11

+ χ22
ν22

)u− κ12

i(χ11
ν11

+ χ22
ν22

)u− κ12
1
ν11
u2 + 1

ν22
χ2

22 − κ22

D1

D2

 = 0

(
1
ν22
u2 +

1
ν11
χ2

11 − κ11)(
1
ν11
u2 +

1
ν22
χ2

22 − κ22)− (
χ11

ν11
+
χ22

ν22
)2u2 − κ2

12 = 0

1
ν11ν22

u4+−[
κ11

ν11
+
κ22

ν22
+2
χ11

ν11

χ22

ν22
]u2+(

1
ν11
χ2

11−κ11)(
1
ν22
χ2

22−κ22)−κ2
12 = 0

u4−[ν22κ11+ν11κ22+2χ11χ22]u2+(ν11κ11−χ2
11)(ν22κ22−χ2

22)−ν11ν22κ2
12 = 0

θ = 0, κ12 = 0⇒
u2 + χ2 − νκ −i2χu

i2χu u2 + χ2 − νκ

D1

D2

 = 0

θ = π, κ12 = 0⇒
u2 + χ2 − νκ −i2χu

i2χu u2 + χ2 − νκ

D1

D2

 = 0

End of Example 3.3.11
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H. Waves in Nonlinear Media

Consider a nonlinear medium characterized by the constitutive relation

D(r, t) = ε0E(r, t) + P (r, t) (3.3.103a)

with the i th component of P

Pi = χijEj + 2χijkEjEk + 4χijklEjEkEl + · · · (3.3.103b)

We have studied in previous sections the linear term χij . The second-
order nonlinear term χijk is responsible for the phenomena of second-
harmonic generation, and parametric amplification and oscillation. The
third-order nonlinear term χijkl gives rise to the effects of third-
harmonic generation, Raman and Brillouin scattering, self-focusing,
and phase conjugation.

The space-time dependent Maxwell equations in source-free re-
gions read

∇× E(r, t) = − ∂
∂t
B(r, t) (3.3.104a)

∇×H(r, t) =
∂

∂t
D(r, t) (3.3.104b)

Specializing to one dimension by letting ∂/∂x = ∂/∂y = 0, we obtain
the wave equation for the i th component of E

∂2

∂z2
Ei − µ0ε0

∂2

∂t2
Ei − µ0

∂2

∂t2
Pi = 0 (3.3.105)

We assume plane wave solutions of frequency dependence ω1, ω2, and
ω3.

E1i(z, t) =
1
2

{
E1i(z)ei(k1z−ω1t) + c.c.

}
(3.3.106a)

E2j(z, t) =
1
2

{
E2j(z)ei(k2z−ω2t) + c.c.

}
(3.3.106b)

E3k(z, t) =
1
2

{
E3k(z)ei(k3z−ω3t) + c.c.

}
(3.3.106c)

where kl = ωl(µ0εl)1/2 with l = 1, 2, 3 and c.c. denotes complex
conjugate. When P = 0, the amplitudes E1i(z), E2j(z), and E3k(z)
will be independent of z.
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Second-Harmonic Generation (SHG)

Consider only the second-order nonlinear term χijk. For the elec-
tric fields at ω3 and ω2, we have

Pi(z, t) = 2χijk

{
1
2
E3je

i(k3z−ω3t) +
1
2
E2je

i(k2z−ω2t) + c.c.
}

·
{

1
2
E3ke

i(k3z−ω3t) +
1
2
E2ke

i(k2z−ω2t) + c.c.
}

(3.3.107)

For ω1 = ω3 − ω2, the nonlinear polarization is

P1i(z, t) =
1
2
χijk

{
(E3jE

∗
2k + E3kE

∗
2j)e

i(k3−k2)z−i(ω3−ω2)t + c.c.
}

= χijk

{
E3jE

∗
2ke

i(k3−k2)z−i(ω3−ω2)t + c.c.
}

(3.3.108)

where use is made of the summation convention and the lossless con-
dition of χijk = χikj .

We assume small variation of E1i as a function of z such that
d2E1i/dz

2 	 k1dE1i/dz. Letting kl = ωl(µ0εl)1/2 and εij = ε0+χij =
εlδij for Eli components, we reduce the wave equation in (3.3.105) for
E1i(z, t) to the following for the complex E1i(z)

d

dz
E1i(z)− iω1

√
µ0

ε1
χijkE3j(z)E∗

2k(z)e
i(−k1+k3−k2)z = 0 (3.3.109a)

Similarly, we find

d

dz
E3j(z)− iω3

√
µ0

ε3
χjklE1k(z)E2l(z)ei(k1−k3+k2)z = 0 (3.3.109b)

d

dz
E∗

2k(z) + iω2

√
µ0

ε2
χklmE1l(z)E∗

3m(z)ei(k1−k3+k2)z = 0 (3.3.109c)

For second-harmonic generation (SHG), ω1 = ω2 and ω3 = ω1 +
ω2 = 2ω1. Equation (3.3.109c) is merely the complex conjugate of
(3.3.109a). Equation (3.3.109b) , however, should be rederived from
(3.3.107) which now takes the form

Pi(z, t) = 2χijk

{
1
2
E1j e

i(k1z−ω1t) + c.c.
} {

1
2
E1k e

i(k1z−ω1t) + c.c.
}
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which yield for ω3 = 2ω1,

P3i(z, t) =
1
2
χijk

{
E1jE1k e

i2(k1z−ω1t) + c.c.
}

Comparison with (3.3.108) shows a factor of 1/2 difference. The wave
equation (3.3.105) that led to (3.3.109b) now becomes

d

dz
E3j(z)− i

ω3

2

√
µ0

ε3
χiklE1k(z)E1l(z)e−i∆kz = 0 (3.3.110a)

Equation (3.3.109a) can be rewritten as

d

dz
E1i(z)− iω1

√
µ0

ε1
χijkE3j(z)E∗

1k(z)e
i∆kz = 0 (3.3.110b)

where ∆k = k3−2k1. Equation (3.3.110) forms the basis for the study
of SHG. Notice that k3 = ω3(µ0ε3)1/2 and k1 = ω1(µ0ε1)1/2, E3j is
the j th component of the electric field at frequency ω3, and E1i is
the i th component of the electric field at frequency ω1.

Assuming weak second-harmonic generation such that the deple-
tion of wave at ω1 is small. In (3.3.110b) E3j ≈ 0 and the solution
for E1i is a constant. Let there be zero second-harmonic input at
z = 0 such that E3j(0) = 0, we find from (3.3.110a) the approximate
solution

E3j(z) =
ω3

2

√
µ0

ε3
χjklE1kE1l

1− e−i∆kz

∆k

It is seen that the power generated at ω3 contains the interference
factor sin2(∆kz/2). Thus the region of z for generation of second-
harmonic wave should be smaller than the coherence length defined by
lc = 2π/∆k.

The coherence length is infinite and the second-harmonic gener-
ation is most effective when ∆k = 0, which is known as the phase-
matching condition. Notice that the electric field E3j at ω3 can be po-
larized differently from E1k at ω1. It suggests that the phase-matching
condition can be met by using dispersive anisotropic media. For in-
stance, E1k can be an extraordinary wave at ω1 and E3j an ordinary
wave at ω3. The phase-matching condition

∆k = ω3

√
µ0ε3(ω3)− 2ω1

√
µ0ε1(ω1) = 0
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z

optic axisk(e)(ω3)

k(e)(ω1)

k(o)(ω1)

k(o)(ω3)

z

Figure 3.3.9 Phase matching.

with ω3 = 2ω1 gives no(ω3) − ne(ω1) = 0 along the ẑ direction,
where no(ω3) = c

√
µε3(ω3) and ne(ω1) = c

√
µε1(ω1). Let k(o)(ω3) =

ω
√
µε3(ω3) and k(e)(ω1) = ω

√
µε1(ω1). We show in Figure 3.3.9 that

the k surfaces at ω1 and ω3 can be oriented to intersect on the z
axis to satisfy the phase-matching condition.

When the phase-matching condition of ∆k=0 is satisfied, (3.3.110)
can be simplified by letting E3j = i

√
ω3/no(ω3)A3, E1k=

√
ω1/ne(ω1)A1

and κ = cµχ211ω1
√
ω3/ne

√
no. We obtain, assuming A1 to be real,

d

dz
A3 =

κ

2
A2

1 (3.3.111a)

d

dz
A1 = −κA1A3 (3.3.111b)

Summing (3.3.111a) multiplied by 2A3 and (3.3.111b) multiplied by
A1 yields

d

dz
(A2

1(z) + 2A2
3(z)) = 0

Since there is no input at ω3, A3(z = 0) = 0, and we find A2
1(z) +

2A2
3(z) = A2

1(0). Equation (3.3.111a) becomes

d

dz
A3(z) =

κ

2
[
A2

1(0)− 2A2
3(z)

]
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Nonlinear Medium as
Phase Conjugation Mirror

k1

z = −H

z = 0

k2z

k3

E3e
i(k3z−ωt)

k4

E4e
−i(k4z+ωt)

Figure 3.3.10 Generation of phase-conjugated waves.

and the solution is

A3(z) =
A1(0)√

2
tanh

[
A1(0)√

2
κz

]
(3.3.112)

Notice that as z → ∞, A3 → A1(0)/
√

2 and the power generated at
the second-harmonic of ω3 = 2ω1 is equal to half of the input power at
ω1 after total conversion is complete. This satisfies energy conservation
as the photon energy at ω3 is h̄ω3 = 2h̄ω1.

Phase Conjugation

We now consider phase conjugation caused by four-wave mixing
as a result of the third-order nonlinear term χijkl. The objective is
to generate an output wave at ω3 which is the phase conjugate of an
input wave at ω4. A nonlinear medium is pumped by waves at ω1 and
ω2 in opposite directions with k1 = −k2 [Fig. 3.3.10]. Assuming plane
wave solutions, we find similar to (3.3.107) a nonlinear polarization due
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to the electric fields at ω1, ω2 and ω4,

Pi(z, t) =
1
2
χijkl

·
{
E1je

i(k1·r−ω1t) + E2je
i(k2·r−ω2t) + E3je

i(k4·r−ω4t) + c.c.
}

·
{
E1ke

i(k1·r−ω1t) + E2ke
i(k2·r−ω2t) + E3ke

i(k4·r−ω4t) + c.c.
}

·
{
E1le

i(k1·r−ω1t) + E2le
i(k2·r−ω2t) + E3le

i(k4·r−ω4t) + c.c.
}

(3.3.113)
Letting ω1 = ω2 = ω4 = ω, k1 = −k2, and k4 = −ẑk, we obtain for
ω3 = ω1 + ω2 − ω4 ,

P3i(z, t) =
1
2
χijklE1jE2kE

∗
4l e

i[(k1+k2)·r+kz−(ω1+ω2)t+ω4t] + c.c.

=
1
2
χE1E2E

∗
4 e

i(kz−ωt) + c.c. (3.3.114)

where we ignore the subscripts and set χ = 6χijkl. The nonlinear
polarization generates a wave [ 1

2E3(z)ei(kz−ωt) + c.c. ] according to
the wave equation (3.3.105) which now gives, ignoring the ∂2E3/∂z

2

term
ik
d

dz
E3(z) = −1

2
ω2µ0χE1E2E

∗
4 (3.3.115)

where k = ω(µ0ε)1/2 with εij = ε0 + χij = εδij and the second-order
term χijk = 0.

The newly created E3 wave will mix with E1 and E2 to generate
the polarization

P4(z, t) =
1
2
χE1E2E

∗
3e

−i(kz+ωt) + c.c. (3.3.116)

which interacts strongly with E4e
−i(kz+ωt). The wave equation for

E4(z) gives rise to

−ik d
dz
E4(z) = −1

2
ω2µ0χE1E2E

∗
3 (3.3.117)

Equations (3.3.116)–(3.3.117) are obtained by a process similar to
(3.3.113)–(3.3.115).
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Defining a coupling coefficient

κ =
ω

2

√
µ0

ε
χE1E2

and noticing that k = ω(µ0ε)1/2, we obtain from (3.3.115) and the
complex conjugate of (3.3.117) the coupled equations

d

dz
E3(z) = iκE∗

4(z) (3.3.118a)

d

dz
E∗

4(z) = iκ∗E3(z) (3.3.118b)

Given E4(0) and E3(−H), the solutions to (3.3.118) take the form

E3(z) =
cos |κ|z
cos |κ|HE3(−H)− iκ sin |κ|(z +H)

|κ| cos |κ|H E∗
4(0) (3.3.119a)

E∗
4(z) = i

|κ| sin |κ|z
κ cos |κ|HE3(−H)− cos |κ|(z +H)

cos |κ|H E∗
4(0) (3.3.119b)

Let E3(−H) = 0. The reflected wave E3(0) at z = 0 due to an input
wave E4(0) is

E3(0) = −i
(
κ

|κ| tan |κ|H
)
E∗

4(0) (3.3.120)

Thus E3(0) is proportional to E∗
4(0), the complex conjugate of E4(0).

Notice that the reflected wave is the conjugate of the incident
wave in space but not in time. An incident wave with the pulse form
f(z+ct) will be of the form f(z−ct) upon reflection from a conjugation
mirror. Thus the reflected wave is the time reversal of the incident
pulse. Furthermore if the input E3(0) is not a plane wave but has a
complicated wavefront

E4 = Re
{
E4(r)e−i(ωt+kz)

}
it follows that

E3 = Re
{
−i

(
κ

|κ| tan |κ|H
)
E∗

4(r)ei(kz−ωt)

}
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which is easily verified by modifying the above derivations on account
of the linearity of the wave equations.

It is interesting to note that |E4(−H)| > |E4(0)| and that for
π/4 < |κ|H < 3π/4, |E3(0)| > |E4(0)|. The amplification of E4(−H)
and the generation of E3(0) must be at the expense of the pump
waves E1 and E2. In fact, as |κ|H = π/2, |E4(−H)/E4(0)| → ∞
and |E3(0)/E4(0)| → ∞ which gives rise to natural resonance without
an input wave.

Exercises

Ex3.3.1

The dispersion relations for plane waves in homogeneous media can be
derived in a number of different ways. For instance, making use of the con-
stitutive relations in EH representation

D = ε · E + ξ ·H

B = µ ·H + ζ · E

we can eliminate the field vectors D , B and H from the above constitutive
relations and (3.3.21)–(3.3.22). Defining an operator k such that k·A = k×A
for any vector A , we obtain

{
ω2ε+ [k + ωξ] · µ−1 · [k − ωζ]

}
· E = 0

For nontrivial solutions of E , the determinant of the matrix operating on E
must be equal to zero. Hence

∣∣∣ω2ε+ [k + ωξ] · µ−1 · [k − ωζ]
∣∣∣ = 0

This is the dispersion relation relating the components of k and the angular
frequency ω . It reduces to the isotropic case in a straightforward manner.
However, in the cases of non-isotropic media, the study of the wave behavior
becomes extremely involved. It is the kDB system that provides a systematic
approach in facilitating the interpretation of the various plane wave charac-
teristics in more general media.
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Problems

P3.3.1
In a uniaxial crystal the ray vectors for ordinary and extraordinary rays

make an angle α . The extraordinary ray vector se is normal to the extraor-
dinary wave surface:

se//
1
2
∇k(ω2µ) = ρ̂κzkρ + ẑκkz = ρ̂κzk sin θ + ẑκk cos θ

The ordinary ray vector so is normal to the k -surface of the ordinary wave,
where ω2µ = κ(k2

ρ + k2
z) :

so//
1
2
∇k(ω2µ) = ρ̂κk sin θ + ẑκk cos θ

Show that the angle α between so and se is determined by

cosα =
so · se
|so| |se|

=
κz sin2 θ + κ cos2 θ

(κ2
z sin2 θ + κ2 cos2 θ)1/2

Find θ0 when the maximum α, αmax, occurs and determine cosαmax. When
sin θ0 =

√
κ
κz

cos θ0 , determine cosαmax.

P3.3.2
In a negative uniaxial medium, a wave vector k makes an angle θ with

the optic axis. Determine whether the direction of the Poynting’s vector in
the negative uniaxial medium is larger or smaller than θ .

P3.3.3
An electromagnetic wave propagates in a uniaxial medium with

ε =

[
ε0 0 0
0 ε0 0
0 0 εz

]
and µ = µ0.

(a) Let εz = 4ε0 . An electromagnetic wave E = E0(x̂ + β ẑ) (at y = 0)
propagates along +ŷ axis.
(i) If the field E is circularly polarized at y = 0 , find β .
(ii) At y = y0 , E is linearly polarized. Find the smallest y0 when

ω = 2π × 108 (rad/sec) .
(b) The electric field E and vector k are both in the x-z plane.

(i) If the angle between vector k and axis ẑ is θ , what is the complex
Poynting vector S ? (Hint: solve this problem in kDB system)

(ii) What is the angle α between the Poynting vector S and vector k ?
(iii) What is the angle θ when the angle α becomes maximum?
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P3.3.4

Consider a conductive uniaxial medium with

ε =

 ε 0 0
0 ε 0
0 0 εz

 ; σ =

σ 0 0
0 σ 0
0 0 σz


Find dispersion relations for this medium. Explain the operation of a polaroid
with this model by assuming σz/σ 	 1 . Show that a piece of polaroid turns
any wave into a linearly polarized wave.

P3.3.5
The Fresnel ellipsoid is defined for an anisotropic medium by

εijxixj = 1

where εij is expressed in the principal coordinates. The inverse of the per-
mittivity tensor ε is κ , which is called the impermittivity tensor. If we define
an ellipsoid in terms of κ instead of ε in the principal coordinate system of
the medium and write

κijxixj = 1

we have a tensor ellipsoid. Construct the Fresnel ellipsoid and the tensor ellip-
soid for a biaxial medium. Expressed in the principal coordinate system, the
principal refractive indices are usually used in these definitions by replacing
εij with n2

i δij and κij with δij/n2
i , in which case the tensor ellipsoid is also

called an index ellipsoid or a reciprocal ellipsoid.

P3.3.6
Consider a slab of material of thickness d , as shown in Figure P3.3.6.1,

with the following permittivity and conductivity tensors:

ε =

[
εx 0 0
0 εy 0
0 0 εz

]
σ =

[
0 0 0
0 0 0
0 0 σz

]

Einc

u

v

w

d

Figure P3.3.6.1
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where εx = 12εo , εy = εo , εz = 4εo , and µ = µo . The conductivity for
polarized wave in z -direction is σz = 0.2εoω mho/meter.

This material can be used to make a polarizer, a quarter-wave plate, and
a half-wave plate. Let the incident electric field propagate in the ŵ direction.

Polarizer:
(a) Assign x , y , z to u , v , w (not necessarily in that order) so that, for

any arbitrarily-polarized incident electric field and sufficiently thick slab,
the transmitted field is linearly polarized.

(b) Determine the minimum thickness d in free space wavelength such that
the undesirable component of the incident field is attenuated by 1/e .
Quarter-wave plate:

(c) Assign x , y , z to u , v , w (not necessarily in that order) so that, for
a given linearly polarized incident electric field, the transmitted field is
circularly polarized. Specify the axes so that there is no power absorption.
Give an expression for an incident electric field such that, given the
correct thickness, the transmitted electric field is circularly polarized.

(d) For the quarter-wave plate and the incident field of part (c), determine
the smallest thickness d in free space wavelength such that the trans-
mitted electric field is left-hand circularly polarized.
Half-wave plate:

(e) Assign x , y , z to u , v , w (not necessarily in that order) so that,
for a given linearly polarized incident electric field, the transmitted field
may be polarized in a direction orthogonal to the incident wave.

(f) For the half-wave plate of part (e), determine the minimum thickness d
in free space wavelength.

P3.3.7
Due to the Earth’s magnetic field, the ionosphere becomes a gyrotropic

medium. Radio wave propagation through the ionosphere is affected by Fara-
day rotation. The temporal variations of electron density profile in the iono-
sphere impose a problem on the antenna design for satellite communications
if linearly polarized waves are to be used.

A linearly polarized wave at a microwave frequency f is transmitted
down to Earth at an angle θ with respect to nadir, and has a small angular
separation φ with the direction of the Earth’s magnetic field He .
(a) Assuming that the electron density N and the Earth’s magnetic field

He are functions of height h , show that the total amount of the Faraday
rotation is approximately

Ω =
ηe3µ0

8π2m2f2

∫
M(h)N(h) dh

where η =
√
µ0/ε0 = 377 Ω, M = He sec θ cosφ , and e and m are the

electron charge and mass respectively. In the presence of the magnetic
field

κ =
1
ε0

[
1− ω2

p/ω
2 − ω2

c/ω
2

(1− ω2
p/ω

2)2 − ω2
c/ω

2

]
κg =

1
ε0

[
ωcω

2
p/ω

3

(1− ω2
p/ω

2)2 − ω2
c/ω

2

]
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where κ
 κg .
In the above derivation, assume that the operating frequency is much
higher than the plasma and cyclotron frequencies and neglect (i) loss
due to collisions between particles, (ii) intermediate reflections due to
the inhomogeneous nature of the ionosphere, and (iii) splitting of the
ordinary and the extraordinary rays.

(b) Assume that the ionosphere has a uniform electron density of 1011/m3 ,
and the Earth’s magnetic field makes a 60◦ angle with respect to nadir
and has a uniform intensity of He = 50 amp/m (corresponding to a
B field of 0.628 Gauss or 0.628 × 10−4 Tesla). Find the amount of
the Faraday rotation for a wave of frequency 1.4 GHz transmitted from
1000 km high down to the Earth along the direction of He .

P3.3.8
A biisotropic medium (Tellegen medium) has the constitutive relation

D = εE + ξH

B = ξE + µH

Find the constitutive relation in the DB -representation. Use the kDB system
to determine the dispersion relations for the biisotropic medium. Discuss your
results.

P3.3.9
In biaxial media, the three principal dielectric constants are different. In

the principal coordinate system,

κ =

κx 0 0
0 κy 0
0 0 κz

 ν = νI χ = γ = 0

The κ matrix is also called the impermittivity tensor. To relate to the per-
mittivities, we note that κx = 1/εx, κy = 1/εy, and κz = 1/εz . The perme-
ability ν is the reciprocal of µ .

(a) Find the constitutive parameters in the kDB system.
(b) Determine the phase velocities of the characteristic waves and show that

D2

D1
= tanψ or − cotψ with tan 2ψ =

2κ12

κ11 − κ22

The velocities of both waves are functions of θ and φ . Show that none
of the E vectors for the two waves lies on the DB plane and the E
vector has a component in the k direction. Thus, the energy propagation
directions are different from the k direction and the two characteristic
waves are both extraordinary waves.

P3.3.10
The direction of propagation of a wave becomes ambiguous in a complex

medium. From Poynting’s theorem, we have learned that the energy flow of
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an electromagnetic field is governed by Poynting’s vector, S = E ×H . The
Poynting’s vector divided by the total electromagnetic energy is referred to
as the energy velocity. The direction of the energy velocity is thus perpen-
dicular to both E and H . We have also learned that the direction of the
phase velocity is along k , which is perpendicular to both D and B . In
a bianisotropic medium, the directions of the energy velocity and the phase
velocity k do not, in general, coincide.

The Poynting power-flow direction is characterized by the ray vector s ,
which is perpendicular to both E and H .

s · E = 0 s ·H = 0

We define the magnitude of s by s · k = 1 , which has the dimension of
length.

(a) Use the vector identity s× (k × E) = k(s · E)− (k · s)E to show that

s×B = −E/ω s×D = H/ω

(b) For a uniaxial medium, define ray surfaces similar to the wave surfaces.
Show that for the extraordinary wave

s2x + s2y +
ε

εz
s2z =

1
ω2µεz

(c) Since s is along the direction of energy velocity, s · δk = 0 ; namely the
normal to the wave surface gives the direction of the corresponding ray
vector. Prove that the normal to the ray surface gives the direction of
the corresponding k vector.

(d) The phase of a wave along a ray can be written as

ψ =
∫
k · dl =

∫
k · s
s
dl =

l

s

where l denotes the length of the segment along the ray path. In geo-
metrical optics, the dimensionless quantity ψ/(ω/c) is the eikonal of the
wave. Show that the ray surface describes a constant-phase surface.

P3.3.11
A signal wave at frequency ω1 can be amplified by a nonlinear medium

with an intense pump wave at ω3. This process of parametric amplification
by the second-order nonlinearity generates an idler wave at ω2 = ω3 − ω1.

(a) Assuming E3j(z) = E3j(0), show that (3.3.109) can be written as

dA1

dz
= −iα

2
A∗

2e
−i∆ k z

dA∗
2

dz
= i
α

2
A1e

i∆ k z



352 3. Media

Determine α and ∆k.
(b) Let A2(0) = 0 and assume that the phase-matching condition ∆k = 0

is satisfied. Show that

A1(z) = A1(0) cosh
α

2
z

A∗
2(z) = iA1(0) sinh

α

2
z

(c) Derive the Manley-Rowe relation

−∆P3

ω3
=

∆P2

ω2
=

∆P1

ω1

where ∆Pl with l = 1, 2, 3 are the change of power between the input
and output. For each photon added to the signal wave, there is a photon
added to the idler wave, and a photon removed from the pump wave. Is
energy conserved?
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Answers

P3.1.1

The two numbers are 5 + i10 and 5− i10 .

P3.1.2

Set up a complex coordinate with T1 and T2 on the real axis, T1 at
the origin and T2 at a distance a from T1 . Relative to Γ , A = iΓ , and
B−a = −i(Γ− a) . The treasure is located at M=(A+B) /2 = a/2 + ia/2 .

P3.1.3

(a) No, E1 × E2 = 0 and E1(t)× E2(t) �= 0
(b) Yes, E1 · E2 = 0 and E1(t) · E2(t) = 0.

P3.1.4

E(r) = [x̂+ ŷi] eikz

P3.1.5

(a) E · k = 0⇒ A = −1 .
(b) k = (ŷ + ẑ)k/

√
2 .

(c) The wave field is left handed circular polarized (l.h.c.p.).
(d) k =

√
ω2 − 4π2 × 1012/c = ω

√
µoε ⇒ ε = εo

(
1− 4π2 × 1012/ω2

)
.

(e) H = k
ωµo
{ 1√

2
[ŷ − ẑ] sin

[
k√
2
(y + z)− ωt

]
+ x̂ cos

[
k√
2
(y + z)− ωt

]
}

(f) S = k
ωµo

√
2
(ŷ + ẑ)

(g) ε = εo
(
1− ω2

p/ω
2
)
⇒ ωp = 2πfp = 2π × 106 ⇒ fp = 106 Hz.

(h) k = π/300, vp = 3
√

5× 108 m/s, vg = 3× 108/
√

5 m/s

(i) E =
[
−x̂ sinωt+ 1√

2
(Aŷ + ẑ) cosωt

]
e
− kI√

2
(y+z) , where kI = π/300 .

(j) vg = 0 , < S >= 0 .

P3.1.6

(a) E1(r) = x̂E0e
iky ⇒ E1(y, t) = Re

[
x̂eikye−iωt

]
= x̂E0 cos(ωt− ky)

(b) H1(r) = −ẑE0
η e

iky η =
√

µ
ε

(c) S =
〈
S
〉

= ŷ |E0|2
2η

(d) E2(r) = −x̂E0e
−iky

(e) E1(y) + E3(y) = x̂E0

(
eiky + e−iky

)
= x̂2E0 cos ky

E(y, t) = x̂2E0 cos ky cosωt

(f)
〈
S
〉

= 1
2Re

[
x̂E0

(
eiky + e−iky

)
×−ẑE

∗
0
η

(
e−iky − eiky

)]
= 0

P3.1.7

Since δp =
√

2/ωµσ ∼ 1/
√
ω , we need to design our enclosure at the

lowest frequency of interest - 10 kHz. Here, for copper, f = 10 kHz → ω =
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2π × 104 rad/s, µ = µ0 = 4π × 10−7 H/m, σ = 5.8× 107 mho/m so that the
skin depth is δp = 6.6× 10−4 m . Thus, our enclosure (five skin depths thick)
must be at least 3.3 mm thick.

P3.1.8

(a) For bottom round steak, kI = 2π×2.5×109

3×108

√
40

[
1
2

(√
1 + 0.362 − 1

)]1/2
=

58.7(m−1), dp = 1
kI

= 1
58.7 m = 1.7 cm

For polystyrene foam, dp ≈ 2
ση = 2

√
1.03

4×10−6×377
= 1346.0 m

(b) ω < 0.1× σ
ε = 5.65(rad/sec), or fmax = ω

2π = 0.899(MHz)

(c) dp ≈
√

2
2π×108×4π×10−7×3.54×107 = 8.46 × 10−6(m) ; 5dp = 4.24 ×

10−5(m) . Thus ordinary aluminum foil with thickness 10−3(inch) =
2.54× 10−5(m) is not thick enough.

(d)

(1) For f = 100 Hz , dp ≈
√

2
ωµoσ

=
√

2
2π×100×4π×10−7×4

= 25.2 m

(2) For f = 5 MHz , dp ≈
√

2
ωµoσ

=
√

2
2π×5×106×4π×10−7×4

= 0.11 m

(e) dp ≈
√

2/ωµoσ = 7.96(m) , e−2kIz = e−2× 100
7.96 = 1.22 × 10−11 =

−109.1(dB).

P3.1.9

(a) vg = dω
dk = k

ωµoεo
= c

√
1− ω2

p

ω2

(b) For the flash light, ω = 2πc/λ = 2π×3×108

0.5×10−6 = 2π ×
(
6× 108MHz

)
vg = c

√
1− ω2

p

ω2 = c
√

1− 82

(6×108)2
= c

(
1− 8.89× 10−17

)
≈ 3.0 ×

108m/s

For the radio pulse, ω = 2π × (10MHz) , vg = c

√
1− 82

102 = 0.6c ≈
1.8 × 108m/s . So the time difference after traveling 100km is δt =

d
(

1
vg1
− 1

vg2

)
= 100× 103

(
1

0.6c − 1
c

)
≈ 2.22× 10−4(sec) .

P3.1.10

(a) For ω 
 ωp , vp = ω
k ≈ c

(
1 +

ω2
p

2ω2

)
, vg = dω

dk ≈ c
(
1− ω2

p

2ω2

)
, where

ωp =
√
Ne2/meε0 is the plasma frequency with e = 1.6022 × 10−19 C

and me = 9.1096 × 10−31 kg. N is the electron density in m−3 . From
the above results, we see that vg < c and vp > c .

(b) The group time delay is

t =
1
vg

=
dk

dω
=

1
c

(
1−

ω2
p

2ω2

)−1/2

≈ 1
c

(
1 +

ω2
p

2ω2

)
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The time difference for two RF pulses with different frequencies travelling
for a distance L is

∆t = t1 − t2 = L
(

1
vg1
− 1
vg2

)
=
L

2c
ω2
p

(
1
ω2

1

− 1
ω2

2

)

Since ω2
p = Ne2

mεo
, we have N =

mεoω
2
p

e2
= 2cmεo∆t/e2L

(
1
ω2
1
− 1

ω2
2

)
.

For ∆t = 1.5 sec , m = 9.11 × 10−31 kg, εo = 8.85 × 10−12 F/m, c =
3 × 108 m/s, L = 6 × 1019 m, ω1 = 2π × 110 × 106 rad/sec, ω2 = 2π ×
115× 106 rad/sec, and e = 1.60× 10−19 C, we get N = 2.65× 104m−3.

P3.1.11

(a) The reflected and transmitted powers are

Pr =
1
2
Re(Er ×H

∗
r) · n̂ =

1
2η

1
2
E2

0 =
1
2
Pi

Pt =
1
2
Re(Et ×H

∗
t ) · n̂ =

1
2η

1
2
E2

0 =
1
2
Pi

(b) Assume that the two reflecting mirrors are identical and have the same
reflection coefficient of eiφ0 . Let E2 = 0 , we find

φt − φr =
π

2
+ nπ

Since the transmitted and reflected fields acquire a phase difference of π/2
due to the semi-transparent mirror, the two fields destructively interfere and
do not reach the detector.
(c)

E1 = E0
e−iφt

√
2
eikpl1eiφ0eik0l3

e−iφr

√
2

+ E0
e−iφr

√
2
eik0l3eiφ0eik0l1

e−iφt

√
2

= E0e
i(φ0−φr−φt+k0l3)ei

1
2 (k0l1+kpl1) cos

(
k0 − kp

2
l1

)

k0 − kp
2

l1 =
k0
2

(1−
√

1−
ω2
p

ω2
) ≈ k0

ω2
p

4ω2
l1 = k0

Ne2l1
4ω2mε0

= φ

as ωp 	 ω , where ω2
p = Ne2/mε0 . We find P1 = Pi cos2 φ . Using the

relation φt−φr =
π

2
+nπ , we have P2 = Pi sin2 φ . We thus have P1 +P2 =

Pi , which satisfies energy conservation. The electron density N of the plasma
can be determined from φ .
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P3.1.12

(a) n is the number of rods and ro is the radius of the rod.

(b) From Faraday’s law
∮
d* · E = iωµo

∫∫
dS · µoH , we have 2πrE =

iωµo2πr
∫ r

a
drJ/2πr = iωµorJ ln(r/a) . Thus

meff = inq2E/ωJ = πr2nq2
µo
2π

ln
r

a

P3.2.1

For copper, σ ≈ 5.8× 107 mho/m. For silicon, σ ≈ 1.6× 10−3 mho/m.

P3.2.2

(a) For very large N , dp = 1
kI

=
√

m
Ne2µo

(b) For electron, m = 9.1×10−31 kg , e = 1.6×10−19 C , dp = 2.0×10−8 m.

(c) For earth as a good conductor, dp =
√

2
ωµoσ

, for a superconductor, dp
is independent of frequency.

P3.2.3

ε = ε0 as ωeff/ω →∞ and ε = ε0(1− ω2
p/ω

2) as ωeff = 0.

P3.2.4

(a) ∇×H = Jsup ⇒ ∇×Ḣ = αE ⇒ ∇×∇×Ḃ = µ0α∇×E = −µ0αḂ

⇒ ∇(∇ · Ḃ)−∇2Ḃ = −µ0αḂ ⇒ ∇2Ḃ = µ0αḂ

since ∇·B = 0 . The solution is Ḃ = exp(±µ0αx) for ∇2 =∂/∂x2 . The
penetration depth (µ0α)−1/2 is of the order of 10−7 m. The first London
equation is similar to that for good conductors. The above result suggests
that the time varying magnetic field is zero and the static magnetic fields
can be frozen in a perfect conductor in the limit (µ0α)−1/2 → 0 .

(b) ∇ × H = Jsup ⇒ ∇ × ∇ × H = ∇ × Jsup = −α1B ⇒ −∇2B =
−µ0α1B . The solution is B = exp(±µ0α1x) for ∇2 =∂2/∂x2 . The
small penetration depth (µ0α)−1/2 suggests that the static magnetic
field is zero inside the superconductor. Notice that the second London
equation explains the Meissner effect but can not explain why supercon-
ductivity disappears in high magnetic fields. One difference between a
perfect conductor and a superconductor is that static magnetic fields are
frozen in the former but completely excluded from the latter.

P3.2.5

When an electric field E is applied, polarization P1 occurs immediately.
Then the polarization builds up to its steady state Ps with the time constant
τ.

P (t) = u(t− t0) {P1 + P2(t)}
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d

dt
P2(t) =

1
τ

[Ps − P1 − P2(t)]

Ps = (εs − ε0)E1

P1 = (ε∞ − ε0)E1

(Polar molecules in a viscous fluid take time to align with the applied field,
as their motion is dampened.)

(a) For time harmonic excitation

−iωP2 =
1
τ

(Ps − P1 − P2); P2 =
1

1− iωτ (Ps − P1) =
εs − ε∞
1− iωτ E

The total polarization is P1 + P2 =
{

(ε∞ − ε0) + εs − ε∞
1−iωτ

}
E

Permittivity is evaluated from εE = ε0E + P1 + P2 as

ε = ε∞ +
εs − ε∞
1− iωτ (Debye Equation)

ε =
{
ε∞ +

εs − ε∞
1 + ω2τ2

}
+ i(εs − ε∞)

ωτ

1 + ω2τ2

(b) εR = (εs + ε∞ω2τ2)/(1 + ω2τ2) εI = (εs − ε∞)ωτ/(1 + ω2τ2)

(c) By obvious steps of algebra we obtain

[
εR −

(
εs + ε∞

2

)]2

+ ε2I =
(
εs − ε∞

2

)2

It was suggested by K. S. Cole and R. H. Cole [ J. Chem. Phys. v. 9,p.
341(1941)] to plot εI versus εR (Cole-Cole plot) to determine whether the
permittivity of a given material can be described by a single relaxation time.
εR − εI curve is not circular for all material.

P3.2.6

Let r be the displacement of an electron from its equilibrium position.
The forces impressed on the electron will include

{
F e = eE electric force
F d = −gω0mv = −gω0mdr/dt damping force
F r = −ω2

0mr restoring force

By Newton’s Law

m
d2r

dt2
= Fe + Fd + Fr = eE − gω0m

dr

dt
− ω2

0mr
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Multiply both sides by Ne/m , and define P = Nqr , use q = e for electron,
we find, under time harmonic excitation, P = ε0ω2

PE/(ω
2
0 − igωω0 − ω2) and

εE = ε0E + P = ε(ω)E . Thus we have

ε(ω) = εR(ω) + iεI(ω) = ε0

(
1 +

ω2
P

ω2
0 − igωω0 − ω2

)

= ε0

[
1 +

ω2
P (ω2

0 − ω2)
(ω2

0 − ω2)2 + (gωω0)2
+ i

ω2
P gωω0

(ω2
0 − ω2)2 + (gωω0)2

]

∂εR
∂ω

= 2ω2
Pω

(ω2
0 − ω2)2 − g2ω4

0

[(ω2
0 − ω2)2 + (gωω0)2]

2

∂εR
∂ω

= 0 when (ω2
0 − ω2)2 = g2ω4

0 ⇒ ω2 = (1± g)ω2
0

if g < 1
0 ≤ ω2 ≤ (1 − g)ω2

0 , and (1 + g)ω0 ≤ ω2 ≤ ∞ , ε(r) increases with
frequency.

(1− g)ω2
0 ≤ ω2 ≤ (1 + g)ω2

0 , ε(r) decreases with frequency.
if g > 1

0 ≤ ω2 ≤ (1 + g)ω2
0 , then ε(r) decreases with frequency.

(1− g)ω2
0 ≤ ω2 ≤ ∞ , then ε(r) increases with frequency.

∂εI
∂ω

=
ω2
P gω0

[
ω4

0 + (2− g2)ω2
0ω

2 − 3ω4
]

[
(ω2

0 − ω2)2 + (gωω0)2
]2

∂εI
∂ω

= 0 ⇒ ω2
max = ω2

0

(2− g2) +
√

(2− g2)2 + 12
6

for g → 0, ωmax → ω0 .

P3.3.1

Differentiate cosα with respect to θ and we find αmax occurs when

sin θ0 =
√
κ

κz
cos θ0 =

√
κ

κz + κ
, thus cosαmax =

2
√
κ/κz

1 + κ/κz

At θ = 0 and θ = π/2 , cosα = 1 and α = 0 .

P3.3.2

larger than θ .

P3.3.3

(a) (i) β = ±i .
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(ii) Since ke > ko , (ke − ko)y0 = 1
2π ⇒ y0 = 3

4 (m) .

(b) (i) S = E ×H∗
= [ê3κ22 − ê2(κ− κz) sin θ cos θ]u |D2|2 , where

κ22 = κ cos2 θ + κz sin2 θ, u =
√
νκ22.

(ii) From (i), it follows that tanα = |κ− κz| sin θ cos θ/κ22 .

(iii) d
dθ tanα = 0 ⇒ θ = tan−1

√
εz/ε or θ = π− tan−1

√
εz/ε.

P3.3.4

The ordinary wave polarized in ŷ direction is not attenuated and the
extraordinary wave decays with exp (−σz/2

√
µ/εz x). Hence any wave prop-

agating in the x̂ passing through the polaroid will become a linearly polarized
ordinary wave.

P3.3.5

The Fresnel ellipsoid is ε1x2
1 + ε2x2

2 + ε3x2
3 = 1

The tensor ellipsoid is x2
1
ε1

+ x2
2
ε2

+ x2
3
ε3

= 1

P3.3.6

(a) The conductivity is non-zero for the incident electric field in z -direction,
we may assign z to u or v axis. There are following possibilities:
(1) z → u, x→ v, y → w ; or
(2) z → v, x → w, y → u . For z → u , the output electric field is

linearly polarized horizontally, for z → v , the output electric field
is linearly polarized vertically.

(b) For the z component of the incident electric field,

σz
ωεz

=
σz
ω4εo

=
0.2
4

= 0.05,

which is small, thus we can use the approximated expression

kzI =

[
1
2
ω2µoεz

(√
1 +

(
σz
ωεz

)2

− 1

)]1/2

≈ 1
2
ω
√
µoεz

(
σz
ωεz

)
=

0.1π
λ

The minimum thickness is d = 1/kzI = λ/0.1π = 3.18λ.
(c) To make the quarter-wave plate have no power absorption, the incident

electric wave must propagate in the z -direction, we assign z → w, x→
u, y → v.

(d) Incident wave is Einc = Eo√
2

(x̂± ŷ) cos (kwz − ωt) , where x, y = u, v .

(e) For Einc = Eo√
2

(x̂− ŷ) cos (kwz − ωt) , the x - and y -components of the
electric field at z = d are
Ex = Eo√

2
cos

(
2
√

3kod− ωt
)
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Ey = −Eo√
2

cos (kod− ωt) = −Eo√
2

cos
(
2
√

3kod− ωt− (2
√

3kod− kod)
)
.

Thus to get left-hand circularly polarized wave for z > d , we need

2
√

3kod− kod =
(2m+ 1)π

2
, or d =

2m + 1
2
√

3− 1
λ

4
.

(f) To make the half-wave plate with no power absorption, the incident elec-
tric wave must propagate in the z -direction, we assign z → w, x →
u, y → v.

(g) Consider the incident electric wave

Einc =
Eo√

2
(x̂± ŷ) cos (kwz − ωt)

After passing through the half-wave plate,

Ex =
Eo√

2
cos

(
2
√

3kod− ωt
)

Ey = ±Eo√
2

cos
(
2
√

3kod− ωt− (2
√

3kod− kod)
)

Let 2
√

3kod−kod = π , so that Ey = ∓Eo√
2

cos
(
2
√

3kod− ωt
)
, and then

E(z = d) =
Eo√

2
(x̂∓ ŷ) cos (kwd− ωt) ,

which is orthogonal to the incident wave. Therefore d = 2m+1
2
√

3−1
λ
2 .

P3.3.7

(a) For E layer N = 1011 /m3 , fp = 56.4
√
N/2π = 2.84 MHz.

For F layer N = 6× 1011 /m3 , fp = 6.95 MHz.
For microwave frequencies much greater than the electron gyro-frequency
and the plasma frequency, the plasma permittivity is approximately equal
to that of free space. The splitting of the Type I and the Type II rays is
negligible. Also, the plasma collision frequency is typically much smaller
than microwave frequencies. In this case, the collision effect can be ne-
glected and the plasma can be considered as lossless.

(b) Now, for one plasma layer, we could decomposed the Earth’s magnetic
field into two components H‖ and H⊥ . Since we assume φ to be small,
the main effect of He comes from H‖ . So, we can take the direction
of k to be ẑ and consider an effective external magnetic field to be
H‖ = He cosφ . Under this approximation, the Faraday rotation angle
within one layer is given by

∆φ =
1
2
(φr − φ7) =

ωdl

2

[
1√

ν(κ− κg)
− 1√

ν(κ+ κg)

]

≈ ωdl

2
√
νκ

[(
1 +

1
2
κg
κ

)
−

(
1− 1

2
κg
κ

)]
=
ωdl

2
√
ν
· κg
κ

3
2
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where dl = dh sec θ . We further simplify (κg/κ
3
2 ) by ignoring the second

and higher order terms in (ωp/ω) and (ωc/ω) , i.e.,

κg

κ
3
2

=
√
ε0

[(
1−

ω2
p

ω2

)2

− ω
2
c

ω2

] 1
2

ωcω
2
p/ω

3

[1− ω2
p/ω

2 − ω2
c/ω

2]
3
2
≈ √ε0

ωcω
2
p

ω3

Finally we obtain

∆φ � ωdl
√
µ0ε0

2
eBNe2

m2ε0ω3
=

ηe3µ0

8π2m2f2
NHe cosφ sec θdh =

2.97× 10−2

f2
NMdh

The above formula is for one layer only. By dividing the ionosphere into
infinitesimal layers, we write the limit of summation as an integral

Ω =
∫

∆φdh ∼= ηe3µ0

8π2m2f2

∫
MNdh

(c) N = 1011 /m3, He = 50 A/m, f = 1.4 × 109 Hz, θ = 60◦, φ = 0◦, h =
106 m , the total Faraday rotation angle is

Ω � 2.97× 10−2 × 1011 × 50× 2× 106

(1.4× 109)2
= 0.1515 rad ∼ 8.68◦

P3.3.8

In the DB -representation, κ = µ/(εµ − ξ2), χ = γ = ξ/(ξ2 − εµ), ν =
ε/(εµ− ξ2) .

E = κD + χB

H = γD + νB

In the kDB system the constitutive relation is not changed, so we obtain[
νκ− χγ − u2 (γ − χ)u

(χ− γ)u νκ− χγ − u2

][
D1

D2

]
= 0

u2 =
[
νκ− 1

2
χ2 − 1

2
γ2

]
±

√(
νκ− 1

2
χ2 − 1

2
γ2

)2

− (χγ − νκ)2

=
[
νκ− 1

2
χ2 − 1

2
γ2

]
± (χ− γ)

√
1
4
(χ+ γ)2 − νκ

D1

D2
=

(γ − χ)u
u2 + χγ − νκ
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The polarization of the characteristic waves can be one of the following cases:
(i) If u2 ≥ 0 then both characteristic waves are linearly polarized.

(ii) If νκ >
1
4
(χ+γ)2 , or νκ <

1
4
(χ+γ)2 with u2 < 0 , then the waves

are elliptically polarized.

(iii) If νκ <
1
4
(χ+ γ)2 , and u2 takes different signs, then we have one

linearly polarized wave and one elliptically polarized wave.

P3.3.9

(a)

κ =

[
κx 0 0
0 κy 0
0 0 κz

]
; T · κ · T

−1
=

[
κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

]

κ11 = κx sin2 φ+ κy cos2 φ

κ12 = κ21 = (κx − κy) cos θ sinφ cosφ

κ22 = (κx cos2 φ+ κy sin2 φ) cos2 θ + κz sin2 θ

κ13 = κ31 = (κx − κy) sin θ sinφ cosφ

κ23 = κ32 = (κx cos2 φ+ κy sin2 φ− κz) sin θ cos θ

κ33 = (κx cos2 φ+ κy sin2 φ) sin2 θ + κz cos2 θ

(b) [
u2 − νκ11 −νκ12

−νκ21 u2 − νκ22

][
D1

D2

]
= 0

u2 =
ν

2

[
(κ11 + κ22)±

√
(κ11 − κ22)2 + 4κ2

12

]
The characteristic waves are linearly polarized and

D2

D1
=

νκ21

u2 − νκ22
=

2κ12

κ11 − κ22 ±
√

(κ11 − κ22)2 + 4κ2
12

=
tan 2ψ

1±
√

1 + tan2 2ψ
=

sin 2ψ
cos 2ψ ± 1

=

{
2 sinψ cosψ

2 cos2 ψ
= tanψ

− 2 sinψ cosψ
2 sin2 ψ

= − cotψ

P3.3.10

(a) Cross-multiply Faraday’s law by s : s× (k×E) = ωs×B = (s ·E)k−
(s · k)E yields

s×B = −E/ω .
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Cross-multiply Ampere’s law by s : s×(k×H) = −ωs×D = (s ·H)k−
(s · k)H yields

s×D = H/ω .

(b) The dispersion relation for the extraordinary wave in a uniaxial medium
is

k2
x

εz
+
k2
y

εz
+
k2
z

ε
= ω2µ

The following vector is normal to this k surface and parallel to ŝ :

1
2
∇k(ω2µ) = x̂

kx
εz

+ ŷ
ky
εz

+ ẑ
kz
ε

= cs

s · k = 1 ⇒ c = ω2µ.

sx =
kx
ω2µεz

; sy =
ky
ω2µεz

; sz =
kz
ω2µε

s2x + s2y +
ε

εz
s2z =

1
ω2µεz

(c) From s·k = 1 , it follows that 0 = (δs·k+ s · δk)
∣∣
ω fixed

. Since s·δk = 0 ,
δs · k = 0 . Therefore, k is normal to the ray-surface.

(d) When l is equal to s multiplied by a constant, the eikonal is equal to
c/ω times the constant. The ray surface gives the magnitudes of s in
all directions. It follows that the ray surface describes a constant-phase
surface.

P3.3.11

(a) α = −2(ω1ω2)
1
2 (ε1ε2)−

1
4
√
µ0χE3j(0); ∆k = k1 + k2 − k3

(b) d
dzA1 = −iα2A∗

2
d
dzA

∗
2 = iα2A1 ⇒ d2A∗

2
dz2

=
(
α
2

)2
A∗

2 ⇒ A∗
2(z) =

c1 sinh α
2 z+c2 cosh α

2 z ⇒ c2 = 0⇒ A1(z) = 2
iα

dA∗
2

dz = c1
i cosh α

2 z = A1(0) cosh α
2 z ⇒

c1 = iA1(0)⇒ A∗
2(z) = iA1(0) sinh α

2 z

(c) E1i(z) =
√
ω1/n(ω1)A1(0) cosh α

2 z

⇒ ∆P1 = − (ω1ω2)
1
2 χω1

(ε1ε2)
1
4
√
µ0c
�

{
E3j(0)|A1(0)|2 cosh α

2 z sinh α
2 z∆z

}
∆P2 = − (ω1ω2)

1
2 χω2

(ε1ε2)
1
4
√
µ0c
�

{
E3j(0)|A1(0)|2 cosh α

2 z sinh α
2 z∆z

}
∆P3 = (ω1ω2)

1
2 χω3

(ε1ε2)
1
4
√
µ0c
�

{
E3j(0)|A1(0)|2 cosh α

2 sinh α
2

}
therefore (∆P1 + ∆P2 + ∆P3) = c(ω1 + ω2 − ω3) = 0
because ω1 + ω2 = ω3 . Thus energy is conserved.
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4.1 Reflection and Transmission

Maxwell equations for time-harmonic fields are

∇× E = iωB (4.1.1)

∇×H = −iωD + J (4.1.2)

∇ ·B = 0 (4.1.3)

∇ ·D = ρ (4.1.4)

where all field quantities are space dependent and complex.
For a boundary surface separating regions 1 and 2, and with a

surface normal n̂ point from region 2 to region 1. The boundary con-
ditions as developed in Chapter 1 are as follows:

n̂× (E1 − E2) = 0 (4.1.5)
n̂× (H1 −H2) = Js (4.1.6)
n̂ · (B1 −B2) = 0 (4.1.7)
n̂ · (D1 −D2) = ρs (4.1.8)

where Js is the surface current density and ρs is the surface charge
density.

In source-free regions of isotropic media, where J = ρ = 0 , D =
εE , and B = µH , consider plane wave solutions where all field vectors
have spatial dependence

eik·r = eikxx+ikyy+ikzz (4.1.9)

characterized by the wave vector

k = x̂kx + ŷky + ẑkz (4.1.10)

with the dispersion relation

k2
x + k2

y + k2
z = ω2µε (4.1.11)

Maxwell equations become

k × E = ωµH (4.1.12)
k ×H = −ωεE (4.1.13)
k ·H = 0 (4.1.14)
k · E = 0 (4.1.15)

We shall assume homogeneous media in each region, and the various
regions are separated by boundary surfaces subject to the boundary
conditions in (4.1.5)–(4.1.8).
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A. Reflection and Transmission of TM Waves

Consider a TM plane wave incident from an isotropic medium with
permittivity ε and permeability µ upon another isotropic medium
with permittivity εt and permeability µt [Fig. 4.1.1]. We assume the
plane of incidence to be parallel to the x-z plane, which contains the
incident wave vector and the surface normal. An incident wave with
any polarization can be decomposed into TE (transverse electric) and
TM (transverse magnetic) wave components. The TE wave is linearly
polarized with the electric field vector perpendicular to the plane of
incidence and is also called perpendicularly polarized, horizontally po-
larized, or simply an E wave or s wave. The TM wave is linearly
polarized with the electric vector parallel to the plane of incidence and
is also called parallelly polarized, vertically polarized, or simply an H
wave or p wave.

We write, for an incident TM wave with unit amplitude,

H i = ŷ eiki·r (4.1.16a)

Ei = − 1
ωε

ki ×H i (4.1.16b)

Si = E ×H
∗ = ki

1
ωε
|H i|2 (4.1.16c)

H i

Ei

z

Hr

Er

x

Et

Ht

kr

k

kt

θi

θr θt

Region 0 Region t

µt, εtµ, ε

Figure 4.1.1 Reflection and transmission of TM waves.
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The reflected field components for the incident TM wave are

Hr = ŷ RTMeikr·r (4.1.17a)

Er = − 1
ωε

kr ×Hr (4.1.17b)

Sr = Er ×H
∗
r = kr

1
ωε
|Hr|2 (4.1.17c)

where RTM is the reflection coefficient for the magnetic field compo-
nent Hiy .

In region t , the transmitted TM field components are

Ht = ŷ T TM eikt·r (4.1.18a)

Et = − 1
ωεt

kt ×Ht (4.1.18b)

St = Et ×H
∗
t = kt

1
ωεt
|Ht|2 (4.1.18c)

where T TM is the transmission coefficient for the magnetic field com-
ponent Hiy .

The wave vectors and the corresponding dispersions relations are

ki = x̂kx + ẑkz (4.1.19)
kr = x̂krx + ẑkrz (4.1.20)
kt = x̂ktx + ẑktz (4.1.21)

k2
x + k2

z = ω2µε = k2 (4.1.22)
k2
rx + k2

rz = ω2µε = k2 (4.1.23)
k2
tx + k2

tz = ω2µtεt = k2
t (4.1.24)

First we determine the wave vector components by phase matching
conditions as derived below.

Let the boundary surface be at x = 0 where the tangential compo-
nents of E and H are continuous. From continuity of Hy , we obtain

eikzz +RTMeikrzz = T TMeiktzz (4.1.25)

This equation must be true for ALL z , and as a consequence, we
obtain the phase matching condition

kz = krz = ktz (4.1.26)
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The boundary conditions of continuity of tangential H and E give

1 + RTM = T TM (4.1.27)

kx

ε
(1−RTM ) =

ktx

εt
T TM (4.1.28)

Note that we did not use the boundary conditions that normal D and normal
B components are continuous at z = 0, because these two conditions are not
independent of the two tangential E and H conditions, just as Gauss’ two laws
are not independent of Faraday’s and Ampère’s laws. In this case we can see that
the condition of continuous normal D yields the same equation as (4.1.27) and there
is no normal B component.

The reflection and transmission coefficients RTM and T TM are determined
from (4.1.27) and (4.1.28), as

RTM = RTM
0t =

1− pTM
0t

1 + pTM
0t

(4.1.29)

T TM = T TM
0t =

2

1 + pTM
0t

(4.1.30)

where the parameter

pTM
0t =

εktx

εtkx
(4.1.31)

and RTM
0t in (4.1.29) is called the Fresnel reflection coefficient for a TM wave incident

from region 0 and reflected at the boundary separating regions 0 and t. In (4.1.30)
T TM

0t is the transmission coefficient from region 0 to region t. Note that the Fresnel
reflection coefficient for TM waves represents the ratio of the reflected and incident
magnetic fields.

The time-averaged Poynting power vectors for the incident, the reflected, and
the transmitted waves are calculated to be

< Si > =
1

2
Re

{
k

1

ωε

}
(4.1.32)

< Sr > =
1

2
Re

{
kr

ωε

∣∣∣RTM
∣∣∣
2
}

(4.1.33)

< St > =
1

2
Re

{
kt

ωεt

∣∣∣T TM
∣∣∣
2

ei(ktx−k∗tx)x

}
(4.1.34)

where we assume that ktx and εt may be complex.
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B. Reflection and Transmission of TE Waves

Consider a TE plane wave incidence with [Fig. 4.1.2]

ki = x̂ kx + ẑ kz (4.1.35a)

Ei = ŷ eiki·r (4.1.35b)

H i =
1
ωµ

ki × Ei (4.1.35c)

Si = Ei ×H
∗
i = ki

1
ωµ
|Ei|2 (4.1.35d)

Region 0 Region t

µt, εt

Er

Ei

Et

H i

Hr

Ht

θi

θr θt

z

x

kr kt

k

µ, ε

Figure 4.1.2 Reflection and transmission of TE waves at a plane
boundary separating regions 0 and t .

The reflected wave takes the form

kr = −x̂ kx + ẑ kz (4.1.36a)

Er = ŷ RTEeikr·r (4.1.36b)

Hr =
1
ωµ

kr × Er (4.1.36c)

Sr = Er ×H
∗
r = kr

1
ωµ
|Er|2 (4.1.36d)
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and in region t ,

kt = x̂ ktx + ẑ kz (4.1.37a)

Et = ŷ T TE eikt·r (4.1.37b)

Ht =
1
ωµt

kt × Et (4.1.37c)

St = Et ×H
∗
t = k

∗
t

1
ωµt
|Et|2 (4.1.37d)

The reflection and transmission coefficients RTE and T TE are

RTE =
1− pTE0t

1 + pTE0t

= RTE0t (4.1.38)

T TE =
2

1 + pTE0t

= T TE0t (4.1.39)

where
pTE0t =

µktx
µtkx

(4.1.40)

With pTE0t for TE waves defined in (4.1.40), RTE0t in (4.1.38) is the
Fresnel reflection coefficient for a TE wave incident from region 0 and
reflected at the boundary separating regions 0 and t . In (4.1.39) T TE0t

is the transmission coefficient from region 0 to region t .
The time-averaged Poynting power vectors for the incident, the

reflected, and the transmitted waves are calculated to be

< Si > =
1
2
Re

{
k

1
ωµ

}
(4.1.41)

< Sr > =
1
2
Re

{
kr
ωµ

∣∣RTE∣∣2} (4.1.42)

< St > =
1
2
Re

{
k
∗
t

ωµ∗
t

∣∣T TE∣∣2ei(ktx−k∗tx)x

}
(4.1.43)

where we assume that ktx and εt may be complex. The above results
for the reflection and transmission of TE waves is easily obtained by
using the duality property of Maxwell equations with the replacements
E → −H , H → E , and µ→← ε .
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C. Phase Matching

According to the phase-matching condition (4.1.26),

kz = krz = ktz (4.1.44)

the incident, reflected and transmitted wave vectors must all lie in the
same plane called the plane of incidence determined by the incident
ki vector and the normal to the boundary surface. Although (4.1.44)
is derived for isotropic media, it holds for general homogeneous media
with the plane wave solutions (4.1.9).

The phase matching condition in equation (4.1.44) states that the
tangential components of the incident, the reflected, and the trans-
mitted wave vectors are continuous. We illustrate the phase-matching
condition with Fig. 4.1.3 with x-z plane as the plane of incidence. The
phase matching condition states that the tangential components of the
wave vectors across the boundary must be continuous as illustrated
in Fig. 4.1.3. Let θi denote the angle of incidence, θr the angle of
reflection, and θt the angle of transmission, with θi , θr , and θt all
less than π/2 , we find from (4.1.44) that θr = θi , and

sin θi
sin θt

=
kt
k0

=
nt
n0

(4.1.45)

where nt = c
√
µtεt and n0 = c

√
µ0ε0 are the refractive indices. Equa-

tion (4.1.45) is known as Snell’s law.

k surface for medium 0

kx

kz

θtθr

θi

k surface for medium t

k

kr kt

Figure 4.1.3 Phase matching using k surfaces.
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k surface for medium 0

kx

kz

k surface for medium t

kr
kt

θr θt
θi

ki

Figure 4.1.4 Phase matching using k surfaces.

In Figure 4.1.4, we let the magnitudes of the wave vectors repre-
sented by circles with radii ki = kr = ω

√
µ0ε0 and kt = ω

√
µtεt on

the kx-kz plane. The circles are called k -surfaces. In three dimensional
k -space when ky 	= 0 , the k -surfaces are spheres.

kz

k surface for medium 0

k

θc
kx

surface for medium tk

θc

kr
kt

Figure 4.1.5 k surface for medium 0 is larger than that for medium t.

When n0 > nt , the radius of the k surface in Region t is shorter
than that in Region 0 [Fig. 4.1.5]. By the phase-matching condition,
we see that as kz of the incident wave becomes larger than kt , there
is no intersection with the smaller semi-circle. As we shall show in the
following that the transmitted wave is evanescent in the x̂ direction,
a phenomenon known as total reflection.
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D. Total Reflection and Critical Angle

Suppose that the medium in region 0 has larger refractive index than
the medium does in region t such that n0 > nt . Then the radius of
the k surface in region t is shorter than that in region 0 [Fig. 4.1.6].
By the phase-matching conditions, we see that as kiz of the incident
wave becomes larger than kt , there is no intersection with the small
circle because this amounts to requiring that one component of a vector
be greater than its magnitude— an impossibility unless the vector is
complex.

kz

k surface for medium 0

k

kx
θc

kr

kt

surface for medium tk

Figure 4.1.6 At critical angle of reflection when the k surface for
medium 0 is larger than that for medium t.

The k surface in region t is described by

k2
tx + k2

iz = k2
t (4.1.46)

Since kiz > kt , ktx must be purely imaginary,

ktx =
√
k2
t − k2

iz = iktxI (4.1.47)

Remember that the wave in region t is characterized by exp(iktxx +
ikzz) . For kz > kt , it becomes exp(−ktxIx + ikzz) . The transmit-
ted wave thus decays exponentially in the x̂ direction. and propagates
along the ẑ direction with the phase velocity ω/kz . This can be re-
garded as a plane wave with constant phase fronts perpendicular to
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the boundary surface. Its amplitude is maximum at the surface and
decays exponentially away from the surface. The wave is known as a
surface wave. The surface wave is evanescent in the x̂ direction. Since
evanescence in the transmitted wave begins when kt = kz = k sin θc ,
with

θc = sin−1 kt
k

=
nt
n0

the angle θc is the critical angle of incidence. In Fig. 4.1.6, we illustrate
phase matching at kz = kt .

When the incident angle is larger than the critical angle,

kt = x̂ i ktxI + ẑ kz

The Fresnel reflection coefficient becomes, as p0t = iεktxI/εtkx =
i p0tI ,

R0t =
1− p0t

1 + p0t
=

1− i p0tI

1 + i p0tI
= ei2φt (4.1.48)

where
φt = − tan−1 p0tI = − tan−1 εktxI

εtkx
(4.1.49)

for TM waves. The transmission coefficient becomes

T0t = 1 +R0t = 1 + ei2φ = 2 cosφt eiφt (4.1.50)

The phase shift 2φ of the Fresnel reflection coefficient at total reflec-
tion is known as the Goos-Hänchen shift.

The transmitted electromagnetic fields at total reflection are


kt = x̂ iktxI + ẑ kz

Ht = ŷ 2 cosφt eiφt e−ktxIx+ikzz

Et =
−1
ωεt

kt ×Ht

< St > =
1
2
Re

{
kt
ωεt

∣∣Ht

∣∣2}
(4.1.51)

The transmitted time-averaged Poynting power vector becomes

< St > = ẑ kz
2 cos2 φ
ωεt

e−2ktxIx

Thus there is no time-average power transmitted in the x̂ direction
into region t , and the incident power is totally reflected. At total
reflection, the transmitted wave is a surface wave.
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E. Backward Waves and Negative Refraction

The phase matching condition was shown in Fig. 4.1.4. Consider an-
other solution as shown in Figure 4.1.7, which can be realized with a
negative isotropic medium with µt = −µn and εt = −εn , where µn
and εn are positive real.

k surface for medium 0

kx

kz

k surface for medium t

kr
kt

θr θt
θi

ki

Figure 4.1.7 Phase matching using k surfaces.

Consider the transmitted TM and TE waves as shown in (4.1.18)
and (4.1.37). We see that for the transmitted wave vector k = −x̂ktx+
ẑkz , the Poynting power vector points into the transmitted region. In
the negative isotropic media, the backward wave has k vector and the
tome-averaged Poynting Vector < S > point in opposite directions.

z

x

kr

k
kt

θi

θr

θt

Region 0

Region t

µt, εtµ, ε

S t

Figure 4.1.8 Reflection and transmission of TM waves
from a negative isotropic medium in region t.
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F. Double Refraction in Uniaxial Media

In a uniaxial medium with optical axis in the ẑ direction, the wave vectors for
extraordinary waves satisfy the dispersion relation

k(e) =
ω√

ν(κ cos2 θ + κz sin2 θ)
=

ω
√

μεz√
(εz/ε) cos2 θ + sin2 θ

The wave vectors for ordinary waves obey the dispersion relation

k(o) =
ω√
νκ

= ω
√

με

and the k-surface is a sphere with radius k = ω
√

με.

a. Optic axis perpendicular to paper

b. Optic axis along the kz axisb.

extraordinary
k surface

ordinary
k surface

kx

kz

kz

kx

ordinary
k surface

extraordinary
k surface

Figure 4.1.9 Double refraction by uniaxial medium.

Consider the phenomenon of double refraction by a positive uniax-
ial medium [Fig. 4.1.9]. First, let the optic axis of the medium be



4.1 Reflection and Transmission 379

perpendicular to the plane of incidence. The two transmitted wave
vectors are shown in Figure 4.1.9a. The power flow directions for the
ordinary and extraordinary waves are the same as the directions of the
wave vectors. Next, let the optic axis be parallel to the plane of inci-
dence. The two transmitted wave vectors are shown in Figure 4.1.9b.
By the nature of the wave surface, the power flow direction of the ex-
traordinary wave is no longer the same as the direction of k . Note
that by proper source excitation we can generate either the ordinary
or the extraordinary wave. For instance, if the wave is linearly polar-
ized perpendicular to the plane of incidence only ordinary waves are
excited.

ŝt

kt

kx

ŝr

kr

ki

ŝi
k surface for

k surface for
isotropic medium

uniaxial medium

k

kz

Figure 4.1.10 Wave vector directions and power flow directions.

Consider another wave excited in a uniaxial medium and incident
upon the interface of an isotropic medium. Let the optic axis be in the
plane of incidence and make an angle with the boundary. The wave
surfaces are shown in Figure 4.1.10. In Figures 4.1.4–4.1.9, we have
drawn the incident ki vector with arrows pointing toward the origin.
Although we use dotted lines for half of the spheres to convey the
feeling of a physical boundary, we must realize that the plot is for k
space and not physical space. In Figure 4.1.10 we draw the reflected
wave vector; instead of pointing in the negative kx and positive kz di-
rections, it is now pointing in the positive kz and kx directions. The
power flow direction for the reflected wave, however, is pointing in the
negative kx and positive kz directions. Thus the reflected wave, while
carrying energy away from the interface, has its phase front propagat-
ing toward the interface. This is a backward wave with respect to the
normal at the interface.
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G. Total Transmission and Brewster Angle

Consider total transmission by setting the reflection coefficient equal
to zero. For TM waves, RTM = 0 yields

ktx =
εt
ε
kx (4.1.52)

From the dispersion relations

k2 = k2
x + k2

z

k2
t = k2

tx + k2
z =

ε2t
ε2
k2
x + k2

z

we find

k2
x =

k2
t − k2

(εt/ε)2 − 1
(4.1.53)

k2
z =

(εt/ε)2k2 − k2
t

(εt/ε)2 − 1
(4.1.54)

Brewster angle is defined for the case of µt = µ , namely for reflection
and transmission at a dielectric interface, which is determined to be

tan θTMB =
kz
kx

=

√
(εt/ε)2k2 − k2

t

k2
t − k2

=
kt
k

=
√
εt
ε

(4.1.55)

kz

k surface for medium 0

k

kxθt

kr

surface for medium tk

θB

kt

θB

kz

0

kx

θt

kr

surface for mediumk

θB

k

θB

kt
θB

Figure 4.1.11 At Brewster angle of reflection, k is perpendicular kt.
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From the phase matching condition, we find kt sin θt = k sin θB = kt cos θB . It
follows that θB + θt = π/2.

The reflected and transmitted wave vectors are kr = −x̂kx + ẑkz and
kt = x̂ktx + ẑkz = x̂ εt

ε
kx + ẑkz. We see that

kt · kr = − εt

ε
k2

x + k2
z = 0

Therefore the reflected and transmitted vectors are perpendicular to each other.
For TE waves, when µt = µ, RTE = 0 yields ktx = µt

µ
kx = kx, which gives

kt = k. We see that there is no zero reflection unless the two media are identical.
When an unpolarized wave is incident upon a dielectric medium at the Brewster
angle, the reflected wave becomes linearly polarized perpendicular to the plane of
incidence. For this reason, the Brewster angle is also called the polarization angle.

EXAMPLE 4.1.1

For ε 6= εt and µ 6= µt, we find from (4.1.53) and (4.1.54),

tan θTM
b =

kz

kx
=

√
(εt/ε)2k2 − k2

t

k2
t − k2

=

√
( εt

ε
)2 − µtεt

µε
µtεt
µε

− 1
(E4.1.1.1)

For TE waves, RTE = 0 yields

ktx =
µt

µ
kx

From the dispersion relations

k2 = k2
x + k2

z

k2
t = k2

tx + k2
z =

µ2
t

µ2
k2

x + k2
z

Brewster angle is defined for the case of εt = ε, namely for reflection and
transmission at a dielectric interface, from which we find

k2
x =

k2
t − k2

(µt/µ)2 − 1
(E4.1.1.2)

k2
z =

(µt/µ)2k2 − k2
t

(µt/µ)2 − 1
(E4.1.1.3)

tan θTE
b =

kz

kx
=

√
(µt/µ)2k2 − k2

t

k2
t − k2

=

√
(µt

µ
)2 − µtεt

µε
µtεt
µε

− 1
(E4.1.1.4)

— END OF EXAMPLE 4.1.1 —
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H. Zenneck Wave

The guidance condition at a plane interface is obtained by letting
R → ∞ , which amounts to a zero incident wave. For TM waves, we
write solutions on both sides of the interface as



H0 = ŷ eik·r

E0 = − 1
ωε

k ×H0

k = −x̂kx + ẑkz




Ht = ŷ eikt·r

Et = − 1
ωεt

kt ×Ht

kt = x̂ktx + ẑkz

The boundary conditions of continuity of tangential electric and mag-
netic field components yield the guidance condition ktx = − εtε kx .

Consider a highly conducting medium with permeability µt = µ ,
and permittivity εt = εg + iσ/ω , with σ/ωεg � 1, where σ is the
conductivity. From dispersion relations

k2 = k2
x + k2

z (4.1.56)

k2
t = k2

tx + k2
z =

ε2t
ε2
k2
x + k2

z (4.1.57)

and with ktx = − εtε kx , we find

kx =
[

k2

εt/ε+ 1

]1/2

≈ k
[ωε
iσ

]1/2
= k

[ωε
σ
ei3π/2

]1/2
=

√
ωε

2σ
k(−1 + i)

kz = k

[
εt/ε

εt/ε+ 1

]1/2

= k

[
1 +

ε

εg + iσ/ω

]−1/2

= k

[
1− iωε/σ

1− iωεg/σ

]−1/2

≈ k

[
1 +

1
2
(

iωε/σ

1− iωεg/σ
) +

3
8
(

iωε/σ

1− iωεg/σ
)2

]

≈ k

[
1− 3

8
(
ωε

σ
)2 − 1

2
ω2εεg
σ2

+ i
ωε

2σ

]

ktx = −εt
ε
kx ≈ −

iσ

ωε

√
ωε

2σ
k(−1 + i) =

√
ωµσ

2
(1 + i)

Thus, the wave in region 0 has its phase velocity directed towards
the interface and exponentially decaying away from the surface. This
is known as the Zenneck wave (Jonathan Zenneck, 15 April 1871 – 8
April 1959). Since kzR < k , the Zenneck wave is a fast wave along the
interface.
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I. Plasma Surface Wave

Consider a plane boundary surface at x = 0 separating two media
µ, εo for x < 0 and µ, εt = εo

[
1− ω2

p/ω
2
]

with 2 < ω2
p/ω

2 , for x >
0. From dispersion relations (4.1.56) and (4.1.57), and with guidance
condition ktx = − εtεokx , we find

kx =
[

k2

εt/εo + 1

]1/2

= k

[ −1
ω2
p/ω

2 − 2

]1/2

= ik

[
1

ω2
p/ω

2 − 2

]1/2

= ikxI

kz = k

[
εt/εo

εt/εo + 1

]1/2

= k

[
ω2
p/ω

2 − 1
ω2
p/ω

2 − 2

]1/2

ktx = − εt
εo
kx = (

ω2
p

ω2
− 1)kx = ik(

ω2
p

ω2
− 1)

√
1

ω2
p/ω

2 − 2
= iktxI

We find a surface wave, called the plasma surface wave, that attenuates
in the x̂ direction inside the plasma media. In region 0 the waves
attenuate in the −x̂ direction. Here kz is positive real. Thus plasma
waves propagate along the interface and attenuate in both x̂ and −x̂
directions. As ω → 0, we have kz = k and k2

xI = k2
z − k2 = 0 and

we have a uniform TM plane wave propagating along the surface of a
perfect conductor without attenuation.

The Poynting power density vectors in regions 0 and t are


k = −x̂ ikxI + ẑ kz

< S0 > =
1
2
Re

(
E0 ×H

∗
0

)
=

1
2
Re

(
k

1
ωεo
|H0|2

)

= ẑ
kz

2ωεo
e2kxIx




kt = x̂ iktxI + ẑ kz

< St > =
1
2
Re

(
Et ×H

∗
t

)
=

1
2
Re

(
kt

1
ωεt
|Ht|2

)

= ẑ
kz

2ωεt
e−2ktxIx

Notice that εt < 0 . Thus the ẑ component of St is in the opposite
direction of Si , and the plasma surface wave is a backward wave, which
occurs when εt < −εo .
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J. Reflection and Transmission by a Layered Medium

Consider a plane wave incident on a stratified isotropic medium with
boundaries at x = d1, d2, . . . , dt [Fig. 4.1.12 ]. The (n + 1) th region
is semi-infinite and is labeled region t , t = n + 1 . The permittivity
and permeability in each region are denoted by εl and µl . The plane
wave is incident from region 0 and has the plane of incidence parallel
to the x-z plane. All field vectors are dependent on x and z only
and independent of y . Since ∂/∂y = 0, the Maxwell equations in any
region l can be separated into TE and TM components governed by
Ely and Hly . We obtain

Region 0 Region 1 Region n Region t = n++ 1

x= d1 x= d-1x= d

µ0, ε0 µ1, ε1 µn, εn µt, εt

z

x

εlµl

x= dl

Region l

,

x= dnl0 x= dn-1

Figure 4.1.12 Layered medium.

Hlx =
−1
iωµl

∂

∂z
Ely (4.1.58)

Hlz =
1

iωµl

∂

∂x
Ely (4.1.59)

( ∂2

∂x2
+

∂2

∂z2
+ ω2µlεl

)
Ely = 0 (4.1.60)

Elx =
1

iωεl

∂

∂z
Hly (4.1.61)

Elz =
−1
iωεl

∂

∂x
Hly (4.1.62)

( ∂2

∂x2
+

∂2

∂z2
+ ω2µlεl

)
Hly = 0 (4.1.63)

The TE waves are completely determined by (4.1.58)–(4.1.60) and the
TM waves by (4.1.61)–(4.1.63). The two sets of equations are duals of
each other under replacements El → H l , H l → −El , and µl→← εl .
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EXAMPLE 4.1.2

The second-order partial differential wave equation (4.1.63) or (4.1.60) can be
solved formally with the method of separation of variables. Let

Hly = X(x)Y (y)

Substituting into the wave equation, we obtain

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+ ω2µlεl = 0

We then let
1

X(x)

d2X(x)

dx2
= −k2

x

1

Y (y)

d2Y (y)

dy2
= k2

y

where kx and ky are separation parameters related by

k2
x + k2

y = ω2µlεl

There are two independent solutions to each of the two ordinary differential
equations. Out of the four possible combinations, many are absent owing to
the constraints imposed by physical requirements and boundary conditions. For
instance, eikxxeikyy represents a wave propagating with the k vector k = x̂kx + ŷky,
and e−kxIxeikyy with kx = −ikxI and k2

z − ik2
xI = ω2µlεl propagating in the ẑ

direction and evanescent in the x̂ direction.

— END OF EXAMPLE 4.1.2 —

For a TM plane wave, Hy = H0 eikxx+ikzz, incident on the stratified medium,
the total field in region l can be written as

kl = x̂klx + ẑkz (4.1.64)

Hl = ŷ
(
Ale

iklxx + Ble
−iklxx

)
eikzz (4.1.65)

El =
−1

ωεl
kl ×Hl (4.1.66)

and
k2

lx + k2
z = ω2µlεl

is the dispersion relation for region l. We do not write a subscript l for
the kz as a consequence of the phase-matching conditions. Truly, there
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are multiple reflections and transmissions in each layer l. The amplitude Al thus
represents all wave components that have a propagating velocity component along
the positive x̂ direction, and Bl represents those with a velocity component along
the negative x̂ direction.

We let, in region 0,

{
A0 = 1
B0 = R

and in region t

{
At = T
Bt = 0

notice that region t is semi-infinite and there is no wave propagating with a ve-
locity component in the positive x̂ direction. We denote the transmitted amplitude
by T .

The wave amplitudes Al and Bl are related to wave amplitudes in neighboring
regions by the boundary conditions. At x = dl, boundary conditions require that
Ez and Hy be continuous. We obtain

Ale
iklxdl + Ble

−iklxdl = Al+1 eik(l+1)xdl + Bl+1 e−ik(l+1)xdl (4.1.67)

Ale
iklxdl −Ble

−iklxdl = pl(l+1)

[
Al+1e

ik(l+1)xdl −Bl+1e
−ik(l+1)xdl

]
(4.1.68)

where

pl(l+1) =
εlk(l+1) x

εl+1 klx
=

1

p(l+1)l

(4.1.69)

Rl(l+1) =
1− pl(l+1)

1 + pl(l+1)
= −R(l+1)l (4.1.70)

There are n+1 boundaries which give rise to (2n+2) equations. In region 0 , we have
an unknown reflection coefficient R. In region t, we have an unknown transmission
coefficient T . There are two unknowns Al and Bl in each of the regions l = 1, 2, . . .,
n. Thus we have a total of (2n + 2) unknowns. To solve for the (2n + 2) unknowns
from the (2n + 2) linear equations, we can arrange the equations in matrix form
with the unknowns forming a (2n + 2) column matrix and the coefficients forming
a (2n + 2) × (2n + 2) square matrix. The solution is then obtained by inverting
the square matrix. This procedure is straightforward but tedious. We shall now
describe simpler ways to deal with the problem.
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K. Reflection Coefficients for Stratified Media

Since we are interested in finding the reflection coefficient for the
stratified medium, let us derive a closed-form formula for R . We first
solve (4.1.67) and (4.1.68) for Al and Bl .

Ale
iklxdl =

1 + pl(l+1)

2

{
Al+1e

ik(l+1)xdl +Rl(l+1)Bl+1e
−ik(l+1)xdl

}
(4.1.71)

Ble
−iklxdl =

1 + pl(l+1)

2

{
Rl(l+1)Al+1e

ik(l+1)xdl +Bl+1e
−ik(l+1)xdl

}
(4.1.72)

Rl(l+1) =
1− pl(l+1)

1 + pl(l+1)
= −R(l+1) l (4.1.73)

is the reflection coefficient for waves in region l , caused by the bound-
ary separating regions l and l + 1 , which is equal to the negative of
the reflection coefficient R(l+1) l in region l + 1 .

Forming the ratio of (4.1.71) and (4.1.72) we obtain

Bl
Al

=
Rl(l+1)e

i2k(l+1) xdl + (Bl+1 /Al+1)

ei2k(l+1) xdl + Rl(l+1)(Bl+1 /Al+1)
ei2klxdl (4.1.74)

where Bl /Al is expressed in terms of Bl+1 /Al+1 .
From (4.1.74) we see that Bl/Al is the ratio of the amplitude of

the wave propagating in the negative x̂ direction to that of the wave
propagating in the positive x̂ direction. Consider a two-layer medium,
with t = 2 and n = 1 . From (4.1.74) with B2 = 0 , we find

B1

A1
= R12e

i2k1xd1 (4.1.75)

Making use again of (4.1.74) and substituting in (4.1.75), we obtain

R =
B0

A0
=

R01e
i2k1 xd0 + (B1 /A1)

ei2k1 xd0 + R01(B1 /A1)
ei2kxd0

=
R01 +R12e

i2k1x(d1−d0)

1 + R01R12ei2k1x(d1−d0)
ei2kxd0 (4.1.76)

For a half-space medium, B1 = 0 , we find

R =
B0

A0
= R01e

i2kxd0 (4.1.77)

The phase shift is due to the choice of the coordinate system with
boundary surface at x = d0 instead of at x = 0 .
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EXAMPLE 4.1.3

We can write (4.1.74) in the following form:

Bl

Al
=

ei2klxdl

Rl(l+1)
+

[
1− (

1/R2
l(l+1)

)]
ei2(k(l+1) x+klx)dl

[
1/Rl(l+1)

]
ei2k(l+1) xdl + (Bl+1 /Al+1)

=
ei2klxdl

Rl(l+1)
+

[
1− (

1/R2
l(l+1)

)]
ei2(k(l+1) x+klx)dl

∣∣∣∣
[
1/Rl(l+1)

]
ei2k(l+1) xdl

+
Bl+1

Al+1
(E4.1.3.1)

With the second equality we introduce a notation for writing a continued fraction.
Equation (4.1.74) expresses (Bl/Al) in terms of Bl+1/Al+1 and so on, until the
transmitted region t, where Bt/At = 0, is reached.

The reflection coefficient due to the stratified medium is R = B0/A0. Making
use of the continued fractions, we obtain

R =
ei2kxd0

R01
+

[
1− (1/R2

01)
]
ei2(k1x+kx)d0

∣∣∣
(1/R01)ei2k1xd0

+
ei2k1xd1

R12

+

[
1− (1/R2

12)
]
ei2(k2x+k1x)d1

∣∣∣
(1/R12)ei2k2xd1

+ · · ·+ ei2k(n−1) xdn−1

R(n−1) n

+

[
1− (1/R2

(n−1) n)
]
ei2(knx+k(n−1) x)dn−1

∣∣∣∣
(1/R(n−1) n)ei2knxdn−1

+ Rnte
i2knxdn (E4.1.3.2)

This is a closed-form solution for the reflection coefficient expressed in continued
fractions. Such a solution is very easily programmed for numerical computation.

For a two-layer medium, the result can also be obtained from (E4.1.3.2). Note
that when R01 = ±1, the reflection coefficient in (E4.1.3.2) will have magnitude
unity, disregarding the composition of the stratified medium below x = d1. This
should be the case, as |R01| = 1 represents, for instance, a perfectly conducting
coating.

— END OF EXAMPLE 4.1.3 —
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Example 4.1.4
Consider a two-layer medium as shown in Fig. E4.1.4.1. The reflection

coefficient for a two-layer medium in (4.1.76) becomes, letting d0 = 0 and
d1 = d ,

R =
R01 +R12e

i2k1xd

1 +R01R12ei2k1xd
=

R01 +R12e
i2k1xd

1−R10R12ei2k1xd
(E4.1.4.1)

z

x
x= 0 x=d

1

1 +R01

1 +R10

R01

R10

R12

(1 +R01)R12 (1 +R10)

(1 +R01)R10R
2
12 (1 +R10)

R12

1 +R10

ei2k1xd

ei4k1xd

Figure E4.1.4.1 Multiple reflections.

As R01 = −R10 and the magnitudes of the reflection coefficients R01 and
R12 are smaller than unity, we may expand the denominator of (E4.1.4.1) to
obtain

R = (R01 +R12e
i2k1xd)

∞∑
m=0

Rm10R
m
12e

i2mk1xd

= R01 +R01R10

∞∑
m=0

Rm10R
m+1
12 ei2(m+1)k1xd +

∞∑
m=0

Rm10R
m+1
12 ei2(m+1)k1xd

= R01 + (1 +R01R10)
∞∑
m=0

Rm10R
m+1
12 ei2(m+1)k1xd

= R01 + (1 +R01)

[ ∞∑
m=0

Rm10R
m+1
12 ei2(m+1)k1xd

]
(1 +R10)

where we use the relation 1 + R01R10 = 1 + R01 + R10 + R01R10 = (1 +
R01)(1 +R10) . The summation represents the multiply reflected waves from
the two-layer medium as illustrated in Fig. E4.1.4.1.

End of Example 4.1.4
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L. Propagation Matrices and Transmission Coefficients

We will now show that the transmission coefficient T = At/A0 as
well as all wave amplitudes in all regions can be obtained by the use
of propagation matrices. We solve for Al+1 and Bl+1 in terms of Al
and Bl from (4.1.67)–(4.1.68) and obtain

Al+1 e
ik(l+1)xdl =

1 + p(l+1)l

2

(
Ale

iklxdl +R(l+1)lBle
−iklxdl

)
(4.1.78)

Bl+1 e
−ik(l+1)xdl =

1 + p(l+1)l

2

(
R(l+1)lAle

iklxdl +Ble
−iklxdl

)
(4.1.79)

Expressing in the form of matrix multiplication, we haveAl+1

Bl+1

 = V (l+1) l ·
Al
Bl

 (4.1.80)

V (l+1) l =
1 + p(l+1)l

2

 e−i(k(l+1)x−klx)dl R(l+1) le
−i(k(l+1)x+klx)dl

R(l+1) le
i(k(l+1)x+klx)dl ei(k(l+1)x−klx)dl


(4.1.81)

is called the forward-propagating matrix. It is to be noted for the
forward-propagating matrix between layers n and t = n+ 1,T

0

 = V tn ·
An
Bn


V tn =

1
2

(1 + ptn)
 e−i(ktx−knx)dn Rtne

−i(ktx+knx)dn

Rtne
i(ktx+knx)dn ei(ktx−knx)dn


Similarly, we may express Al and Bl in terms of Al+1 and Bl+1

using (4.1.71)–(4.1.72) and defining a backward-propagating matrix.
The propagation matrices can be used to determine wave ampli-

tudes in any region in terms of those in any other region. For m > l ,
we make use of the forward propagation matrix to obtainAm

Bm

 = V m(m−1) · V (m−1)(m−2) · · ·V (l+1) l ·
Al
Bl


Similarly, backward-propagating matrices can be used to express wave
amplitudes in any region j in terms of those in region l for l > j .



4.1 Reflection and Transmission 391

In particular, the transmission coefficient T = At/A0 for a strati-
fied medium with t = n + 1 layers can be calculated by the multipli-
cation of n + 1 propagation matrices. Using the forward-propagating
matrices, we haveT

0

 = V t n · V n(n−1) · · · V 10 ·
 1
R


includes all information about the stratified medium. Once V t 0 is
known, both the reflection and transmission coefficients can be calcu-
lated from its matrix elements.

For a one-layer (half-space) medium. From (4.1.81), we findT
0

 =
1
2
(1 + p1 0)

 e−i(ktx−kx)d1 R10e
−i(ktx+kx)d1

R10e
i(ktx+kx)d1 ei(ktx−kx)d1

 1
R


With the reflection coefficient

R = R01e
i2kxd1 (4.1.82)

we obtain the transmission coefficient

T =
1
2
(1+p1 0)

(
1−R2

01

)
e−i(ktx−kx)d1 =

2
1 + p01

e−i(ktx−kx)d1 (4.1.83)

where we made use of the fact that p1 0 = 1/p01 and R1 0 = −R01 .
For a two-layer medium, we obtain the transmission coefficient

fromA1

B1

 =
1
2
(1 + p10)

 e−i(k1x−kx)d0 R10e
−i(k1x+kx)d0

R10e
i(k1x+kx)d00 ei(k1x−kx)d0

 1
R


T

0

 =
1
2
(1 + pt1)

 e−i(ktx−k1x)d1 Rt1e
−i(ktx+k1x)d1

Rt1e
i(ktx+k1x)d1 ei(ktx−k1x)d1

A1

B1


we obtain

A1 =
2e−i(k1x−kx)d0

(1 + p01)(1 +R01R1tei2k1x(d1−d0))
=

T01e
i(kx−k1x)d0

1 +R01R1tei2k1x(d1−d0)

B1 =
2R1te

i2k1xd1e−i(k1x−kx)d0

(1 + p01)(1 +R01R1tei2k1x(d1−d0))
=

T01R1te
i(kx−k1x)d0ei2k1xd1

1 +R01R1tei2k1x(d1−d0)

T =
T01T1te

i(kx−k1x)d0ei(k1x−ktx)d1

1 +R01R1tei2k1x(d1−d0)
(4.1.84)

where we made use of R in (4.1.76).
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Example 4.1.5
Use the forward-propagation matrix formalism, we can determine the

transmission and the reflection coefficients for a periodic medium made of
2N +2 isotropic dielectric layers with alternating high and low permittivities
εh and εl . The thickness of each layer is a quarter-wavelength inside the
dielectric. The transmitted region is t = 2N + 2 and has permittivity εt .
Consider normal incidence, kx = 0 . Using the forward-propagation matrix
formalism, we have

 0
T

 = V th ·
(
V hl · V lh

)N
· V h0 ·

R
1


In region m+1, k(m+1)z = km+1 we have k(m+1)z(dm+1− dm) = π/2. Note
also that µm+1 kmz/µm k(m+1)z = (εm/εm+1)1/2. The forward-propagation
matrices become

V ho = − i

2

 1 +
√
ε/εh 1−

√
ε/εh

−1 +
√
ε/εh −1−

√
ε/εh


V hl · V lh = −1

2


√
εl/εh +

√
εh/εl

√
εl/εh −

√
εh/εl√

εl/εh −
√
εh/εl

√
εl/εh +

√
εh/εl


V th =

1
2

 (1 +
√
εh/εt)eiktd (1−

√
εh/εt)eiktd

(1−
√
εh/εt)e−iktd (1 +

√
εh/εt)e−iktd


where d is the total thickness of the periodic medium. The term
(V hl · V lh)N can be calculated by making use of the matrix identity a+ b a− b

a− b a+ b

N

= 2N−1

 aN + bN aN − bN

aN − bN aN + bN


It follows that

R =
(εl/εh)N −

√
ε2h/εεt

(εl/εh)N +
√
ε2h/εεt

and

T =
2i(−1)N (ε/εt)1/2e−iktd√

ε/εh (εl/εh)N/2 +
√
εh/εt (εh/εl)N/2

We find the reflectivity r = |R|2 , and the transmissivity t = p0t |T |2 . Note
that although both TE and TM waves become TEM at normal incidence, we
must use p0t = ktz/kz = (εt/ε)1/2 because here R and T are amplitude
reflection and transmission coefficients for electric field vectors. It can be
shown that r + t = 1 .

End of Example 4.1.5
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Example 4.1.6
Define a space-dependent complex reflection coefficient Γl(z) such that

Γl(z) =
Al
Bl

ei2klzz

Im{Γ}

Re{Γ}

1+Γ

1−Γ

Γ

−11

Figure E4.1.6.1 Complex Γ plane.

On the complex Γl(z) plane [Fig. E4.1.6.1], as the phase φ = 2klzz in-
creases with z , Γl(z) varies in a counterclockwise manner. If klz is complex,
Γl(z) decreases with increasing z .

Define a wave impedance Zl(z) in the negative ẑ direction:

Zlz(z) =
Ely
Hlx

=
ωµl
klz

1 + Γl(z)
1− Γl(z)

which is complex. For a plane wave propagating in free space in the absence
of any medium, the wave impedance in the direction of wave propagation is
η = ωµo/k = (µo/εo)1/2 ≈ 377 Ω .

With the definition of the complex wave impedance, the ratio of (4.1.67)
to (4.1.68) gives Zlz(z = −dl) = Z(l+1)z(z = −dl). Thus at each interface
the wave impedance is continuous across the boundary.

On the complex Γ plane, Zlz(z) can be interpreted as the ratio of
the two lengths as shown in Figure E4.1.6.1. The magnitude of Zlz(z) is
maximum when Γl is real and positive. We define the dimensionless relative
wave impedance as

zl =
Zlz

ωµl/klz
=

1 + Γl
1− Γl

For all possible complex values of Γl(z) , we can map the corresponding zl(z)
values onto the complex Γl(z) plane. The result is in the form of the Smith
chart, which is frequently used in transmission line studies.

End of Example 4.1.6
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Example 4.1.7
To illustrate the use of the wave impedance concept, consider a stratified

medium composed of 2N + 2 isotropic dielectric layers (corresponding to
2N +2 boundaries) with alternating high and low permittivities, εh and εl ;
regions 1, 3, 5, . . . , 2N + 1 are high-permittivity layers, and regions 2, 4,
6, . . . , 2N are low-permittivity layers. Region 0 has permittivity ε and
permeability µ . The thickness of each layer is a quarter-wavelength inside
the dielectric. The transmitted region is 2N +2 = t and has permittivity εt .
Permeabilities for all layers are equal to µ [Fig. E4.1.7.1].

Region 0

Region 1

Region 2

Region 3

Region 2N − 1

Region 2N

Region 2N + 1

Region t

µ, εh dh = π/2kh

µ, εl dl = π/2kl

µ, εh dh

µ, εh dh

µ, εl dl

µ, εh dh

µ, εt

z

z = 0

t

Figure E4.1.7.1 Layered medium with alternating high and
low permittivities.

Consider a wave normally incident upon the stratified medium, kx = 0 ,
klz = ω

√
µεl for all l . The wave impedance of region t , since there is no

reflection, is Zt = (µ/εt)1/2 . Because of the continuity of wave impedance
across the boundary, the impedance across the interface separating regions
2N + 1 and t is Z2N+1 = (µ/εt)1/2 . The relative impedance is z2N+1 =
(µ/εt)1/2/(µ/εh)1/2 = (εh/εt)1/2 . Making use of the Smith chart concept, and
noting the periodicity of the structure, we determine the wave impedance at
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z = 0 :

Z0 =
(
εt
εh

)1/2 (
εl
εh

)N (
µ

εh

)1/2

The reflection coefficient R at z = 0 is found to be

R0 =
Z0/(µ/ε)1/2 − 1
Z0/(µ/ε)1/2 + 1

=
(εt/εh)1/2(εl/εh)N (ε/εh)1/2 − 1
(εt/εh)1/2(εl/εh)N (ε/εh)1/2 + 1

We observe that, for a high εh/εl ratio and for a larger number of layers,
the reflection coefficient R0 approaches the value −1 , and the structure
is highly reflective. Such structures are useful at optical frequencies since
metallic reflectors are subject to corrosion and tarnishing problems.

End of Example 4.1.7

Problems

P4.1.1

5000
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E

D

C

107 109 1011 1013

Figure P4.1.1.1 Electron density profile of ionospheric layers.
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The ionosphere extends from approximately 50 km above the earth to
several earth radii (the mean earth radius is about 6371 km) with the max-
imum in ionization density at about 300 km [Fig. P4.1.1.1]. The ionization
density profile shows ledges where it varies more slowly with altitude. These
ledges are the C , D , E , F1 , and F2 layers as shown in the figure. These
maxima arise because both the solar radiation and the composition of the at-
mosphere change with altitude. The heights and the intensities of ionization
of these layers change with the hour of the day, the season of the year, the
sunspot cycle, etc. The electron density varies from approximately 107 m−3

to 1012 m−3 in going from the lowest to the highest layer. For simplicity,
assume that the ionosphere consists of a 40 km thick E-layer with electron
density N = 1011 m−3 below a 200 km thick F -layer with N = 6×1011 m−3.

(a) What are the plasma frequencies of the E and F layers ?
(b) Consider a plane wave of 10 MHz incident at an angle θ upon the iono-

sphere from below the E -layer. What are the transmitted angles θt of
the ionosphere wave in the E and F layers?

(c) Let θ = 30◦. Below what frequency will the wave be totally reflected by
the E-layer and below what frequency will it be totally reflected by the
F -layer?

P4.1.2
Rainbow arc often appears when sunlight shines on water droplets after

a brief shower late in the afternoon. When a sun ray is refracted as it enters
the raindrop, total internally reflected from inside the drop, and refracted
again as it leaves the drop and passes to the observer.
(a) Consider the ray path with only one internal reflection. Show that the

angle between the incident ray and the exit ray is φ= 2(2θ2−θ1) , where
θ1 is the incident angle and θ2 is the refracted angle.

θ1

θ2

θ2
θ2

θ2

θ1

θ1

φ Sun ray

To Observer

n

Figure P4.1.2.1 Total internal reflection in a raindrop.

(b) Show that maximum φ occurs at θ1 = sin−1
√

(4− n2)/3 and φmax ≈
42◦ for n = 4/3 , with the scattering angle between the incident ray and
scattered ray θs = 138◦.

(c) The refractive index for a raindrop is n = 1.330 for red light (λ =
0.7µ) , n = 4/3 = 1.333 for orange light, and n = 1.342 for violet light
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(λ = 0.4µ) . Determine the scattering angles for the red and violet light
rays. What are the relative positions of the different color bands in a
rainbow?

P4.1.3
A plane wave is normally incident in x̂ direction upon a medium with

permeability µ0 and permittivity ε .
(a) Find the transmitted electric field Et .

(b) If the lower half-space is a plasma medium with ε = ε0

(
1−

ω2
p

ω2

)
and

ω2 =
1
2
ω2
p , show that the transmitted wave is evanescent and find the

exponential attenuation rate. Find the time-average Poynting power den-
sity as a function for x for the transmitted wave.

(c) If the half-space is a conducting medium with ε = ε0

(
1 + i

σ

ωε0

)
and

σ � ωε0 . Find the exponential attenuation rate and the time-average
Poynting power density as a function of x for the transmitted wave.

P4.1.4
A gas laser is often a tube containing gas, fitted with Brewster-angle

windows and external mirrors. The output of the laser beam will be linearly
polarized. For what reason and in which direction? Let a solid-state laser be
fabricated of rods with ends beveled at the Brewster angle θB [Fig. P4.1.4.1].
Calculate all appropriate angles in Figure P4.1.4.1, including the bevel angle
of the glass rod, which has a dielectric constant εb = 2.5 .

mirror
mirror

α αφ φ

θ θθB

θB

θB

εb

mirror

Figure P4.1.4.1 A solid-state laser.

P4.1.5
Let a plane wave be incident on a plane boundary from the inside of a

negative uniaxial crystal. Consider the special case in which the optic axis is
perpendicular to the plane of incidence. Find the range of θ such that there
is only total internal reflection for the ordinary wave and the transmitted
waves are extraordinary waves.

P4.1.6
A plane wave is totally reflected when incident upon a glass-air boundary.

At this incident angle, another piece of glass is brought very close to the first
one so that there is a very small air gap between the two. Calculate the
reflection and transmission coefficients as a function of the gap dimension.
Show that transmission is now possible.
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P4.1.7
Sun light glares caused by reflections from plane surfaces are partially

linearly polarized. The reflectivities are functions of incident angle θ .

rTE = |RTE|2 =

∣∣∣∣1− kt cos θt/k cos θ
1 + kt cos θt/k cos θ

∣∣∣∣
2

rTM = |RTM|2 =

∣∣∣∣1− ε0kt cos θt/εtk cos θ
1 + ε0kt cos θt/εtk cos θ

∣∣∣∣
2

(a) Show that for all incident angles, there are more reflected TE components
than TM components |RTE|2 ≥ |RTM|2.

(b) Determine the Brewster angle for εt = 3. The Brewster angle, θB , is
also called the polarization angle Polarization angle because at θB the
reflected wave is entirely TE polarized.

(c) Your polaroid glasses absorb one linear component of incident light. To
minimize sun glare, what component, TE or TM, reaches your eyes after
passing through the glasses? Explain why.

P4.1.8
A plane wave of angular frequency ω is incident on a plasma medium

with permeability µo and permittivity ε = εo
(
1− ω2

p/ω
2
)

, where ωp is the
plasma frequency and ω = 2ωp .

(a) Calculate the critical angle θC such that the incident wave is totally
reflected.

(b) Calculate the Brewster angle θB such that TM waves are totally trans-
mitted.

(c) In general for any two isotropic media, can you find an incident angle
θ such that θ = θB > θC ? If you can, give an example. If you cannot,
explain why not.

P4.1.9
When a plane wave is totally internally reflected, nodes of E appear in

front of the plane of reflection. Let the incident field, Ei, be

Ei = ŷE0e
ikxx+ikzz

The reflected field, Er, is

Er = ŷRTEE0e
−ikxx+ikzz+i2φ

where φ = − tan−1(ktxI/kx) = − tan−1(
√
εr sin2 θ − 1/ cos θ) .

(a) Find an expression for the position of the nodal plane nearest to the
plane x = 0.

(b) The total internal reflection is equivalent to reflection from a perfect
conductor located at x = xeff (the medium ε being continued into the
region x > 0) . What is the effective position?
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(c) Plot the effective position as a function of angle θ ≥ θc with ε/ε0 = 2.
(d) The transmitted wave is damped exponentially in the −x̂ direction.

Letting δ be the distance over which the field amplitude decreases to
1/e of its value at the interface (x = 0), plot δ (penetration depth) as
a function of angle θ ≥ θc with ε/ε0 = 2.

P4.1.10
A plane wave is incident from free space on a half-space conducting

medium with ε0, µ0, and conductivity σ . Let the incident wave be

E = ŷE0e
ikxx−ikzz.

(a) Find the incident wave vector.
(b) Show that for σ/ωε0 � 1, the transmitted wave is almost perpendicular

to the interface and that the transmitted angle is

θt ≈ tan−1
[√

2ωε0/σ sin θ
]
.

(c) Determine the time average Poynting vector for the power flow in the
conducting medium. What is the magnitude of the transmitted electric
field compared to E0 ?

P4.1.11
A uniform plane wave is incident at an incident angle θ on a plasma

characterized by the permittivity εt and permeability µ0 .

εt = ε0

[
1−

ω2
p

ω2 + ω2
eff

+ i
ω2
pωeff

ω
(
ω2 + ω2

eff

)
]

where ωp is the plasma frequency and ωeff is the collision frequency.
Let the incident uniform plane wave have the electric field vector

Ei = ŷE0e
i
k0√

2
x−i k0√

2
z

where E0 is a real constant and k0 = ω
√
µ0ε0 .

(a) Let ω =
√

2ωp and ωeff = 0 . Give the expression for the transmitted
electric field vector and the transmitted time-average Poynting vector〈
St

〉
in terms of E0, k0, ω, ε0, µ0, and space coordinates.

(b) Let ω = ωp and ωeff = 0 . Give the expression for the transmitted elec-
tric field vector and the ẑ component of the transmitted time-average
Poynting vector 〈Stz〉 in terms of E0, k0, ω, ε0, µ0, and space coordi-
nates.

(c) Let ω = ωp = ωeff . Give the expression for the transmitted electric field
vector and the ẑ component of the transmitted time-average Poynting
vector 〈Stz〉 in terms of E0, k0, ω, ε0, µ0, and space coordinates.
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P4.1.12

Consider a solid-state Fabry-Perot etalon filter made of an eight-layer
stratified medium. Regions 1, 3, 5, and 7 are made of magnesium fluoride
(refractive index n = 1.35 ) and are a quarter-wavelength thick. Regions 2, 4,
and 6 are made of zinc sulfide (refractive index n = 2.3 ). Regions 2 and 6 are
a quarter-wavelength thick, but region 4 is a half-wavelength thick. What are
the reflectivity and transmissivity for a plane wave normally incident upon
this stratified medium? Explain why the structure can be used for filtering
purposes.

P4.1.13

In the microwave remote sensing of the Earth from satellite or aircraft,
a radiometer is used to measure the emissivity of the area under observation.
The emissivity e is related to reflectivity or to the power reflection coefficient
by e = 1 − r . Theoretically, we should be able to determine, for instance,
the ice thickness on a lake. Assume that the lake ice permittivity is ε =
3.2(1+i0.01)εo and that the water is a perfect reflector. Discuss the frequency
range that you would recommend and the depth that the radiometer can “see”
through the ice.

P4.1.14

Show that the difference in relative phase change between TM and TE
waves upon total internal reflection from a dielectric medium with refractive
index n is

∆ = φTE − φTM = 2 tan−1


cos θ

(√
sin2 θ − n−2

)
sin2 θ




Glass prism
α

45◦

Figure P4.1.14.1

The phase change produced on internal reflection may be utilized to obtain
circularly polarized light from linearly polarized light. The scheme, devised by
Fresnel, is shown in Figure P4.1.14.1. The essential element is a glass prism
with refractive index n made in the form of a rhomb having an apex angle
α . Linearly polarized light with a direction of polarization at an angle of
45◦ with respect to the face edge of the rhomb enters normally on one face.
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Show that when ∆ = π/4 , the light coming out is circularly polarized. Let
n = 1.6 , calculate the apex angle α .

P4.1.15
A Nicol prism made of calcite is cut diagonally and then joined together

with a film of Canada balsam (refractive index n = 1.53 ). Calcite is a neg-
ative uniaxial crystal with

√
εz/ε = 1.49/1.66 . Show that with the arrange-

ment shown in Figure P4.1.15.1 an incident light from the left becomes a
linearly polarized light when it leaves the crystal from the right.

Optical Axis Canada Balsam

Linearly
polarized
light

Incident
light

71◦

Figure P4.1.15.1

P4.1.16

Compare the phenomena of total reflection for θ > θC and total transmission
for θ = θB at an isotropic dielectric interface.
(a) Total reflection occurs at a range of incident angles larger than the critical

angle θC ; total transmission of TM waves occurs only at the Brewster
angle θB .

(b) Total reflection occurs only when the incident medium is denser than the
transmitted medium. The Brewster angle occurs for any two media.

(c) When an unpolarized wave is totally reflected, the reflected wave is still
unpolarized. When the TM wave components of an unpolarized wave are
totally transmitted, the reflected wave contains only TE waves.

Suppose a TM wave is incident at an angle θ such that θ = θB > θC . Then
the wave is totally transmitted and at the same time it is totally reflected.
Explain.
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4.2 Wave Guidance

A. Guidance by Conducting Parallel Plates

Consider the guidance of electromagnetic waves by a pair of perfectly
conducting plates at x = 0 and x = d [Fig. 4.2.1]. The medium
between the plates is homogeneous and isotropic. The width of the
waveguide along y is w and we assume w � d , such that fringing
fields can be neglected, and we have ∂/∂y = 0 . The Maxwell equa-
tions can be decomposed into transverse electric (TE) and transverse
magnetic (TM) components. We have

Hx =
−1
iωµ

∂

∂z
Ey (4.2.1a)

Hz =
1
iωµ

∂

∂x
Ey (4.2.1b)

( ∂2

∂z2
+

∂2

∂x2
+ ω2µε

)
Ey = 0 (4.2.1c)

for TE waves and

Ex =
1
iωε

∂

∂z
Hy (4.2.2a)

Ez =
−1
iωε

∂

∂x
Hy (4.2.2b)( ∂2

∂z2
+

∂2

∂x2
+ ω2µε

)
Hy = 0 (4.2.2c)

for TM waves. The boundary conditions at the parallel plates require
that the tangential electric field be zero at x = 0 and x = d .

Equations (4.2.1a)–(4.2.1c) are duals of (4.2.2a)–(4.2.2c) . However, the
boundary conditions at the parallel plates require a zero tangential electric
field for TE waves and also for TM waves. The boundary conditions for TE
and TM waves are not duals.

The wave is guided along ±ẑ directions. For waves propagating
along the +ẑ direction, the solution for TE waves comprises two plane
wave components

Ey = Aeikxx+ikzz +Be−ikxx+ikzz (4.2.3)
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σ →∞
z

µ, ε

σ →∞

x = dx = 0

x

z eikxx+ikzz

e−ikxx+ikzz

A

B

Figure 4.2.1 Parallel-plate waveguide.

Substituting (4.2.3) in (4.2.1c) we find the dispersion relation

k2
z + k2

x = ω2µε = k2 (4.2.4)

The boundary condition at x = 0 requires Ey = 0 , namely,

A

B
= −1 (4.2.5a)

which is the reflection coefficient at the boundary surface x = 0 . The
boundary conditions at x = d requiring Ey = 0 gives

B

A
= −ei2kxd (4.2.5b)

which is the reflection coefficient at the boundary surface x = d . The
factor ei2kxd is due to the fact that the coordinate origin is at x = 0 .
Multiplying (4.2.5a) and (4.2.5b), we obtain

ei2kxd = 1 = ei2mπ

We thus have
2kxd = 2mπ
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which states that the phase of the round trip of the plane wave in x̂-
direction must add up to integer numbers of 2π . Therefore, as a result
of the boundary condition at x = 0 and x = d , we must have

kx =
mπ

d
=

m

2d
Ko (4.2.6)

where m is any integer. Equation (4.2.6) is called the guidance con-
dition which is determined from the boundary conditions. Thus along
the x̂-direction, the number of periods of the spatial variation of a
guided wave must be an integer in a distance of 2d .

Substituting the guidance condition (4.2.6) in the dispersion rela-
tion (4.2.4) we obtain

k2
z +

(mπ

d

)2
= k2 (4.2.7)

kz

0

TM0
TE1 TE2 TE3

TM1 TM2 TM3

π/d 2π/d 3π/d
k = ω

√
µε0

Figure 4.2.2 kz-k diagram for guided modes.

This equation describes a family of hyperbolas for different values of
m . In Figure 4.2.2 we plot the kz-k diagram. We see that for the m th
mode kz will be imaginary if k < mπ/d . The wave then becomes
evanescent and attenuates exponentially in the ẑ direction.
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The spatial frequency at which kz = 0 is called the cutoff spatial
frequency kcm

kcm =
mπ

d
=

m

2d
Ko (4.2.8)

When k < kcm , all modes with order higher than m will be evanes-
cent. In order for the m th order mode to propagate, the spatial fre-
quency k must be larger than kcm. Notice that if the m th mode is
propagating, then all l th modes with l < m can also propagate. The
cutoff frequency for the TM0 mode is zero and the TE0 is zero. Thus
for a given spatial frequency k such that m/2d < k < (m+1)/2d Ko ,
there will be m TE modes and m+1 TM modes admissible inside the
waveguide. The lowest order TE mode is TE1 whose kc1 = 1/2d Ko .
For k < 1/2d Ko , no TE mode can be excited. The single TE1 mode
operation range inside the guide is 1/2d < k < 1/d Ko .

The corresponding cutoff wavelength is λcm = 2d/m and the corresponding
cutoff angular frequency is ωcm = mπ/d(µε)1/2 .

The guidance condition (4.2.6) states that in the x̂ direction the
bouncing waves must interfere constructively with 2kxd = 2mπ in or-
der for the wave to be guided. Thus there is only a set of discrete kx
values admissible inside the guide as shown in Figure 4.2.3. The corre-
sponding kz values are determined from the dispersion relation (4.2.4)
and the bouncing place waves are illustrated in Figure 4.2.4.

kz

ω(µε)1/2 π/d 2π/d 3π/d

kx

k

Figure 4.2.3 Interpretation of the guidance condition.
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x = 0 x = d

x

E

H

z

eikxx+ikzz

E

H

e−ikxx+ikzz

0

Figure 4.2.4 Plane wave interpretation of guided modes.

Substituting (4.2.5a) or (4.2.5b) in (4.2.3) we determine the elec-
tric field

Ey = E0 sin kxxeikzz (4.2.9)

where E0 = i2A . We call the TE wave corresponding to each integer
m the TEm mode. There is no TE0 mode because Ey = 0 for m = 0 .
The field patterns for Ey are plotted in Figure 4.2.5 for m = 1 , 2 ,
and 3 .

The magnetic field vector is obtained from (4.2.3) or from (4.2.9)
by using Faraday’s law

H =
1
iωµ

(
−x̂ ∂

∂z
Ey + ẑ

∂

∂x
Ey

)

=
A

ωµ

[
(−x̂kz + ẑkx)eikxx+ikzz + (x̂kz + ẑkx)e−ikxx+ikzz

]
(4.2.10)

=
E0

iωµ
(−x̂ikz sin kxx+ ẑkx cos kxx) eikzz (4.2.11)

We see that the magnetic field vector is perpendicular to both the
electric field vector and the wave vector for the two bouncing plane
waves.
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TE1 mode

TE2 mode

TE3 mode

x

x

x

0

0

0

d

d

d

0

Figure 4.2.5 Field amplitudes for TE1, TE2, and TE3 modes.

We find the complex Poynting power from (4.2.9) and (4.2.11)

S = ẑ
k∗

z

ωμ
|E0|2 sin2 kxxei(kz−k∗

z )z − x̂
ikx

ωμ
|E0|2 sin kxx cos kxxei(kz−k∗

z )z

The time-average Poynting power < Sx > in the transverse direction is always zero.
The time-average Poynting power < Sz > in the ẑ direction is

< Sz >=
1

2
Re

{
k∗

z

ωμ
|E0|2 sin2 kxxei(kz−k∗

z )z

}

When kz =
√

k2 − k2
x =

√
k2 − (mπ/d)2 is imaginary, kz = ikzI , the time-average

Poynting power in the ẑ direction < Sz >= 1
2
Re(Sz) = 0, which happens for higher

order modes as mπ/d > k and those high order modes are evanescent in the ẑ
direction and carry no time-average power.
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B. Excitation of Modes in Parallel-Plate Waveguides

The mode amplitudes of the guided waves are determined by the
sources of external excitation. Consider a current sheet located at z =
0 which flows in the ŷ direction and varies in amplitude in x ,

Js = ŷJs(x)

This current sheet generates propagating as well as evanescent guided
modes in both positive and negative ẑ directions. This current sheet
can be visualized as composed of closely aligned wires with each wire
excited by a different current source. The boundary conditions at z =
0 require that (i) Ex and Ey be continuous, (ii) the discontinuity
in Hx be equal to a current sheet flowing in the ŷ direction, and
(iii) the discontinuity in Hy be equal to a current sheet flowing in the
x̂ direction. The boundary conditions then require that

Hx |z=0+ −Hx |z=0−= Js(x)

and that all other tangential field components be continuous at z = 0 .
For a line source located at x = a and flowing in the ŷ direction

with the dimension ampere per meter, we write

Js = ŷI0δ(x− a)

According to the boundary conditions, only TE waves will be excited.
One can actually assume some amplitudes for the TM modes and find
out from the boundary conditions that they are all zero. We write the
TE solutions as a superposition of all TE modes

Ey =




∞∑
m=1

Em sin
mπx

d
eikzz z ≥ 0

∞∑
m=1

Em sin
mπx

d
e−ikzz z ≤ 0

(4.2.12)

We see that the boundary condition of Ey continuous at z = 0 has
been satisfied. The amplitudes Em in regions z < 0 and z > 0 are
equal as a consequence of symmetry. The x components of the mag-
netic fields are

Hx =




∞∑
n=1

−kz
ωµ

En sin
nπx

d
eikzz z ≥ 0

∞∑
n=1

kz
ωµ

En sin
nπx

d
e−ikzz z ≤ 0

(4.2.13)
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At z = 0 the boundary condition gives

I0δ(x− a) =
∞∑
n=1

−2kz
ωµ

En sin
nπx

d
(4.2.14)

Using orthogonality properties of sinusoidal functions, we multiply
both sides by sin(mπx/d) and integrate from 0 to d .∫ d

0
dx sin

mπx

d
I0δ(x− a) =

∞∑
n=1

−2kz
ωµ

∫ d

0
dxEn sin

mπx

d
sin

nπx

d

=
−kzd
ωµ

Em (4.2.15)

The mode amplitude Em is determined as

Em = − ωµ

kzd
I0 sin

mπa

d
(4.2.16)

For the TE1 mode, E1 is maximum when a = d/2 . This is because
Ey is also maximum at x = d/2 and the coupling of source energy
into the TE1 mode is the largest.

The time-average Poynting’s power per unit length in y propa-
gating along the waveguide in the ẑ direction is given by

P =
1
2
Re

{∫ d

0
dx

( ∞∑
m=1

Em sin
mπx

d
eikzz

) ( ∞∑
n=1

kz
ωµ

En sin
nπx

d
eikzz

)∗}

=
1
2
Re

{
d

2

∞∑
m=1

|Em|2
(
k∗z
ωµ

)
ei(kz−k

∗
z)z

}
(4.2.17)

For spatial frequency k such that kC(N+1) > k > kCN = N/2d Ko ,
kz is real for m ≤ N and imaginary for m > N . Equation (4.2.17)
gives

P =
N∑
m=1

d

4η
|Em|2

√
1−

(
kcm
k

)2

(4.2.18)

w/m, where η =
√
µ/ε is the intrinsic impedance of the medium

inside the waveguide. The total power inside the guide is a summation
of those of all the propagating modes with real kz . It is important
to observe that there is no coupling among the various modes; each
individual mode carries its own power.
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C. TM Modes in Parallel-Plate Waveguides

For TM waves satisfying the boundary conditions, we find that the
solution takes the form

H = ŷH0(eikxx + e−ikxx)eikzz

= ŷ2H0 cos kxx eikzz (4.2.19a)

E = H0
1
ωε

[
(x̂kz − ẑkx)eikxx + (x̂kz + ẑkx)e−ikxx

]
eikzz

= 2H0
1
ωε

[x̂kz cos kxx− ẑikx sin kxx] eikzz (4.2.19b)

The boundary condition of vanishing Ez at x = 0 and x = d leads
to the guidance condition

kx =
mπ

d
(4.2.20)

which is identical to (4.2.6) and is plotted in Figure 4.2.3.
There is one very important difference between the TM and TE

cases. When m = 0 , the TM field no longer vanishes as in the TE case
and we now have the TM0 mode which is also called the TEM mode.
The TM0 mode has kx = 0 and kz = k never becomes imaginary
and the TEM wave propagates at all frequencies. The time-average
Poynting power in the ẑ direction is

< Sz >=
1
2
Re

{
k∗z
ωε
|H0|2 cos2 kxxei(kz−k

∗
z)z

}
=

k

2ωε
|H0|2

for the TM0 mode. The TM0 or TEM mode in a parallel-plate waveg-
uide is termed the fundamental or dominant mode.

Field solutions for the TM0 mode follows from (4.2.19) when we
set kx = 0 and kz = k . We have

H = ŷH0 e
ikz (4.2.21a)

E = x̂ηH0 e
ikz (4.2.21b)

where η =
√
µ/ε is the characteristic impedance of the medium. The

electric field is seen to be perpendicular to the plates and the magnetic
field parallel to the plates.
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D. Attenuation of Guided Waves Due to Wall Loss

The flow of power inside the waveguide will not be attenuated if
the parallel plates are indeed perfect conductors and the medium is
perfectly lossless. Let us now investigate wave attenuation when the
conductivity of the plates is large but finite. A perturbation approach
will be used.

Due to wall loss, guided waves carrying total time-average power
Pf will decrease as a function of z . Assume that the amplitudes of
the fields decay exponentially with an attenuation constant α , where
α is a small number. When the walls are perfectly conducting, α = 0 .
The total propagating power P will decay exponentially with 2α such
that P ∼ e−2αz. By the power conservation principle, the decrease of
P as a function of distance must be equal to the power dissipated per
unit length Pd . We have

Pd = − d

dz
P = 2αP

The attenuation constant α is found to be

α =
Pd
2P

(4.2.22)

The objective is to calculate α by a perturbation approach.
The starting point of the perturbation process is the exact solution

for perfectly conducting waveguides. We calculate the time-average
power flow in the ẑ direction P by using the unperturbed solutions
for the fields

P =
1
2
Re

{∫∫
dx dy ẑ · (E ×H

∗)
}

(4.2.23)

The integration is carried over the area perpendicular to the direction
of propagation. For the parallel-plate waveguide, the integration is car-
ried out over x = 0 to x = d , which give the power per unit length
along y in the direction of ẑ .

To estimate the dissipated power per unit length Pd, we first inves-
tigate the origin of the dissipation due to imperfect wall conductivity.
The surface currents on the plate surfaces are

Js = n̂×Hw amp/m (4.2.24)

where Hw is the magnetic field at the walls for which x = 0 and d.
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The electric and magnetic fields at the wall surface are related
to each other by the intrinsic impedance of the conductor which is
assumed to have a large conductivity σ such that

Ew =
√
µ/εw n̂×Hw ≈

√
ωµ/iσ n̂×Hw

where we assume the same permeability µ for the conductor as for the
guidance medium. Since a guided wave can be viewed as plane waves
bouncing at the wall surfaces, a plane wave incident at the surface of
a conducting medium results in power dissipation into the conductor.
The transmitted plane wave is almost perpendicular to the surface
regardless of the angles of incidence. The time-average Poynting power
density flow into the two conductors at x = 0 and x = d is

Pd = 2× 1
2
Re

{
−n̂ · (Ew ×H

∗
w)

}
= Re

{
−n̂ ·

√
ωµ

iσ
(n̂×Hw)×H

∗
w

}

= Re
{
−n̂ ·

√
ωµ

iσ

[
(n̂ ·H∗

w)Hw − n̂
∣∣Hw

∣∣2]} =
√
ωµ

2σ

∣∣Hw
∣∣2

(4.2.25)

where we use the fact that n̂ ·H∗
w = 0 because Hw is perpendicular

to the surface normal n̂ pointing into the waveguide.

Example 4.2.1
From Poynting’s theorem, the time-average dissipated power per unit

area into the conductors is <Ew ·J
∗
s> watts/m2

. Note that although Ew is
in the direction of Js, σEw is not equal to Js since Js is a surface current,
not a volume current. Dimensionally σEw has units amp/m2 whereas Js
has units amp/m. The total dissipated power per unit length Pd is calculated
as

Pd = 2× <Ew · J
∗
s>= Re

{√
ωµ

iσ
(n̂×Hw) · (n̂×H

∗
w)

}

= Re
{√

ωµ

iσ
n̂ ·

[
Hw × (n̂×H

∗
w)

]}

= Re
{√

ωµ

iσ
n̂ ·

[
n̂

∣∣Hw
∣∣2 − (n̂ ·Hw)H

∗
w

]}
=

√
ωµ

2σ

∣∣Hw
∣∣2

which is identical to (4.2.25).
End of Example 4.2.1
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Example 4.2.2 Attenuation of TM 0 or TEM mode.
The electromagnetic field vectors of the TM 0 or TEM mode are,

H = ŷH0 e
ikz (E4.2.2.1a)

E = x̂ηH0 e
ikz (E4.2.2.1b)

The propagating Poynting power in the ẑ direction is

P =
1
2
Re

{∫ d

0

dx ẑ · (E ×H
∗
)
}

=
ηd

2
|H0|2 (E4.2.2.2)

Js

HH

E

Js

x

zz

Figure E4.2.2.1 Finitely conducting walls.

When the walls are perfectly conducting, the tangential electric fields are zero
and the surface currents flow without the support of any electric field. When
the walls are not perfectly conducting, there is a small tangential compo-
nent of the electric field Ew to support the surface currents [Fig. E4.2.2.1].
Assuming the magnetic field is unperturbed. The small electric field at the
wall surface at x = 0 is related to the magnetic field H0 by the intrinsic
impedance of the conductor which is assumed to have a large conductivity σ
such that

Ew = ẑ
√
µ/εwH0 ≈ ẑ

√
ωµ/iσ H0

The time-average Poynting power density flow into the two conductors at
x = 0 and x = d is

Pd = 2× 1
2
Re

{
ẑ · (Ew ×H

∗
w)

}
=

√
ωµ

2σ

∣∣H0

∣∣2 (E4.2.2.3)

Thus for TEM mode, or, equivalently, the TM0 mode, the corresponding
attenuation constant is

αTEM =
1
ηd

√
ωµ

2σ
=

1
d

√
ωε

2σ
(E4.2.2.4)

End of Example 4.2.2
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Consider TEm modes with the solutions in (4.2.9) and (4.2.11).
The time-average power flow P per unit length in y along ẑ direction
in the waveguide is

P =
∫ d

0
dx

1
2
kz
ωµ
|Em|2 sin2 mπx

d
=

d

4
kz
ωµ
|Em|2 (4.2.26)

The attenuation constants for TE modes are

αTE =
Pd
2P

=
√
ωµ

2σ
|Hw|2

/
d

2
kz
ωµ
|E0|2 =

1
d

√
ωε

2σ
2(kcm/k)2√
1− (kcm/k)2

(4.2.27)
Notice that Hw = kxE0/iωµ as seen from (4.2.11) with x = 0 .

We now consider TMm modes in (4.2.19). The time-average power
flow P per unit length in y along ẑ direction in the waveguide is

P =
∫ d

0
dx

1
2
kz
ωε
|Hm|2 cos2

mπx

d
=

d

4
kz
ωε

(1 + δ0m) |Hm|2 (4.2.28)

where δ0m is the Kronecker delta function with δ0m = 0 for m 	= 0
and δ00 = 1. The time-average power dissipation per unit length Pd
is calculated in (4.2.25). The attenuation constant for TM modes is

αTM =
Pd
2P

=
1
d

√
ωε

2σ
2/(1 + δ0m)√
1− (kcm/k)2

(4.2.29)

kc

TM

TETEM

α

kk

Figure 4.2.6 Attenuation constants.

As m = 0 , we obtain the attenuation constant αTEM as shown in
(E4.2.2.4).

In Figure 4.2.6 the attenuation constants for TEM, TM, and TE
modes are plotted. The curve shapes for all TEm and TMm modes
are the same if we let kcm = mπ/d . We note that for the TEM mode
α increases as the square root of k . For TE modes α decreases mono-
tonically with increasing frequency.
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E. Guided Waves in Isotropic Medium Coated Conductor

Consider an isotropic-medium-coated conductor in Figure 4.2.7.
For the field to be guided in region 0, the field in region 1 must be
evanescent in the x̂ direction. The field solutions for the TM modes
can be written as

x = 0 x = d

x

z

σ →∞
µ0, ε0 µ1, ε1

Region 0 Region 11

Figure 4.2.7 Guidance by an isotropic-medium-coated conductor.

H0 = ŷ(A0e
ikxx +B0e

−ikxx)eikzz (4.2.29a)

E0 =
1
ωε

[
A0(x̂kz − ẑkx)eikxx +B0(x̂kz + ẑkx)e−ikxx

]
eikzz (4.2.29b)

H1 = ŷH1e
−k1xIxeikzz d ≤ x (4.2.30a)

E1 = H1
1
ωε1

(x̂kz − ẑ ik1xI)e−k1xIxeikzz (4.2.30b)

The dispersion relations for the two regions are

k2
z + k2

x = ω2µε = k2 (4.2.31a)

k2
z − k2

1xI = ω2µ1ε1 = k2
1 (4.2.31b)

In Figure 4.2.8 we plot two k surfaces with radii k and k1 for positive
kz as vertical axis and kx as horizontal axis. For the wave to be guided
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0

kz

k0

Guided region

Cutoff
region

Cutoff
region

k

k1
xk1

Figure 4.2.8 Guided and cutoff regions.

we must have kz larger than k. When kz becomes smaller than k, the wave in region
t will no longer be evanescent because k1xI becomes imaginary and the wave begins
to propagate. The wave in region 0 is guided only when kz > k1.

The boundary conditions at x = 0 and x = d yields

A0 = B0 (4.2.32)

A0e
ikxd + B0e

−ikxd = H1e
−ktxId (4.2.33)

A0e
ikxd − B0e

−ikxd = p01H1e
−ktxId (4.2.34)

We obtain

A0

B0
= 1 (4.2.35)

2A0 cos kxd = H1e
−ktxId (4.2.36)

B0

A0
= R01e

i2kxd (4.2.37)

Let B0/A0 = R0+ and A0/B0 = R0− . The guidance condition is determined by
R0+R0− = 1, which leads to

R01e
i2kxd = 1

with R01 = (1 − p01)/(1 + p01), and p01 = iεk1xI/ε1kx. We find

2kxd + 2φ01 = 2mπ (4.2.38)
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TM0

TM1

TM2

π

2
3π
2

π
kxd

α1xd

TM

Figure 4.2.9 Interpretation of guidance condition for TM modes.

where φ01 = − tan−1(εk1xI/ε1kx). We have

k1xId =
ε1
ε
kxd tan kxd (4.2.39)

which is plotted in Figure 4.2.9, where the graphical solution for kx is
illustrated. From (4.2.31), we find

k2
x + k2

1xI = k2 − k2
1

which is the dashed circular arc with radius
√
k2 − k2

1.
For the TMm mode, the magnetic fields in regions 0 and 1 are

Hy = H1e
−k1xId cos kxx

cos kxd
eikzz (4.2.40)

H1y = H1e
−k1xIx eikzz (4.2.41)

0

Hy

TM1

x
d

TM0

0

Figure 4.2.10 Magnetic field amplitudes for TM modes.

The field plots for Hy mith m = 0, 1 and different amplitudes are
illustrated in Figure 4.2.10.
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The cutoff frequency kcm for TMm modes is seen to be

kcm =
mπ

d
√

1− µ1ε1/µε
m = 0, 1, 2, . . . (4.2.42)

As in the case of the parallel-plate waveguide, the TM0 mode has zero
cutoff frequency or, equivalently, infinite cutoff wavelength.

Example 4.2.3 Guided waves, lateral wave, and leaky waves.
For the TMm wave shwon in (4.2.40) and (4.2.41), the magnetic and

electric fields in regions 0 and 1 are found to be, if we let k1x = ik1xI and
the transmitted wave vector take the form kt = x̂ k1x + ẑ kz

Hy = H1e
ik1xd

cos kxx
cos kxd

eikzz (E4.2.3.1a)

E =
H1

ωε cos kxd
eik1xd {x̂kz cos kxx− ẑikx sin kxx} eikzz (E4.2.3.1b)

H1y = H1e
ik1xx eikzz (E4.2.3.2a)

E1 =
−1
ωε1

k1 ×H1 =
H1

ωε1
{x̂kz − ẑk1x} eik1xx eikzz (E4.2.3.2b)

< S1 > =
1
2
Re

{
k1

ωε1

∣∣H1

∣∣2} (E4.2.3.3)

The guidance condition in (4.2.39) becomes

tan kxd = −i εk1x

ε1kx
(E4.2.3.4)

Together with the dispersiion relations

k2
1x + k2

z = k2
1 (E4.2.3.5)

k2
x + k2

z = k2 (E4.2.3.6)

we see that the solutions for kz, kx, k1x from (E4.2.3.4)-(E4.2.3.6) and thus
the wave vectors k and k1 will be complex.

Guided Waves
For guided waves in Region 0, the surface wave in Region 1 has

k1 = x̂ik1xI + ẑkz (E4.2.3.7)

where k1xI is solved with real kx and kz .
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Lateral Wave
When k1 = ẑk1 , we have kz = k1 , k1x = 0 , and kx = mπ/d . The

wave in Region 1 propagates in the ẑ direction.

H1 = ŷ 2eik1z (E4.2.3.8)

E1 = x̂
2k1

ωε1
eik1z (E4.2.3.9)

Interpreting the guided waves in Region 0 as bouncing waves, the waves are
incident on the dielectric boundary at x = 0 at the critical angle. The wave
in Region 1 correspond to a guided wave in Region 0 at cutoff and has uniform
amplitudes in the x̂ direction and is called a lateral wave.

Leaky Waves
The transmitted wave vector is generally complex, we write

kt = x̂ktx + ẑkz = kR + ikI (E4.2.3.10)

From the dispersion relation k1 · k1 = k2
R − k2

I + ikR · kI = k2
1 = ω2µ1ε1 . We

find

kR · kI = 0

With α denoting the direction of k1 and θ the direction of observation
point, we have

k1 = x̂k1 cos(αR + iαI) + ẑk1 sin(αR + iαI)
= k1(x̂ cosαR + ẑ sinαR) coshαI

+ ik1(−x̂ sinαR + ẑ cosαR) sinhαI (E4.2.3.11)

eik1·r = eik1r cos(α−θ) = eik1r cos(αR−θ) coshαI ek1r sin(αR−θ) sinhαI

θ

kI

leaky wave
r

kR

z

αR

kR

x

wave amplitude

Figure E4.2.3.1 Leaky waves.
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For αI ≥ 0 , the wave grows exponentially in the x̂ direction. They are called
leaky waves. However the leaky wave mode can be excited only when αR−θ ≤
0 , namely when θ is larger than αR . As seen from Figure E4.2.3.1, even
though the wave amplitude grows exponentially away from the surface, it also
attenuates exponentially in the ẑ -direction. Thus the leaky wave amplitudes
will never diverge in the r̂ direction.

End of Example 4.2.3

Example 4.2.4
We write the field solutions for the TE modes as follows:

E0 = ŷ
[
A0e

ikxx +B0e
−ikxx

]
eikzz 0 ≤ x ≤ d (E4.2.4.0b)

E1 = ŷE1e
−k1xIxeikzz d ≤ x (E4.2.4.1a)

We find the reflection coefficients R0− = B0/A0 = −1 and R0+ = A0/B0 =
R01e

i2kxd . The guidance condition states that R0+R0− = 1 which gives

−R01e
i2kxd = 1

and thus
2kxd+ 2φ01 + π = 2mπ (E4.2.4.2)

with m = 1, 2, . . . It states that the total phase shift in the transverse x̂
direction must be integer multiples of 2π to ensure constructive interference.

By using the expression for the Goos-Hänchen shift
2φ01 = −2 tan−1(µk1xI/µ1kx)

we can express the guidance condition as

k1xId = −µ1

µ
kxd cot kxd (E4.2.4.3)

(k2 − k21)1/2d

α1xd

kxd
π

2

TE1 TE2

3π
2

π 2π

TE

Figure E4.2.4.1 Interpretation of guidance condition for TE modes.
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We plot in Figure E4.2.4.1 the guidance condition on the two-dimensional
plane with kxd as the horizontal axis and k1xId as the vertical axis. The
transversal spatial frequency kx for TE modes can be determined graphically
from the dispersion relations (4.2.31a) and (4.2.31b), which give k2

x + k2
1xI =

k2 − k2
1. This is a circle on the k1xId-kxd plane. We find that for TEm

mode, (2m− 1)π/2 < kxd < mπ. The electric field in region 0 is found from
(E4.2.4.1) by using the guidance condition of A0/B0 = −1 and by matching
the boundary condition at x = d,

Ey = E1e
−k1xId sin kxx

sin kxd
eikzz (E4.2.4.4)

E1y = E1e
−k1xIx eikzz (E4.2.4.5)

Ey

x = d
x

TE2

TE1

x

Figure E4.2.4.2 Electric field amplitudes for TE modes.

We show a field plot of Ey for TE1 and TE2 mode in Figure E4.2.4.2.
The waves are guided only when kz > k . Cutoff occurs when k1xI

becomes imaginary and the wave is no longer evanescent for x > d. The
cutoff spatial frequency is determined from φ01 = k1xI = 0 when kz = k1.
Using the guidance condition (E4.2.4.2) and (4.2.31b) we find (2m−1)π/2 =
kxd = (k2 − k2

1)
1/2d. We thus obtain

kcm =
(2m− 1)π

2d
√

1− µ1ε1/µε
m = 1, 2, . . . (E4.2.4.6)

We see that the TE mode can have a large cutoff frequency kc when µ1ε1
is very close to µε.

End of Example 4.2.4
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F. Guided Waves in Layered Media

Consider the stratified isotropic medium with boundaries at x =
d1, d2, . . . , dt shown in Fig. 4.1.12. For a TM plane wave, we write the
total field in region l as

kl = x̂klx + ẑkz (4.2.43)

H l = ŷ
(
Ale

iklxx +Ble
−iklxx

)
eikzz (4.2.44)

El =
1
ωεl

kl ×H l (4.2.45)

Region 0 Region 1 Region n Region t = n++ 1

x= d1 x= d-1x= d

µ0, ε0 µ1, ε1 µn, εn µt, εt

z

x

εlµl

x= dl

Region l

,

x= dnl0 x= dn-1

Figure 4.1.12 Layered medium.

For guided waves,

{
A0 = 0
B0 = R

in region 0 ,and

{
At = T

Bt = 0
in region t .

The wave amplitudes Al and Bl are related to wave amplitudes in
neighboring regions by the boundary conditions. At x = dl , boundary
conditions require that Ey and Hz be continuous. We obtain

Ale
iklxdl+Ble

−iklxdl = Al+1 e
ik(l+1)xdl +Bl+1 e

−ik(l+1)xdl (4.2.46)

Ale
iklxdl−Ble−iklxdl =pl(l+1)

[
Al+1e

ik(l+1)xdl−Bl+1e
−ik(l+1)xdl

]
(4.2.47)

where pl(l+1) =
εlk(l+1)x

εl+1 klx
=

1
p(l+1)l

(4.2.48)

To find the reflection coefficient at the boundary x = dl , we solve
(4.2.46) and (4.2.47) for Al and Bl .
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Ale
iklxdl =

1 + pl(l+1)

2

{
Al+1e

ik(l+1)xdl +Rl(l+1)Bl+1e
−ik(l+1)xdl

}
Ble

−iklxdl =
1 + pl(l+1)

2

{
Rl(l+1)Al+1e

ik(l+1)xdl +Bl+1e
−ik(l+1)xdl

}
and obtain

Bl
Al

=
Rl(l+1)e

i2k(l+1) xdl + (Bl+1 /Al+1)

ei2k(l+1) xdl + Rl(l+1)(Bl+1 /Al+1)
ei2klxdl (4.2.49)

where Bl /Al is expressed in terms of Bl+1 /Al+1 .
Similarly, to find the reflection coefficient at the boundary x =

dl−1 , we find from (4.2.46) and (4.2.47), or from (4.1.78) and (4.1.79)

Ale
iklxdl−1 =

1 + pl(l−1)

2

{
Al−1e

ik(l−1)xdl−1 +Rl(l−1)Bl−1e
−ik(l−1)xdl−1

}
Ble

−iklxdl−1 =
1 + pl(l−1)

2

{
Rl(l−1)Al−1e

ik(l−1)xdl−1 +Bl−1e
−ik(l−1)xdl−1

}
and obtain

Al
Bl

=
Rl(l−1)e

−i2k(l−1)xdl−1 + (Al−1 /Bl−1)

e−i2k(l−1)xdl−1 + Rl(l−1)(Al−1 /Bl−1)
e−i2klxdl−1 (4.2.50)

where Al /Bl is expressed in terms of Al−1 /Bl−1 .
The guidance condition is obtained by multiplying (4.2.49) and

(4.2.50). For a two-layer medium, n = 1 , we obtain

Region Region0 Region 2

ε0, µ0

x= d 1

1

x= d

ε , µ11

0

ε , µ22

Figure 4.2.11 Two-layer media.
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B1

A1
= R12e

i2k1xd1 (4.2.51)

A1

B1
= R10e

−i2k1xd0 (4.2.52)

and thus
R10R12e

i2k1x(d1−d0) = 1 = ei2mπ (4.2.53)

The magnetic fields in all regions are

H2 = ŷA1(1 +R12)eik1xd1eik2x(x−d1)eikzz (4.2.54)

H1 = ŷA1e
ik1xd1

{
eik1x(x−d1) +R12e

−ik1x(x−d1)
}
eikzz

= ŷA1e
ik1xd0

{
eik1x(x−d0) +

1
R10

e−ik1x(x−d0)

}
eikzz (4.2.55)

H0 = ŷA1(1 +
1
R10

)eik1xd0e−ik0x(x−d0)eikzz (4.2.56)

For guided waves, k0x = ik0xI , k0x = ik0xI , with R10 = ei2φ10 and
R12 = ei2φ12 , where φ10 and φ12 are Goos-Hänschen shifts at x = d0

and x = d1 . We obtain from (4.2.54) – (4.2.56),

H2 = ŷ 2 cosφ12A1e
−k1xI(x−d1)ei(k1xd1+φ1t)eikzz (4.2.57)

H1 = ŷA1

{
eik1xx + ei2(k1xd1+φ12)e−ik1xx

}
eikzz

= ŷA1

{
eik1xx + ei2(k1xd0−φ10)e−ik1xx

}
eikzz (4.2.58)

H0 = ŷ 2 cosφ10A1e
k0xI(x−d0)ei(k1xd0−φ10)eikzz (4.2.59)

and (4.2.53) gives

2φ10 + 2φ12 + 2k1x(d1 − d0) = 2mπ (4.2.60)

or that
2φ10 + 2φ12 + 2k1x(d1 − d0) = 2mπ (4.2.61)

which is the guidance condition stating that the phases gained by the
round trip 2k1xd , plus the phases gained at the boundary surfaces at
x = d0 and x = d1 add up to 2mπ .
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G. Guided Waves in a Symmetric Slab Dielectric Waveguide

Consider a symmetric slab waveguide with boundaries at x = 0
and d [Figure 4.2.12]. Equations (4.2.57)–(4.2.59) become

Region Region0 Region 2

ε0, µ0

x= 

1

x= d

ε , µ11 ε0, µ0

Figure 4.2.12 Symmetric dielectric waveguide.

H0 = ŷ 2 cosφ10A1e
k0xIx e−iφ10eikzz (4.2.62)

H1 = ŷA1e
i(
k1xd

2 +mπ
2 ) cos(k1xx−

k1xd

2
− mπ

2
)eikzz (4.2.63)

H2 = ŷ 2 cosφ10A1e
−k1xI(x−d1) ei(k1xd1+φ10) eikzz (4.2.64)

with the guidance condition as

2k1xd+ 4φ10 = 2mπ (4.2.65)

The solutions in regions 0 and t are both evanescent; H0 decays in
−x̂ direction and Ht decays in +x̂ direction. The total transverse
phase shift in the x̂ direction for a plane wave making a round trip
adds to an integer multiple of 2π. Equation (4.2.65) provides a relation
between k1xd and kxId .

kxId =
ε0
ε1
k1xd tan

(
k1xd

2
− mπ

2

)
(4.2.66)

The dispersion relations in regions 0 , 1 , and t are,

k2
z − k2

xI = ω2µ0ε0 = k2 (4.2.67)
k2
z + k2

1x = ω2µ1ε1 = k2
1 (4.2.68)



426 4. Reflection and Guidance

0

kz

k0

Guided region

Cutoff
region

Cutoff
region

k

k1
xk1

Figure 4.2.13 Guided and cutoff regions.

Eliminating kz from (4.2.67) and (4.2.68), we obtain

k2
xI + k2

1x = k2
1 − k2 (4.2.69)

which provides another equation for k1xd and kxId .
In Figure 4.2.13 we plot two k surfaces with radii k1 and k for

positive kz as vertical axis and kx as horizontal axis. For the wave to
be guided we must have kz larger than k . When kz becomes smaller
than k , the wave in regions 0 and t will no longer be evanescent
because kxI becomes imaginary and the wave begins to propagate.

Waves are guided inside the slab waveguide when k ≤ kz ≤ k1 .
Cutoff occurs when kz = k and as a consequence kxI = 0 . The
guidance condition (4.2.66) gives k1xd = mπ at cutoff. From

mπ = k1xd =
√
k2

1 − k2 d = k1

√
1− µ0ε0/µ1ε1 d

we find the cutoff spatial frequency for the m th mode

k1 = kcm =
mπ

d
√

1− µ0ε0/µ1ε1
(4.2.70)

At cutoff,
kz = k = k1

√
µ0ε0/µ1ε1 (4.2.71)

It follows that the 0th order mode possesses zero cutoff frequency.
We plot kz as a function of k for the various modes in Figure

4.2.14. The diagram can be generated graphically or numerically from
(4.2.66) and (4.2.69). From the kz-k1 diagram, the phase and group
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kz

kc3

kc2

kc1

TE0 , TM0

TE1 , TM1

TE2 , TM2

TE3 , TM3

1
2

1

0

1

k

0

1

4.2.14 Propagation constant kz as a function of k.

velocities can be determined. The curves for the various modes are shown in
Figure 4.2.14.

As k → ∞, we find from (4.2.69) that k0xI → ∞, as k1x is finite, and from
(4.2.66), we determine that k1x = (m + 1)π/d , which yields the asymptotic values
for kz as

kz = k1 (4.2.72)

On the kz-k1 diagram [Figure 4.2.14], this is a straight line with unit
slope. The group velocity of the guided waves as k → ∞ is thus vg =
(∂kz/∂ω)−1 = (μ1ε1)

−1/2, which is the velocity of light in the slab region. At
cutoff, however,

kz = k0 = k1

√
μ0ε0/μ1ε1 (4.2.73)

on the kz-k diagram [Figure 4.2.14], this is a straight line with slope (μ0ε0/μ1ε1)
1/2.

The group velocity as k → kc is (μ0ε0)
−1/2, equal to the velocity of light in regions

outside the slab.
A graphical approach is useful in determining the propagation constant

kz for a symmetric slab waveguide. The guidance condition (4.2.66) yields,
for even m, k0xId = (ε0k1xd/ε1) tan(k1xd/2). For odd m, we have k0xId =
−(ε0k1xd/ε1) cot(k1xd/2) and as k1xd → 0, k0xId = −2ε0/ε1. We plot the two sets
of curves on a two-dimensional plane determined by k0xId and k1xd [Fig. 4.2.15].
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m = 1 m = 3

m = 0

m = 2 m = 4

π 3π 2π 4π

m

k xId

k1x dk1x d

0k xId0

Figure 4.2.15 Graphical determination of kxd.

Draw (4.2.69) as a family of circles on the k0xId and k1xd plane.

(k1xd)2 + (k0xId)2 = (k2
1 − k2

0)d
2 (4.2.74)

The intersections with (4.2.66) give rise to values of k0xI and k1x ,
which in turn determine kz.

x
d0

Ey

TE1

TE0

0

Figure 4.2.16 Field amplitudes for TE0 and TE1 modes.

In Figure 4.2.16, we plot the Ey field for the case of m = 0 and
m = 1 for the symmetric slab waveguide. The solutions for Hy are
given in (4.2.62), (4.2.63), and (4.2.64). Remember that kxd can be
determined from Figure 4.2.15, where we see that kxd is larger than
mπ and smaller than (m+1)π for the m th mode. Thus, the higher the
mode order, the more variations we shall have inside the slab region.
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H. Cylindrical Waveguides

In treating guided waves along the ẑ direction, the z dependence
of all field vectors is written as e±ikzz where kz is the propagation
constant and the ± signs indicate propagation along positive and neg-
ative ẑ directions. With this dependence, we can replace ∂2/∂z2 by
−k2

z . From the Maxwell equations, we can express all field components
parallel to the z axis. When all vectors are separated into their trans-
verse and longitudinal components, Maxwell’s two curl equations for
isotropic media become, in vector notation,(

∇s + ẑ
∂

∂z

)
×

(
Es + Ez

)
= iωµ

(
Hs +Hz

)
(4.2.75)(

∇s + ẑ
∂

∂z

)
×

(
Hs +Hz

)
= −iωε

(
Es + Ez

)
(4.2.76)

where the subscript s denotes transverse components. Separating into
transverse and longitudinal directions, we have

iωµHs = ∇s × Ez + ẑ × ∂Es/∂z (4.2.77)
−iωεEs = ∇s ×Hz + ẑ × ∂Hs/∂z (4.2.78)
iωµHz = ∇s × Es (4.2.79)
−iωεEz = ∇s ×Hs (4.2.80)

From (4.2.77) and (4.2.78) and making use of the identities ẑ× (∇s×
Ez) = ∇sEz and ẑ× (ẑ×Es) = −Es, we can express Es and Hs in
terms of Ez and Hz

Es =
1

ω2µε− k2
z

[
∇s

∂Ez
∂z

+ iωµ∇s ×Hz

]
(4.2.81)

Hs =
1

ω2µε− k2
z

[
∇s

∂Hz
∂z
− iωε∇s × Ez

]
(4.2.82)

where we make use of the fact that ∂2/∂z2 = −k2
z and Ez = ẑEz and

Hz = ẑHz. Substituting (4.2.81) in (4.2.79) and (4.2.82) in (4.2.80)
we obtain [

∇2
s + ω2µε− k2

z

]Ez
Ez

 = 0 (4.2.83)

These are homogeneous Helmholtz equations for Ez and Hz. When
the longitudinal components are solved from (4.2.83) and the trans-
verse components determined from (4.2.81)–(4.2.82), we can proceed
to match the appropriate boundary conditions imposed by the guiding
structures.
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I. Cylindrical Rectangular Waveguides

Consider a metallic rectangular waveguide having dimensions a along
the x axis and b along the y axis [Fig. 4.2.17]. We first investigate
transverse magnetic (TM) fields where all magnetic fields are transverse
to the direction of propagation ẑ. We have Hz = 0 , and all field
components can be derived from a single longitudinal component Ez =
sin kxx sin kyy eikzz. We obtain

x

y z

a

bb

Figure 4.2.17 Metallic rectangular waveguides.

Ez = sin kxx sin kyy eikzz (4.2.84)

Ex =
ikxkz

ω2µε− k2
z

cos kxx sin kyy eikzz (4.2.85)

Ey =
ikykz

ω2µε− k2
z

sin kxx cos kyy eikzz (4.2.86)

Hx =
−iωεky

ω2µε− k2
z

sin kxx cos kyy eikzz (4.2.87)

Hy =
iωεkx

ω2µε− k2
z

cos kxx sin kyy eikzz (4.2.88)

Hz = 0 (4.2.89)

We see that at x = 0 and a, Ez and Ey vanish, and at y = 0 and
b, Ez and Ex vanish, provided that

kxa = mπ (4.2.90a)
kyb = nπ (4.2.90b)
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where m and n are integer numbers. Equation (4.2.90) gives the guid-
ance conditions. For TM waves neither m nor n can be zero because
then Ez will be zero, too. Substituting the guidance conditions (4.2.90)
in the field expressions, we see that for larger m there will be more
variations for the fields as a function of x , and for larger n there will
be more field variations along the ŷ direction.

The guidance conditions (4.2.90) and the dispersion relation

k2
x + k2

y + k2
z = ω2µε = k2 (4.2.91)

combine to give the propagation constant

kz =
√
ω2µε− (mπ/a)2 − (nπ/b)2 (4.2.92)

According to particular values of m and n, the TM waves inside
the rectangular waveguide are classified into TMmn modes. The first
index m is associated with the number of variations along the x̂ di-
rection and the second index with the number of variations along the
ŷ direction.

Cutoff occurs when kz becomes imaginary such that the wave at-
tenuates exponentially along the direction of propagation. For a TMmn

mode, the cutoff frequency is

kcmn =
√

(mπ/a)2 + (nπ/b)2 (4.2.93)

kz

kc10 kc20 kc11 kc21
k

TE10

TE20 TE01

TM11 TE11

TM21 TE21

k

Figure 4.2.18 kz-k diagram for guided modes.
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The lowest order TM mode is seen to be the TM11 mode. In Figure
4.2.18 we plot the propagation constant kz as a function of k for
the case a = 2b , kcmn =

√
m2 + 4n2/2aKo . As an example, if we let

a = 4 cm, b = 2 cm, we find the cutoff frequency for the TM11 mode
to be kc11 =

√
5/2a = 1.12/a = 28Ko . Notice that neither m nor n

can be zero, thus the smallest cutoff frequency for TM guided waves is
the TM11 mode.

Next we examine TE fields which are derivable from a single lon-
gitudinal component Hz with Ez = 0. From (4.2.81) and considering
the boundary conditions of vanishing tangential electric fields on the
metallic wall surfaces, we obtain

Hz = cos kxx cos kyy eikzz (4.2.94)

Hx =
−ikxkz

ω2µε− k2
z

sin kxx cos kyy eikzz (4.2.95)

Hy =
−ikykz

ω2µε− k2
z

cos kxx sin kyy eikzz (4.2.96)

Ex =
−iωµky
ω2µε− k2

z

cos kxx sin kyy eikzz (4.2.97)

Ey =
iωµkx

ω2µε− k2
z

sin kxx cos kyy eikzz (4.2.98)

Ez = 0 (4.2.99)

The guidance conditions are obtained from the boundary conditions of
Ex = 0 at y = 0 and b and Ey = 0 at x = 0 and a. The result is
identical to (4.2.90).

kxa = mπ (4.2.100a)
kyb = nπ (4.2.100b)

The propagation constant kz is again given as (4.2.92) and the cutoff
spatial frequencies are found to be (4.2.93).

The time takes for the phase of a wave to travel one meter is the
phase delay Tp = kz/ω =

√
µε kz/k . The inverse of the phase delay is

the phase velocity of the wave. The inverse of the group velocity is the
group delay Tg = δkz/δω =

√
µε δkz/δk =

√
µε k/kz .

Notice that while neither m nor n can be zero for TMmn modes,
it is possible to have either m or n or both m and n equal to zero for
the TEmn modes. For m = n = 0, we find Hz = eikz. The equation
∇·H = 0 implies k = ω(µε)1/2 = 0 and consequently the TE00 mode
is a static field solution in the waveguide.
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Example 4.2.5 Parallel plate waveguide.
For parallel plate waveguide with ∂/∂y = 0 , (4.2.81)–(4.2.82) become

Ex =
1

ω2µε− k2
z

(
∂2

∂x∂z
Ez

)
(E4.2.5.1a)

Ey =
1

ω2µε− k2
z

(
−iωµ ∂

∂x
Hz

)
(E4.2.5.1b)

Hx =
1

ω2µε− k2
z

(
∂2

∂x∂z
Hz

)
(E4.2.5.2a)

Hy =
1

ω2µε− k2
z

(
iωε

∂

∂x
Ez

)
(E4.2.5.2b)

For TM waves, Hz = 0 , Ez = sin kxx . For TE waves, Ez = 0 , Hz =
cos kxx .

For TEM waves, Hz = Ez = 0 and (4.2.77)–(4.2.80) become

iωµHs = ẑ × ∂Es/∂z (E4.2.5.3)

−iωεEs = ẑ × ∂Hs/∂z (E4.2.5.4)

0 = ∇s × Es (E4.2.5.5)

0 = ∇s ×Hs (E4.2.5.6)

Thus Es and Hs are curl free and (E4.2.5.3) and (E4.2.5.4) give

Hs = ẑ ×
√

ε

µ
Es (E4.2.5.7)

−Es = ẑ ×
√

µ

ε
Hs (E4.2.5.8)

The transverse electric and magnetic field vectors and the wave vector follow
the right hand rule.

End of Example 4.2.5

We now argue that inside a hollow rectangular waveguide, the TEM mode
for which Ez = Hz = 0 cannot exist. From ∇ · H = ∇ · Hs = 0 and the
boundary condition of vanishing normal H field on the wall, we find that
the H field must form closed loops and ∇×Hs = ẑJz − ẑiωεEz 	= 0. Thus
either Jz 	= 0 , which implies the waveguide is not hollow, or Ez 	= 0 , which
implies that the mode cannot be TEM. As a corollary, we have in fact shown
that TEM modes do exist when there is another conductor to support the
conduction current Jz , as in the case of a coaxial line.
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Assuming a > b, we see from (4.2.93) that the lowest order TE
mode will be TE10 , with cutoff frequency

kc10 = π/a = 1/2a Ko (4.2.101)

The corresponding cutoff wavelength is λc = 2a . For instance, with
a = 4 cm, kc10 = 12.5 Ko , and λc = 8 cm. The field components of the
TE10 mode are

Hz = cos
πx

a
eikzz (4.2.102)

Hx =
−ikza
π

sin
πx

a
eikzz (4.2.103)

Ey =
iωµa

π
sin

πx

a
eikzz (4.2.104)

electric field line

magnetic field line

x

z

x

y

x

Figure 4.2.19 TE10 mode in a rectangular waveguide.

The electric field has only a y component. A field plot for the TE10

mode is shown in Figure 4.2.19. Written in the form of the superposi-
tion of two bouncing plane waves, (4.2.104) becomes

Ey =
ωµa

2π

[
ei
πx
a

+ikzz − e−i
πx
a

+ikzz
]

(4.2.105)

Higher-order TE and TM modes can also be interpreted as plane waves
bouncing around the four walls and propagating along ẑ with the
propagation constant kz. The propagation constant kz for the various
modes are plotted in Figure 4.2.18 for the case of a = 2b. Since the
TE10 mode has the lowest cutoff frequency, it is the fundamental mode
or the dominant mode of the rectangular waveguide.
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J. Cylindrical Circular Waveguides

a. Bessel Functions

In order to study cylindrical waveguides of circular cross-sections, we
first consider the wave equation for Ez and Hz in cylindrical coordi-
nates [

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2
+ k2

ρ

] {
Ez
Hz

}
= 0 (4.2.106)

where k2
ρ = ω2µε−k2

z . Solutions to the wave equation are Bessel func-
tions multiplied by sinusoidal functions. The sinusoids can be com-
binations of sinmφ, cosmφ, or e±imφ. Substituting in (4.2.106) and
making use of the transformation ξ = kρρ, we have the Bessel equation

[
1
ξ

d

dξ

(
ξ
d

dξ

)
+

(
1− m2

ξ2

)]
B(ξ) = 0 (4.2.107)

This has solutions in the form of the Bessel function Jm(ξ), Neumann
function Nm(ξ), Hankel function of the first kind H

(1)
m (ξ), or Hankel

function of the second kind H
(2)
m (ξ). The two kinds of Hankel func-

tions are related to the Bessel and Neumann functions in the following
manner:

H(1)
m (ξ) = Jm(ξ) + iNm(ξ) (4.2.108)

H(2)
m (ξ) = Jm(ξ)− iNm(ξ) (4.2.109)

Let Bm(ξ) represent Jm(ξ), Nm(ξ), H(1)
m (ξ), or H

(2)
m (ξ). The recur-

rence formulas for the Bessel functions Bm(ξ) are as follows:

B′
m(ξ) = Bm−1(ξ)−

m

ξ
Bm(ξ)

= −Bm+1(ξ) +
m

ξ
Bm(ξ)

(4.2.110)

where the prime on B(ξ) indicates derivative with respect to its argu-
ment. We illustrate Jm(ξ), J ′

m(ξ), and Nm(ξ) for m = 0 , 1 , and 2.
The asymptotic values of these functions are listed in Table 4.2.1. As
ξ →∞, Jm behaves as cosine, Nm as sine, and Hm as exponents. As
ξ → 0, all but Jm become singular.
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ξ ξ → 0 ξ →∞
B(ξ) m = 0 Re {m} > 0

Jm(ξ) 1 (ξ/2)m

Γ(m+1)

√
2/πξ cos(ξ − mπ

2 − π
4 )

Nm(ξ) 2
π ln ξ −Γ(m)

π (2
ξ )
m

√
2/πξ sin(ξ − mπ

2 − π
4 )

H
(1)
m (ξ) i 2

π ln ξ −iΓ(m)
π (2

ξ )
m

√
2/πξ exp[i(ξ − mπ

2 − π
4 )]

H
(2)
m (ξ) −i 2

π ln ξ iΓ(m)
π (2

ξ )
m

√
2/πξ exp[−i(ξ − mπ

2 − π
4 )]

Table 4.2.1 Limiting values of Jm, Nm, H
(1)
m and H

(2)
m .

Friedrich Wilhelm Bessel (22 July 1784 – 17 March 1846)
Wilhelm Bessel wrote a paper on Halley’s comet in 1804, using observa-

tions made in 1607 to calculate its orbit. In 1809 he was appointed director of
Frederick William III of Prussia’s new Königsberg Observatory and professor
of astronomy. At the recommendation of Gauss, a doctorate was awarded
to him by the University of Göttingen in 1807. After the completion of the
Könisberg Observatory in 1813, Bessel started the task of determining the
positions and proper motions of over 50,000 stars and led to the discovery
of the parallax of 61 Cygni, a star 10.3 light-years from the earth, in 1838.
Bessel functions were introduced in his study of the planetary motion in 1817
and fully developed in 1824.

Franz Ernst Neumann (11 September 1798 – 23 May 1895)
In 1814, Franz Neumann left Berlin Gymnasium and volunteered for the

Prussian army, which was defeated by Napoleon on 16 June 1815 at the battle
of Ligny. Neumann was seriously wounded and did not take part in the battle
at Waterloo two days later. In November 1825 he obtained his doctorate
from the University of Berlin and in May 1826, together with Jacob, he was
appointed as Privatdozent at the University of Königsberg, where he became
Lecturer in 1828 and chair of mineralogy and physics in 1829.

Hermann Hankel (14 February 1839 – 29 August 1873)
Hermann Hankel entered the University of Leipzig in 1857 and became

a student of Riemann in Göttingen in 1860 and worked with Weierstrass and
Kronecker in Berlin in 1861 and received his doctorate in 1862. He began
teaching at Leipzig and became extraordinary professor in the spring of 1867.
In the autumn of 1867, he was appointed ordinary professor and in 1869
accepted the chair at Tübingen.
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Figure 4.2.20 Bessel functions.
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Figure 4.2.21 Derivatives of Bessel functions.
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Figure 4.2.22 Neumann functions.
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b. Circular Metallic Waveguides

Consider a circular metallic waveguide with radius a [Fig. 4.2.23].
The boundary conditions require that Ez and Eφ vanish at ρ = a.
Since fields must not be singular at ρ = 0, the Bessel function Jm is
the only logical solution. For TM waves, we have

Ez = Jm(kρρ)
{

sinmφ

cosmφ

}
eikzz (4.2.111)

z

φ

a

y
ρ

x

z

Figure 4.2.23 Circular metallic waveguides.

with the dispersion relation

k2
z + k2

ρ = ω2µε (4.2.112)

Transverse field components are obtained from the guided wave for-
malism (4.2.81)–(4.2.82),

Eρ =
ikzkρ

ω2µε− k2
z

J ′
m(kρρ)

{
sinmφ

cosmφ

}
eikzz (4.2.113)

Eφ =
ikz

ω2µε− k2
z

m

ρ
Jm(kρρ)

{
cosmφ

− sinmφ

}
eikzz (4.2.114)

Hρ =
−iωε

ω2µε− k2
z

m

ρ
Jm(kρρ)

{
cosmφ

− sinmφ

}
eikzz (4.2.115)

Hφ =
iωεkρ

ω2µε− k2
z

J ′
m(kρρ)

{
sinmφ

cosmφ

}
eikzz (4.2.116)
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where the prime on the Bessel function denotes derivative with respect
to its argument. The boundary condition of vanishing Ez and Eφ at
ρ = a gives the guidance condition

Jm(kρa) = 0 (4.2.117)

Let ξmn denote the n th root of the m th order Bessel function such
that Jm(ξmn) = 0 . The first three roots of J0(ξmn) = 0 are ξ01 =
2.405, ξ02 = 5.52, ξ03 = 8.65. For J1(ξmn) = 0 , ξ11 = 3.83, ξ12 =
7.01, ξ13 = 10.2 . For J2(ξmn) = 0 , ξ21 = 5.14, ξ22 = 8.42, ξ23 =
11.6. For J3(ξmn) = 0 , ξ31 = 6.38, ξ32 = 9.76, ξ33 = 13. From the
guidance condition (4.2.117) and the dispersion relation (4.2.112), we
find

kz =
√
ω2µε− (ξmn/a)2 (4.2.118)

For each value of ξmn we label the wave solution TMmn mode, where
m is associated with the number of variations in the φ̂ direction and n
with the number of variations in the ρ̂ direction. The cutoff wavenum-
bers for the TMmn modes are

kcmn = ξmn/a (4.2.119)

TE11

TE21

TM01

TE01 TM11
TE31

TM21

kza

ka

π/4

1.8 2.4 3.05 3.8 4.2 5.1

1 2 3 4 5 6
k

Figure 4.2.24 kza-ka diagrams for guided modes.
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We find from Figure 4.2.20 that for the TM01 mode ξ01 = 2.4 and
for the TM11 mode ξ11 = 3.8 . The kza-ka diagram for the guided
TMmn modes is plotted in Figure 4.2.24.

For TE wave solutions we have

Hz = Jm(kρρ)
{

sinmφ

cosmφ

}
eikzz (4.2.120)

with dispersion relation

k2
z + k2

ρ = ω2µε (4.2.121)

The transverse field components are

Hρ =
ikzkρ

ω2µε− k2
z

J ′
m(kρρ)

{
sinmφ

cosmφ

}
eikzz (4.2.122)

Hφ =
ikz

ω2µε− k2
z

m

ρ
Jm(kρρ)

{
cosmφ

− sinmφ

}
eikzz (4.2.123)

Eρ =
iωµ

ω2µε− k2
z

m

ρ
Jm(kρρ)

{
cosmφ

− sinmφ

}
eikzz (4.2.124)

Eφ =
−iωµkρ
ω2µε− k2

z

J ′
m(kρρ)

{
sinmφ

cosmφ

}
eikzz (4.2.125)

The boundary condition of vanishing Ez and Eφ at ρ = a gives the
guidance condition

J ′
m(kρa) = 0 (4.2.126)

Letting ξ′mn denote the roots of J ′
m such that J ′

m(ξ′mn) = 0 . The first
three roots of J ′

0(ξ
′
mn) = 0 are ξ′01 = 3.83, ξ′02 = 7.01, ξ′03 = 10.2. For

J ′
1(ξ

′
mn) = 0 , ξ′11 = 1.84, ξ′12 = 5.33, ξ′13 = 8.54 . For J ′

2(ξ
′
mn) = 0 ,

ξ′21 = 3.05, ξ′22 = 6.71, ξ23 = 9.97. For J ′
3(ξ

′
mn) = 0 , ξ′31 = 4.2, ξ′32 =

8.02, ξ33 = 11.3. We find from the dispersion relation (4.2.121) and
the guidance condition (4.2.126)

kz =
√
ω2µε− (ξ′mn/a)2 (4.2.127)

For each value of ξ′mn we label the wave solution TEmn mode where
m is associated with the number of variations in the φ̂ direction and
n with the number of variations in the ρ̂ direction. The field patterns
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TE11 mode TM01 mode

E lines
H lines

Figure 4.2.25 Field lines for TE11 and TM01 modes.

for the TE11 and TM01 modes are shown in Figure 4.2.25. The cutoff
frequencies for the TEmn modes are

kcmn = ξ′mn/a (4.2.128)

We see from Figure 4.2.21 that for the TE11 mode ξ′11 = 1.8 , for
the TE21 mode ξ′21 = 3.05 , and for the TE01 mode ξ′01 = 3.8 . The
kza-ka diagram for the guided TEmn modes is shown in Figure 4.2.24.

Example 4.2.6 TE11 mode.
The transverse electric field for the TE11 mode can be expressed in

terms of its x and y components. We have

Ey = Eρ sinφ+Eφ cosφ=
−iωµkρ
ω2µε− k2

z

[
m

kρρ
Jm(kρρ) sin2 φ+J ′

m(kρρ) cos2 φ
]
eikzz

=
−iωµ
2kρ

[
Jm−1(kρρ) + (Jm−1(kρρ)−

2m
kρρ

Jm(kρρ)) cos 2φ
]
eikzz

Ex = Eρ cosφ− Eφ sinφ =
iωµsin 2φ

2kρ

[
J ′

1(kρρ)−
1
kρρ

J1(kρρ)
]
eikzz

= − iωµ sin 2φ
2kρ

[Jm+1(kρρ)] eikzz

It is seen that at φ = 0, Ex = 0 and Ey = −iωµJ ′
m(kρρ)/kρ . At φ = π/2 ,

Ex = 0 and Ey = −iωmµJm(kρρ)/k2
ρρ .

End of Example 4.2.6
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c. Circular Dielectric Waveguides
Consider a circular waveguide of radius a made of an isotropic

medium with constitutive parameters µ and ε embedded in another
isotropic medium characterized by µ1 and ε1 [Fig. 4.2.26].

z

φ

a

y
ρ

x

µ, ε µ1 ε1

z

Figure 4.2.26 Circular dielectric waveguides.

Inside the waveguide, solutions for Ez and Hz are Bessel func-
tions,

Ez = AJm(kρρ) sinmφeikzz (4.2.129)

Hz = BJm(kρρ) cosmφeikzz (4.2.130)

with the dispersion relation

k2
z + k2

ρ = ω2µε = k2 (4.2.131)

In (4.2.129) and (4.2.130), sinmφ and cosmφ are chosen for Ez and
Hz in anticipation of matching the boundary conditions. They can also
be replaced with cosmφ and sinmφ, respectively.

Outside the waveguide, the field associated with the guided waves
must be evanescent in the ρ̂ direction. The proper choice of the solu-
tion will be Hankel functions with imaginary arguments, known as the
modified Hankel functions. Letting k1ρ = ik1ρI , we write for ρ ≥ a

Ez = CH(1)
m (ik1ρIρ) sinmφeikzz (4.2.132)

Hz = DH(1)
m (ik1ρIρ) cosmφeikzz (4.2.133)

with the dispersion relation

k2
z − k2

1ρI = ω2µ1ε1 = k2
1 (4.2.134)
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The next step will be to match boundary conditions of tangential elec-
tric and magnetic field components at ρ = a . The choice of sinmφ
and cosmφ for Ez and Hz in (4.2.132)–(4.2.133) facilitates their
equality with (4.2.129)–(4.2.130) at ρ = a for all azimuthal angles φ.
There are four boundary conditions for the continuity of Ez , Hz , Eφ ,
and Hφ at ρ = a . We see that separating into TE and TM modes in
general will no longer be possible because there will be three equations
to be satisfied with two unknown pairs of either A,C or B,D . The
guided modes with both Ez and Hz components present are called
hybrid modes.

Determining guidance conditions:

Transverse components for the fields are determined from (4.2.81)–
(4.2.82). All field components inside and outside the dielectric waveguide are

For ρ ≤ a, and kρ =
√
k2 − k2

z :

Ez = AJm(kρρ) sinmφeikzz

Hz = BJm(kρρ) cosmφeikzz

Eρ =
1
k2
ρ

[
AikzkρJ

′
m(kρρ) sinmφ−B

iωµm

ρ
Jm(kρρ) sinmφ

]
eikzz

Eφ =
1
k2
ρ

[
Aikzm

ρ
Jm(kρρ) cosmφ−BiωµkρJ

′
m(kρρ) cosmφ

]
eikzz

Hρ =
1
k2
ρ

[
BikzkρJ

′
m(kρρ) cosmφ−A

iωεm

ρ
Jm(kρρ) cosmφ

]
eikzz

Hφ =
1
k2
ρ

[
−B ikzm

ρ
Jm(kρρ) sinmφ+AiωεkρJ

′
m(kρρ) sinmφ

]
eikzz

For ρ ≥ a, and k1ρI =
√
k2
z − k2

1 :

Ez = CH(1)
m (ik1ρIρ) sinmφeikzz

Hz = DH(1)
m (ik1ρIρ) cosmφeikzz

Eρ =
−1
k2
1ρI

[
−Ckzk1ρIH

(1)′
m (ik1ρIρ) sinmφ−Diωµ1m

ρ
H(1)
m (ik1ρIρ) sinmφ

]
eikzz

Eφ =
−1
k2
1ρI

[
C
ikzm

ρ
H(1)
m (ik1ρIρ) cosmφ+Dωµ1k1ρIH

(1)′
m (ik1ρIρ) cosmφ

]
eikzz
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Hρ =
−1
k2
1ρI

[
−Dkzk1ρIH

(1)′
m (ik1ρIρ) cosmφ−C iωε1m

ρ
H(1)
m (ik1ρIρ) cosmφ

]
eikzz

Hφ =
−1
k2
1ρI

[
−Dikzm

ρ
H(1)
m (ik1ρIρ) sinmφ−Cωε1k1ρIH

(1)′
m (ik1ρIρ) sinmφ

]
eikzz

Matching the z and φ components at ρ = a we obtain the following four
equations for A , B , C , and D :

AJm(kρa) = CH(1)
m (ik1ρIa)

BJm(kρa) = DH(1)
m (ik1ρIa)

A
ikzm

k2
ρa

Jm(kρa)−B
iωµ

kρ
J ′
m(kρa) = −C ikzm

k2
1ρIa

H(1)
m (ik1ρIa)−D

ωµ1

k1ρI
H(1)
m

′
(ik1ρIa)

−B ikzm

k2
ρa

Jm(kρa)+A
iωε

kρ
J ′
m(kρa) = D

ikzm

k2
1ρIa

H(1)
m (ik1ρIa) + C

ωε1
k1ρI

H(1)
m

′
(ik1ρIa)

Eliminating C and D , we have

ikzm

a
A

[
1
k2
ρ

+
1

k2
1ρI

]
= iωB

[
µ

kρ

J ′
m(kρa)
Jm(kρa)

+ i
µ1

k1ρI

H
(1)
m

′
(ik1ρIa)

H
(1)
m (ik1ρIa)

]
(4.2.135)

ikzm

a
B

[
1
k2
ρ

+
1

k2
1ρI

]
= iωA

[
ε

kρ

J ′
m(kρa)
Jm(kρa)

+ i
ε1
k1ρI

H
(1)
m

′
(ik1ρIa)

H
(1)
m (ik1ρIa)

]
(4.2.136)

Eliminating A and B , we determine the guidance condition for the circular
dielectric waveguide.

k2

k2
ρ

[
J ′
m(kρa)
Jm(kρa)

− pTE10

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

][
J ′
m(kρa)
Jm(kρa)

− pTM10

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

]

= (mkza)2
[

1
k2
ρa

2
+

1
k2
1ρIa

2

]2

(4.2.137)

where pTE10 = µ1kρ/iµk1ρI and pTM10 = ε1kρ/iεk1ρI . From (4.2.137), we
determine

J ′2
m(kρa)
J2
m(kρa)

− (pTE10 + pTM10 )
H

(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

J ′
m(kρa)
Jm(kρa)

+ pTE10 pTM10

H
(1)′2
m (ik1ρIa)

H
(1)2
m (ik1ρIa)

=
m2k2

z

k2k2
ρa

2

(
1 +

k2
ρ

k2
1ρI

)2

= m2

(
1

k2
ρa

2
+

1 + k2
1/k

2

k2
1ρIa

2
+

k2
1k

2
ρ

k2k4
1ρIa

2

)
(4.2.138)
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Solving for J ′
m(kρa)/Jm(kρa) , we find the guidance conditions for EH modes:

J ′
m(kρa)
Jm(kρa)

=
1
2
(pTE10 + pTM10 )

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

+

√√√√1
4
(pTE10 − pTM10 )2

H
(1)′2
m (ik1ρIa)

H
(1)2
m (ik1ρIa)

+m2

(
1

k2
ρa

2
+

1 + k2
1/k

2

k2
1ρIa

2
+

k2
1k

2
ρ

k2k4
1ρIa

2

)

(4.2.139)

and for HE modes

J ′
m(kρa)
Jm(kρa)

=
1
2
(pTE10 + pTM10 )

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

−

√√√√1
4
(pTE10 − pTM10 )2

H
(1)′2
m (ik1ρIa)

H
(1)2
m (ik1ρIa)

+m2

(
1

k2
ρa

2
+

1 + k2
1/k

2

k2
1ρIa

2
+

k2
1k

2
ρ

k2k4
1ρIa

2

)

(4.2.140)

Finding cutoff frequencies for m = 0 modes:

When m = 0 , (4.2.139) becomes

J ′
0(kρa)
J0(kρa)

= pTE10

H
(1)′

0 (ik1ρIa)

H
(1)
0 (ik1ρIa)

(4.2.141)

We see that this corresponds to A = C = 0 . Consequently, Ez = 0 , and
thus EH0p modes are TE waves. Likewise, (4.2.140) becomes

J ′
0(kρa)
J0(kρa)

= pTM10

H
(1)′

0 (ik1ρIa)

H
(1)
0 (ik1ρIa)

(4.2.142)

and HE0p modes reduce to TM waves. When m 	= 0 , separation into TE
and TM waves is no longer possible and we have hybrid modes.

Cutoff occurs when k1ρI → 0 as k1ρI becomes imaginary such that the
argument of the first-kind Hankel function becomes real and the field outside
is radiating in the radial ρ̂ direction. This cutoff criterion is identical to that
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used in the case of dielectric slab waveguides. Using the asymptotic values for
the Hankel functions as k1ρI → 0, we have for m = 0

J ′
0(kρa)
J0(kρa)

∼ µ1kρ
iµk1ρI

1
ik1ρIa ln(ik1ρIa)

for TE modes (4.2.143)

J ′
0(kρa)
J0(kρa)

∼ ε1kρ
iεk1ρI

1
ik1ρIa ln(ik1ρIa)

for TM modes (4.2.144)

From the dispersion relations k2
z = k2−k2

ρ = k2
1 +k2

1ρI , we see that at cutoff,
k1ρI → 0 , kz → k1, and kρ → kc(1 − µ1ε1/µε)1/2 , where kc is the cutoff
frequency.

We see that (4.2.143) and (4.2.144) yield identical equations for
TE and TM modes at cutoff,

J0

(
kc0pa

√
1− n2

1

n2

)
= 0 (4.2.145)

where n1 = c(µ1ε1)1/2 and n = c(µε)1/2. We thus have for TE0p and
TM0p modes

kc0pa(1− n2
1/n

2)1/2 = ξ0p

where ξ0p is the p th root of the zeroth order Bessel function J0(ξ).

Finding cutoff frequencies for EH modes:

To investigate cutoff conditions for the guided waves when m 	= 0 , we first
approximate the square root term in (4.2.139) and (4.2.140) as k1ρI → 0 .
Using the relation k2

z = k2 − k2
ρ = k2

1 + k2
1ρI and the recurrence formula for

Hankel functions, we obtain

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

=
H

(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

− m

ik1ρIa
(4.2.146)

where as k1ρI → 0

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

∼ iAm −
m

ik1ρIa
(4.2.147)

with A1 ∼ −k1ρIa ln(ik1ρIa) and Am ∼ k1ρIa

2(m−1) for m > 1. The square
root term in (4.2.139) and (4.2.140) becomes
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√√√√1
4
(pTE10 − pTM10 )2

H
(1)′2
m (ik1ρIa)

H
(1)2
m (ik1ρIa)

+m2

(
1

k2
ρa

2
+

1 + k2
1/k

2

k2
1ρIa

2
+

k2
1k

2
ρ

k2k4
1ρIa

2

)

≈

√
1
4

(
µ1

µ
− ε1

ε

)2
k2
ρ

k2
1ρI

(
Am+

m

k1ρIa

)2

+m2

(
1

k2
ρa

2
+

1+k2
1/k

2

k2
1ρIa

2
+

k2
1k

2
ρ

k2k4
1ρIa

2

)

≈

√
1
4

(
µ1

µ
+
ε1
ε

)2
m2k2

ρ

k4
1ρIa

2
+

1
2

(
µ1

µ
− ε1

ε

)2
mk2

ρ

k3
1ρIa

Am+m2

(
1

k2
ρa

2
+

1+k2
1/k

2

k2
1ρIa

2

)

≈ 1
2

(
µ1

µ
+
ε1
ε

)
mkρ
k2
1ρIa

√√√√√1+
2(µ1

µ −
ε1
ε )2 mk2ρ

k31ρIa
Am

(µ1
µ + ε1

ε )2 m2k2ρ
k41ρIa

2

+
4m2

(
1

k2ρa
2 + 1+k21/k

2

k21ρIa
2

)
(µ1
µ + ε1

ε )2 m2k2ρ
k41ρIa

2

≈ 1
2

(
µ1

µ
+
ε1
ε

)
mkρ
k2
1ρIa

√√√√
1+

2(µ1
µ −

ε1
ε )2Amk1ρIa

m(µ1
µ + ε1

ε )2
+

4
(
k21ρI
k2ρ

+1+k2
1/k

2

)
(µ1
µ + ε1

ε )2
k2
1ρI

k2
ρ

≈ 1
2

(
µ1

µ
+
ε1
ε

)
mkρ
k2
1ρIa

+
(µ1
µ −

ε1
ε )2kρ

2(µ1
µ + ε1

ε )k1ρI
Am+

m
(
k21ρI
k2ρ

+1+k2
1/k

2
)

(µ1
µ + ε1

ε )kρa
(4.2.148)

Substituting (4.2.148) in (4.2.139), we obtain for EH modes

J ′
m(kρa)
Jm(kρa)

≈ 1
2

(
µ1

µ
+
ε1
ε

)
kρ
k1ρI

(
Am +

m

k1ρIa

)

+
1
2

(
µ1

µ
+
ε1
ε

)
mkρ
k2
1ρIa

+
(µ1
µ −

ε1
ε )2kρ

2(µ1
µ + ε1

ε )k1ρI
Am+

m
(
k21ρI
k2ρ

+1+k2
1/k

2
)

(µ1
µ + ε1

ε )kρa
(4.2.149)

Thus we find cutoff frequencies for EHmp modes from

Jm

(
kcmpa

√
1− n2

1

n2

)
= 0 (4.2.150)

where kcmpa(1 − n2
1/n

2)1/2 = ξmp , and ξmp is the p th root of the
m th order Bessel function Jm(ξ) . However the first root of ξ = 0 is
excluded since as k1ρI → 0 , we must also have kρ → 0 . Approximate

J ′
m(kρa)
Jm(kρa)

≈ m

kρa
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we see that the above equation can not be satisfied with kρ = 0 .
Thus the roots of ξ = 0 for Jm(ξ) , which correspond to zero cutoff
frequency, cannot be included. The smallest is the first root of J1(ξ)
with ξ = 3.832 .

Finding cutoff frequencies for HE modes:

Substituting (4.2.148) in (4.2.140), we obtain for HE modes

J ′
m(kρa)
Jm(kρa)

≈ 1
2

(
µ1

µ
+
ε1
ε

)
kρ
k1ρI

(
Am +

m

k1ρIa

)

− 1
2

(
µ1

µ
+
ε1
ε

)
mkρ
k2
1ρIa
−

(µ1
µ −

ε1
ε )2kρ

2(µ1
µ + ε1

ε )k1ρI
Am −

m
(
k21ρI
k2ρ

+ 1 + k2
1/k

2
)

(µ1
µ + ε1

ε )kρa

=
2(µ1ε1

µε )kρ
(µ1
µ + ε1

ε )k1ρI
Am −

m
(
k21ρI
k2ρ

+ 1 + k2
1/k

2
)

(µ1
µ + ε1

ε )kρa
(4.2.151)

For m > 1 , we determine cutoff frequencies for HEmp modes from

µε1 + µ1ε

kρa

J ′
m(kρa)
Jm(kρa)

+m
µ1ε1 + µε

k2
ρa

2
− µ1ε1
m− 1

= 0 (4.2.152)

kca
√

1− n2
1/n

2

0.0

HE11 HE21TE01

TM01

HE12

EH11

EH21 TE02

TM02

2.405 2.445
3.832 5.136 5.520

TM

Figure 4.2.27 Cutoff of circular dielectric waveguide modes.

For µ = µ1 , (4.2.152) gives (1+ε/ε1)=kρaJm(kρa)/(m−1)Jm−1(kρa).
In Figure 4.2.27, we let ε1/ε = 1.1 and list the cutoff frequencies for
the first few modes.
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For m = 1, we find as k1ρIa→ 0

µε1 + µ1ε

kρa

J ′
1(kρa)
J1(kρa)

+
µ1ε1 + µε

k2
ρa

2
+ 2µ1ε1 ln(ik1ρIa) = 0 (4.2.153)

Thus the cutoff frequencies are obtained from

J1

(
kc1pa

√
1− n2

1

n2

)
= 0

which gives for HE1p modes

kc1pa

√
1− n2

1

n2
= ξ1p (4.2.154)

where ξ1p is the p th root of the first-order Bessel function J1(ξ). It
is important to observe that the first root of J1 is now zero, which
was not the case for EH11 . Thus the cutoff frequency for the HE11

mode is zero. This is similar to the fundamental TE0 and TM0 modes
with zero cutoff wavenumbers for symmetric slab waveguides. We can
appreciate that as µ → µ1 and ε → ε1 , the HE11 mode approaches
a TEM wave for which there is no cutoff.

In Figure 4.2.27, we note that (i) TE0p and TM0p are degenerate
modes in the sense that they have the same cutoff frequencies deter-
mined from (4.2.145); (ii) HE1p and EH1(p−1) modes share the same
cutoff frequencies because they are both determined from the roots of
the first-order Bessel function J1(ξ) , except that for HE modes the first
root is taken to be zero while for EH modes the first root is taken to
be 3.832 ; (iii) the HE11 frequency operating range is very wide if the
radius a is taken to be small and the refractive index n is only slightly
larger than that of its surrounding medium n1. For instance, in the
case of a single-mode fiber waveguide for which a ≈ 1µm , n ≈ 1.05,
and 1− n2

1/n
2 ≈ 0.09, the single-mode operating range extends from

zero to 8× 106 m−1 or 1.3× 106 Ko.

Example 4.2.7
We can cast (4.2.138) in a symmetric form by using the recurrence for-

mula for Bessel functions B′
m(ξ) = (Bm−1(ξ) − Bm+1(ξ))/2 . Making use of

the dispersion relations k2
z = k2 − k2

ρ = k2
1 + k2

1ρI , we write (4.2.138) in the
following form:
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m2k2
z

k2k2
ρa

2

(
1 +

k2
ρ

k2
1ρI

)2

=
m2k2

ρ

k2

(
k2

k2
ρ

+
k2
1

k2
1ρI

)(
1

k2
ρa

2
+

1
k2
1ρIa

2

)

=
{
J ′
m(kρa)
Jm(kρa)

− pTE10

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

}{
J ′
m(kρa)
Jm(kρa)

− pTM10

H
(1)′
m (ik1ρIa)

H
(1)
m (ik1ρIa)

}

=
1
4

{[
Jm−1(kρa)
Jm(kρa)

− Jm+1(kρa)
Jm(kρa)

]
−pTE10

[
H

(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

−
H

(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]}
{[

Jm−1(kρa)
Jm(kρa)

− Jm+1(kρa)
Jm(kρa)

]
−pTM10

[
H

(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

−
H

(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]}

=
1
4

{[
Jm−1(kρa)
Jm(kρa)

−pTE10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm−1(kρa)
Jm(kρa)

−pTM10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

−
[
Jm−1(kρa)
Jm(kρa)

−pTE10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm+1(kρa)
Jm(kρa)

− pTM10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

−
[
Jm+1(kρa)
Jm(kρa)

−pTE10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm−1(kρa)
Jm(kρa)

−pTM10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

+
[
Jm+1(kρa)
Jm(kρa)

−pTE10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm+1(kρa)
Jm(kρa)

−pTM10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]}

On account of the recurrence relation Bm−1(ξ) + Bm+1(ξ) = 2mBm(ξ)/ξ ,
the above equation becomes

m2k2
ρ

k2

(
k2

k2
ρ

+
k2
1

k2
1ρI

)(
1

k2
ρa

2
+

1
k2
1ρIa

2

)

=
1
4

{[
Jm−1(kρa)
Jm(kρa)

− pTE10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
2m
kρa
− pTM10

2m
ik1ρIa

]

−2
[
Jm−1(kρa)
Jm(kρa)

−pTE10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm+1(kρa)
Jm(kρa)

−pTM10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

−2
[
Jm+1(kρa)
Jm(kρa)

−pTE10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm−1(kρa)
Jm(kρa)

−pTM10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

+
[
Jm+1(kρa)
Jm(kρa)

− pTE10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
2m
kρa
− pTM10

2m
ik1ρIa

]}

=
1
2

{
2
[
m

kρa
− pTE10

m

ik1ρIa

][
m

kρa
− pTM10

m

ik1ρIa

]
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−
[
Jm−1(kρa)
Jm(kρa)

−pTE10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm+1(kρa)
Jm(kρa)

−pTM10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

−
[
Jm+1(kρa)
Jm(kρa)

−pTE10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm−1(kρa)
Jm(kρa)

−pTM10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

]}

which gives

[
Jm−1(kρa)
Jm(kρa)

− pTE10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm+1(kρa)
Jm(kρa)

−pTM10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

+
[
Jm+1(kρa)
Jm(kρa)

−pTE10

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

][
Jm−1(kρa)
Jm(kρa)

−pTM10

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

]

+ 2
(

1− µ1

µ

)(
1− ε1

ε

)
m2

k2
1ρIa

2
= 0 (E4.2.7.1)

As k1ρI → 0 , we make use of the approximations

H
(1)
m+1(ik1ρIa)

H
(1)
m (ik1ρIa)

∼ 2m
ik1ρIa

;
H

(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

∼ Am

where A1 = −ik1ρIa ln(ik1ρIa) and Am = ik1ρIa/2(m− 1) for m > 1 .
Under the approximation of k1ρI → 0 , the term Jm+1(kρa)/Jm(kρa) can be
neglected, and Eq. (E4.2.7.1) becomes

(
µ1

µ
+
ε1
ε

)kρa
Jm−1(kρa)
Jm(kρa)

− µ1ε1
µε

2Am
ik1ρIa

+m(1− µ1

µ
)(1− ε1

ε
) = 0

(E4.2.7.2)

As kρ → 0 , we make use of the approximation Jm−1(kρa)/Jm(kρa) ∼
2m/kρa , Eq. (E4.2.7.2) becomes, for m > 1

m

k2
1ρIa

2

[
m(1 +

µ1

µ
)(1 +

ε1
ε

)− µ1ε1
µε

k2
ρa

2

m− 1

]
= 0 (E4.2.7.3)

It is seen that kρ = 0 is not an acceptable solution. For m = 1 , (E4.2.7.2)
becomes,

1
k2
1ρIa

2

[
(1 +

µ1

µ
)(1 +

ε1
ε

) +
2µ1ε1
µε

k2
ρa

2 ln(ik1ρIa)
]

= 0 (E4.2.7.4)

It is seen that kρ = 0 is now an acceptable solution as k1ρI → 0 .
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For kρ 	= 0 and as k1ρI → 0 , Eq. (E4.2.7.2) becomes, for m > 1 ,

(
µ1

µ
+
ε1
ε

)kρa
Jm−1(kρa)
Jm(kρa)

− µ1ε1
µε

k2
ρa

2

m− 1
+m(1− µ1

µ
)(1− ε1

ε
) = 0

which is equivalent to (4.2.152) after making use of recurrence formula
Jm−1(ξ) = J ′

m(ξ) +mJm(ξ)/ξ . For m = 1 ,

(
µ1

µ
+
ε1
ε

)kρa
J0(kρa)
J1(kρa)

+ 2
µ1ε1
µε

k2
ρa

2 ln(ik1ρIa) + (1− µ1

µ
)(1− ε1

ε
) = 0

which is equivalent to (4.2.153).
End of Example 4.2.7

Example 4.2.8
Consider an optical fiber with radius a and µ = µ1 . The cutoff frequen-

cies of EH modes are obtained from (4.2.150). Let kρca = kcmpa
√

1− n2
1/n

2 .
We find, for m ≥ 1 and kρc 	= 0 ,

Jm(kρca) = 0

The cutoff frequencies of HE modes are obtained, after making use of the
recurrence formula Jm(kρa) = 2(m − 1)Jm−1(kρa)/kρa − Jm−2(kρa) , we
find, for m > 1 ,

Jm−2(kρca) = 0

Assume ε/ε1 ≈ 1 , we use (E4.2.7.1) to approximate the guidance condition

Jm+1(kρa)
kρJm(kρa)

≈
H

(1)
m+1(ik1ρIa)

ik1ρIH
(1)
m (ik1ρIa)

for EH modes (E4.2.8.1)

Jm−1(kρa)
kρJm(kρa)

≈
H

(1)
m−1(ik1ρIa)

ik1ρIH
(1)
m (ik1ρIa)

for HE modes (E4.2.8.2)

As k1ρIa� 0 ,

H(1)
m (ik1ρIa) ≈

√
2

iπk1ρIa
e−imπ/2−iπ/4 e−k1ρIa

H
(1)
m+1(ik1ρIa)

ik1ρIH
(1)
m (ik1ρIa)

≈ ∓i
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Equations (E4.2.8.1) and (E4.2.8.2) become

k1ρIaJm+1(kρa) ≈ −kρaJm(kρa) for EH modes (E4.2.8.3)
k1ρIaJm−1(kρa) ≈ kρaJm(kρa) for HE modes (E4.2.8.4)

Far away from cutoff, k1ρIa→∞ and k →∞ , we find

Jm+1(kρa) = 0 for EH modes (E4.2.8.5)
Jm−1(kρa) = 0 for HE modes (E4.2.8.6)

From (4.2.136),

ikzm

a
BJm(kρa)

[
1
k2
ρ

+
1

k2
1ρI

]
= iωA

[
ε

kρ
(Jm−1(kρa)−

m

kρa
Jm(kρa))

+ i
ε1
k1ρI

Jm(kρa)

H
(1)
m (ik1ρIa)

(H(1)
m−1(ik1ρIa)−

m

ik1ρIa
H(1)
m (ik1ρIa))

]

= iωA

[
ε

k1ρI
+ i

ε1
k1ρI

H
(1)
m−1(ik1ρIa)

H
(1)
m (ik1ρIa)

−
(
mε

k2
ρa

+
mε1
k1ρIa

)]
Jm(kρa)

≈ −iωεA
[
m

k2
ρa

+
m

k2
1ρIa

]
Jm(kρa)

B ≈ ±ωε
kz
≈ ±

√
ε

µ
A

{
EH modes
HE modes

The field components inside the fiber are

Ez = AJm(kρρ) sinmφeikzz

Hz = BJm(kρρ) cosmφeikzz ≈ ±
√

ε

µ
AJm(kρρ) cosmφeikzz

Eρ =
1
k2
ρ

[
AikzkρJ

′
m(kρρ) sinmφ−B

iωµm

ρ
Jm(kρρ) sinmφ

]
eikzz

=
ikA

kρ

[
J ′
m(kρρ)∓

m

kρρ
Jm(kρρ)

]
sinmφeikzz

= ∓ ikA
kρ

[Jm±1(kρρ)] sinmφeikzz

Eφ =
1
k2
ρ

[
Aikzm

ρ
Jm(kρρ) cosmφ−BiωµkρJ

′
m(kρρ) cosmφ

]
eikzz
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=
ikA

kρ

[
m

kρρ
Jm(kρρ)∓ J ′

m(kρρ)
]

cosmφeikzz

=
ikA

kρ
[Jm±1(kρρ)] cosmφeikzz

Hρ =
1
k2
ρ

[
BikzkρJ

′
m(kρρ) cosmφ−A

iωεm

ρ
Jm(kρρ) cosmφ

]
eikzz

=
ikA

kρ

√
ε

µ

[
±J ′

m(kρρ)−
m

kρρ
Jm(kρρ)

]
cosmφeikzz

= − ikA
kρ

√
ε

µ
[Jm±1(kρρ)] cosmφeikzz

Hφ =
1
k2
ρ

[
−B ikzm

ρ
Jm(kρρ) sinmφ+AiωεkρJ

′
m(kρρ) sinmφ

]
eikzz

=
ikA

kρ

√
ε

µ

[
∓ m

kρρ
Jm(kρρ) + J ′

m(kρρ)
]

sinmφeikzz

= ∓ ikA
kρ

√
ε

µ
[Jm±1(kρρ)] sinmφeikzz

The amplitudes C and D are related to A as

C = A
Jm(kρa)

H
(1)
m (ik1ρIa)

D = B
Jm(kρa)

H
(1)
m (ik1ρIa)

≈ ±
√

ε

µ
A

Jm(kρa)

H
(1)
m (ik1ρIa)

The field components outside the fiber are, after making use of (E4.2.8.3) and
(E4.2.8.4) with

Jm(kρa) ≈ ∓k1ρIaJm±1(kρa)/kρa
{

EH modes
HE modes

Ez = CH(1)
m (ik1ρIρ) sinmφeikzz ≈ AJm(kρa)e−k1ρI(ρ−a) sinmφeikzz

Hz=DH(1)
m (ik1ρIρ) cosmφeikzz≈±

√
ε

µ
AJm(kρa)e−k1ρI(ρ−a) cosmφeikzz

Eρ=
−1
k2
1ρI

[
−Ckzk1ρIH

(1)′
m (ik1ρIρ) sinmφ−Diωµ1m

ρ
H(1)
m (ik1ρIρ) sinmφ

]
eikzz

=
kA

k1ρI

[
H(1)′
m (ik1ρIρ)±

im

k1ρIρ
H(1)
m (ik1ρIρ)

]
Jm(kρa)

H
(1)
m (ik1ρIa)

sinmφeikzz
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=
kA

k1ρI

[
∓H(1)

m±1(ik1ρIρ)
]

Jm(kρa)

H
(1)
m (ik1ρIa)

sinmφeikzz

= ∓ ikA
kρ

√
a

ρ
Jm±1(kρa)e−k1ρI(ρ−a) sinmφeikzz

Eφ=
−1
k2
1ρI

[
C
ikzm

ρ
H(1)
m (ik1ρIρ) cosmφ+Dωµ1k1ρIH

(1)′
m (ik1ρIρ) cosmφ

]
eikzz

=
−kA
k2
1ρI

[
im

ρ
H(1)
m (ik1ρIρ)± k1ρIH

(1)′
m (ik1ρIρ)

]
Jm(kρa)

H
(1)
m (ik1ρIa)

cosmφeikzz

=
−kA
k1ρI

[
−H(1)

m±1(ik1ρIρ)
]

Jm(kρa)

H
(1)
m (ik1ρIa)

cosmφeikzz

=
ikA

kρ

√
a

ρ
Jm±1(kρa)e−k1ρI(ρ−a) cosmφeikzz

Hρ=
−1
k2
1ρI

[
−Dkzk1ρIH

(1)′
m (ik1ρIρ) cosmφ−C iωε1m

ρ
H(1)
m (ik1ρIρ) cosmφ

]
eikzz

=
kA

k2
1ρI

√
ε

µ

[
±k1ρIH

(1)′
m (ik1ρIρ)+

im

ρ
H(1)
m (ik1ρIρ)

]
Jm(kρa)

H
(1)
m (ik1ρIa)

cosmφeikzz

=
kA

k1ρI

√
ε

µ

[
−H(1)

m±1(ik1ρIρ)
]

Jm(kρa)

H
(1)
m (ik1ρIa)

cosmφeikzz

= −kA
kρ

√
εa

µρ
Jm±1(kρa)e−k1ρI(ρ−a) cosmφeikzz

Hφ=
−1
k2
1ρI

[
−Dikzm

ρ
H(1)
m (ik1ρIρ) sinmφ−Cωε1k1ρIH

(1)′
m (ik1ρIρ) sinmφ

]
eikzz

=
kA

k2
1ρI

√
ε

µ

[
±im

ρ
H(1)
m (ik1ρIρ)+k1ρIH

(1)′
m (ik1ρIρ)

]
Jm(kρa)

H
(1)
m (ik1ρIa)

sinmφeikzz

=
kA

k1ρI

√
ε

µ

[
∓H(1)

m±1(ik1ρIρ)
]

Jm(kρa)

H
(1)
m (ik1ρIa)

sinmφeikzz

= ∓ ikA

k1ρI

√
εa

µρ
Jm±1(kρa)e−k1ρI(ρ−a) sinmφeikzz

In terms of x and y components, we have

for ρ ≤ a,

Ey =Eρ sinφ+ Eφ cosφ =
ikA

kρ
[Jm±1(kρρ)] [cos(m± 1)φ]eikzz

Ex =Eρ cosφ− Eφ sinφ = − ikA
kρ

[Jm±1(kρρ)] [sin(m± 1)φ]eikzz
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Hy =Hρ sinφ+Hφ cosφ = − ikA
kρ

√
ε

µ
[Jm±1(kρρ)] [sin(m± 1)φ]eikzz

Hx =Hρ cosφ−Hφ sinφ = − ikA
kρ

√
ε

µ
[Jm±1(kρρ)] [cos(m± 1)φ]eikzz

for ρ ≥ a,

Ey =Eρ sinφ+ Eφ cosφ =
ikA

kρ
[Jm±1(kρρ)] e−k1ρI(ρ−a)[cos(m± 1)φ]eikzz

Ex =Eρ cosφ− Eφ sinφ = − ikA
kρ

[Jm±1(kρρ)] e−k1ρI(ρ−a)[sin(m± 1)φ]eikzz

Hy=Hρ sinφ+Hφcosφ=−ikA
kρ

√
ε

µ
[Jm±1(kρρ)]e−k1ρI(ρ−a)[sin(m±1)φ]eikzz

Hx=Hρcosφ−Hφ sinφ=−ikA
kρ

√
ε

µ
[Jm±1(kρρ)]e−k1ρI(ρ−a)[cos(m± 1)φ]eikzz

It is seen that the x and y components of the electric and magnetic fields
are related by the the impedance

√
µ/ε . The amplitudes of Ez and Hz are

vanishingly small as kρ → 0 .
End of Example 4.2.8

Example 4.2.9
To determine the field components of the HE11 for the optical fiber

studied above, we find

for ρ ≤ a,

Ey =Eρ sinφ+ Eφ cosφ =
ikA

kρ
[J0(kρρ)] eikzz

Ex =Eρ cosφ− Eφ sinφ = 0
Hy =Hρ sinφ+Hφ cosφ = 0

Hx =Hρ cosφ−Hφ sinφ = − ikA
kρ

√
ε

µ
[J0(kρρ)] eikzz

for ρ ≥ a,

Ey =Eρ sinφ+ Eφ cosφ =
ikA

kρ
[J0(kρρ)] e−k1ρI(ρ−a)eikzz

Ex =Eρ cosφ− Eφ sinφ = 0
Hy =Hρ sinφ+Hφ cosφ = 0

Hx =Hρ cosφ−Hφ sinφ = − ikA
kρ

√
ε

µ
[J0(kρρ)] e−k1ρI(ρ−a)φeikzz



4.2 Wave Guidance 457

We see that the field in the fiber approximate a plane wave with ωε/kz
relating the electric and magnetic field components. Similar relations can be
derived for the field components external to the fiber and characterized by
the zeroth order Hankel function of the first kind with imaginary arguments.

End of Example 4.2.9

Example 4.2.10
Power series solution of Bessel equation (4.2.107) takes the form

B(ξ) = ξα
∞∑
m=1

amξ
m =

(
ξ

2

)α ∞∑
m=1

amξ
m (−1)m

m!Γ(m+ α+ 1)

(
ξ

2

)2m

(E4.2.10.1)
where α = ±ν , and the Gamma function

Γ(p) =
∫ ∞

0

dx xp−1e−x (E4.2.10.2)

When p = m + 1 with m an integer, we see that Γ(m + 1) = m! . The
two independent solutions of (4.2.107) are the Bessel function Jν(ξ) and the
Neumann function Nν(ξ) .

Jν(ξ) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
ξ

2

)2m+ν

(E4.2.10.3)

Nν(ξ) =
Jν(ξ) cos νπ − J−ν(ξ)

sin νπ
(E4.2.10.4)

Notice that when ν = n is an integer, J−n(ξ) = (−1)nJn(ξ) .
End of Example 4.2.10

Example 4.2.11 Phase and group velocity.
Below the cutoff frequency for the m th mode, kz = ikzI and (4.2.7)

give

k2
zI + k2 =

(
mπ

d

)2

Above the cutoff frequency, the phase velocity vp along the ẑ direction is

vp =
ω

kz
=

1√
µε

[
1−

(
kcm
k

)2
]−1/2
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As the frequency goes to infinity, vp approaches the velocity of light in the
medium. For finite ω , the phase velocity is always larger than (µε)−1/2 . This
is because kz is always smaller than k . The fact that the phase velocity
depends on frequency makes the waveguide a dispersive transmission system.
The group velocity of propagation is

vg =
(
∂kz
∂ω

)−1

=
1√
µε

[
1−

(
kcm
k

)2
]1/2

Thus vpvg = 1/µε . The group velocity is always smaller than the velocity of
light inside the medium.

End of Example 4.2.11

Problems

P4.2.1

Consider a perfectly conducting parallel-plate waveguide with the plates
(separated by d) parallel to the y-z plane. The waveguide is filled with a
plasma medium with the plasma frequency ωp and permeability µo . The
permittivity of the plasma medium is ε = εo

(
1− ω2

p/ω
2
)

. Let a Hertzian
dipole pointing in the ẑ direction be placed in the waveguide. Assume that
the Hertzian dipole can excite all the modes in the waveguide.
(a) In the absence of the parallel-plate waveguide, sketch the radiation pat-

tern of the Hertzian dipole on the x-y plane in free space.
(b) What is the polarization of the electric field on the x-y plane in the

waveguide?
(c) Let ω =

√
2ωp . Find the range of the separation d in terms of the

wavelength in free space λo , where λo = 2π/ko = 2π/ω
√
µoεo , so that

there is ONLY ONE mode propagating in the parallel-plate waveguide.
What is this mode (indicate TE or TM, and the mode number m )?

P4.2.2
Consider a perfectly conducting parallel-plate waveguide filled with a

dielectric medium for z > 0 as shown in Fig. P4.2.2.1. The dielectric medium
has permittivity ε1 . The operating frequency is 30/2π GHz. The guided wave
propagates in the ẑ direction.
(a) Let d = 2

√
3π cm and consider the empty waveguide with ε1 = ε0

(in the absence of the dielectric). Which TEm and TMm modes can
propagate in this waveguide.

(b) Find expressions for the E and H fields for the TM2 mode in the
absence of the dielectric.

(c) What are the phase and group velocities for the TM2 mode at this
operating frequency in the absence of the dielectric?
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d

x

z = 0

z

µo, εo µo, ε1
Dielectric

Figure P4.2.2.1 Parallel-plate waveguide.

(d) Let ε1 = 3ε0 and d = 2
√

3π cm. For waves propagating in the +ẑ
direction, for which values of m will the TMm modes be totally reflected
at the dielectric boundary? Why?

(e) For which value of m will a propagating TMm mode be totally trans-
mitted (no reflection) and why?

P4.2.3

Consider a perfectly conducting parallel-plate waveguide, which is filled
with air for z < 0 and filled with a dielectric medium of permittivity ε1 for
z > 0 . Let d = 1 cm and ε1 = 4εo . The waveguide is excited at f = 20 GHz .
Waves are guided in ±ẑ directions.
(a) List all possible propagating modes of TE and TM waves for z < 0 and

z > 0 .
(b) If the incident wave comes from z < 0 , what is the reflection coefficient

for TE1 mode at the boundary z = 0 ?
(c) If the dielectric medium ( ε1 ) is replaced by a perfect conducting medium,

find the total field E for TE1 mode for z < 0 .

P4.2.4

Consider the excitation of a parallel-plate waveguide by a current sheet

Js = x̂Js cos
3πx
d

Find the amplitudes of the excited modes.

P4.2.5

Determine the electric field solution for the asymmetric slab waveguide
and find its cutoff spatial frequency.

P4.2.6

A parallel-plate waveguide is excited by a line source placed at a distance
h from the bottom plate. Write the fields produced by this source inside the
waveguide as a superposition of the guided modes, and determine their mode
amplitudes.
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P4.2.7
A rectangular waveguide is excited by a probe at the position x = d , z = 0.
Assume that the probe extends from y = 0 to y = b, and approximate the
current on the probe by

J(x, y, z) = I0δ(x− d) δ(z) cos qy

What are the mode amplitudes that are excited by this probe? To achieve
maximum excitation for the TE10 mode, where should the probe be placed?

P4.2.8
In an air-filled rectangular waveguide with dimensions a = 3

√
2 cm and

b = a/2 , the guided wave is given by

E = ŷEo sin
(
π

a
x
)

sin
(
π

a
z − ωt

)
H = x̂Ho sin

(
π

a
x
)

sin
(
π

a
z − ωt

)
+ ẑHo cos

(
π

a
x
)

cos
(
π

a
z − ωt

)
where Eo and Ho are real constants.
(a) What is the mode for this wave? Indicate TEmn or TMmn and the

mode numbers m and n .
(b) Show that the frequency is f = 5 GHz .
(c) What is the phase velocity in ẑ direction in terms of the light speed c ?
(d) What is the cutoff frequency of this mode?
(e) If the waveguide is used as a rectangular cavity resonator for frequency

f = 5 GHz by closing the ends at z = 0 and z = d using perfectly
conducting plates, what is the value of d for the lowest mode? Indicate
this lowest mode ( TEmnp or TMmnp ) and the mode numbers m, n and
p . (Hint: d can be larger than a and b .)

P4.2.9
Consider a rectangular waveguide with dimensions 1 cm× 0.5 cm.
(a) What are the cutoff frequencies for the first five modes?
(b) If the waveguide is excited at 20 GHz, what are the propagation constants

kz for the first five modes?
(c) If the waveguide is excited at 50 GHz, how many modes will propagate?

P4.2.10
Consider a coaxial line with inner radius a and outer radius b. Assume

that b = a(1 + δ) and δ � 1. The fundamental mode in this waveguide
is TEM, which has zero cutoff wavenumber. What are the cutoff wavenum-
bers for the higher-order modes? Rigorously this requires the solution of the
boundary value problem in cylindrical coordinates. The exact solution will
involve Bessel and Neumann functions. However, the question can be an-
swered by observing that, when δ is very small, the guiding space can be
modeled as that between two parallel plates with x = ρφ and y from a
to b. Notice that x = 2πa ≈ 2πb and that the fields must be the same at
x = 0. Thus there is a periodic variation in the x̂ direction. Using this model,



4.2 Wave Guidance 461

show that the cutoff wavenumber of the next higher order mode is kc ≈ 1/a.
Note the similarity to the cutoff wavenumber for the TE20 mode in a rect-
angular waveguide with width 2πa and height δa. Confirm the answer by
evaluating the cutoff wavenumber from the guidance condition. Note that the
cutoff wavenumber for TE1 and TM1 modes in a parallel-plate waveguide
is kc = π/δa, which is much larger than 1/a.

a

b

σ → ∞

σ → ∞

Figure P4.2.10.1 Coaxial cable.

(a) State the first three modes in the increasing cutoff frequencies by using
the mode designation convention in rectangular waveguides.

(b) Determine these cutoff frequencies.

P4.2.11
In a fiberglass waveguide having a center core with a radius of the order

of 1 µm and cladding with a radius of the order of 100 µm , the HE11 mode
operating range can be extended to the visible range if the refractive indices
n = c

√
µε and n1 = c

√
µ1ε1 are also very close. Because the cladding is very

thick in comparison to the core, the wave guidance by an optical fiber can be
treated with the dielectric waveguide model. Find the value of (n2 − n2

1)
1/2 ,

called the numerical aperture, so that the cutoff frequency for the next higher-
order mode will be 6× 1014 Hz. When fiberglass is used as the transmission
medium in communications, it provides not only large bandwidth and channel
capacity but also physical compactness and flexibility. Compare the result
with the slab and with the metallic waveguides.
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4.3 Resonance

A. Rectangular Cavity Resonator

A resonator with uniform cross section in the ẑ direction can be viewed
as a waveguide with both ends closed. Instead of guided waves propa-
gating along the z axis, the waves are standing in the ẑ direction. The
standing wave can be viewed as a superposition of a guided wave in the
+ẑ direction and a guided wave in the −ẑ direction. The formulation
for waveguides is also applicable to resonators. We have

Es =
1

k2 − k2
z

[
∇s

∂

∂z
Ez + iωµ∇s ×Hz

]
(4.3.1a)

Hs =
1

k2 − k2
z

[
∇s

∂

∂z
Hz − iωε∇s × Ez

]
(4.3.1b)(

∇2 + k2

)
Ez = 0 (4.3.2a)(

∇2 + k2

)
Hz = 0 (4.3.2b)

where k2 = ω2µε and the Laplacian operation ∇2 in (4.3.2) is now a
three-dimensional operator.

Consider the metallic rectangular cavity as shown in Fig. 4.3.1. It
is a waveguide closed with metallic walls at z = 0 and z = d. We find
for TM modes

a

b

x

dy

z

Figure 4.3.1 Rectangular cavity.
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Ez = E0 sin kxx sin kyy cos kzz (4.3.3a)

Ex =
−kxkz

ω2µε− k2
z

E0 cos kxx sin kyy sin kzz (4.3.3b)

Ey =
−kykz

ω2µε− k2
z

E0 sin kxx cos kyy sin kzz (4.3.3c)

Hx =
−iωεky

ω2µε− k2
z

E0 sin kxx cos kyy cos kzz (4.3.3d)

Hy =
iωεkx

ω2µε− k2
z

E0 cos kxx sin kyy cos kzz (4.3.3e)

Hz = 0 (4.3.3f)

and for TE modes

Hz = H0 cos kxx cos kyy sin kzz (4.3.4a)

Hx =
−kxkz

ω2µε− k2
z

H0 sin kxx cos kyy cos kzz (4.3.4b)

Hy =
−kykz

ω2µε− k2
z

H0 cos kxx sin kyy cos kzz (4.3.4c)

Ex =
−iωµky
ω2µε− k2

z

H0 cos kxx sin kyy sin kzz (4.3.4d)

Ey =
iωµkx

ω2µε− k2
z

H0 sin kxx cos kyyb sin kzz (4.3.4e)

Ez = 0 (4.3.4f)

To satisfy the boundary conditions, we must have

kxa = mπ (4.3.5a)
kyb = nπ (4.3.5b)
kzd = pπ (4.3.5c)

which is the resonance condition for the resonator.
The dispersion relation for both the TM and TE modes is

k2
r = (mπ/a)2 + (nπ/b)2 + (pπ/d)2

This gives the resonant spatial frequency

kr =
√

(m/2a)2 + (n/2b)2 + (p/2d)2 Ko (4.3.6)

The resonant spatial frequencies for TMmnp modes and TEmnp modes
are identical. It is interesting to observe that TMmn0 modes corre-
spond to waveguide modes at cutoff, where kz = 0.
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Example 4.3.1
When the resonator dimensions are such that a > b > d , the lowest

resonant spatial frequency is found to be

kr =
√

(1/2a)2 + (1/2b)2 Ko (E4.3.1.1)

with m = n = 1 and p = 0. The mode inside the resonator is TM110 . The
non-zero field components for the TM110 mode are

Ez = E0 sin
πx

a
sin

πy

b
(E4.3.1.2a)

Hx =
−iπ
ωµb

E0 sin
πx

a
cos

πy

b
(E4.3.1.2b)

Hy =
iπ

ωµa
E0 cos

πx

a
sin

πy

b
(E4.3.1.2c)

z

x

y E

H

a

b
d

Figure E4.3.1.1 TM110 mode in rectangular cavity.

The field distribution is illustrated in Fig. E4.3.1.1. We see that the electric
fields are perpendicular to the plate boundaries at z = 0 and z = d and
concentrate at the center of the cavity so that the tangential E field vanishes
at the boundaries x = 0, a and y = 0, b. As an example, if we let a =
4 cm, b = 3 cm , and d = 2 cm , we find the resonant spatial frequency for the
TM110 mode to be kr = 21 Ko .

This field can also be viewed as a dominant waveguide mode propagating
in the ŷ direction and reflected at the walls y = 0 and y = b to form a
standing wave. If the labels of the coordinate axes y and z are interchanged,
this mode may also be called a TE101 mode.

End of Example 4.3.1
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The time dependence of electric and magnetic fields is eiωrt with ωr =
kr/
√
µε . As time increases, the field amplitudes will decay as e−αrt with

time due to wall loss or material loss. The total energy

U(t) = U(0)e−2αrt (4.3.7)

The dissipated power

Pd = −dU
dt

= 2αrU (4.3.8)

We define a quality factor

Q = ωr/2αr = ωrU/Pd (4.3.9)

which is equal to the total energy divided by average energy loss per angular
frequency, and is a measure of the quality of the cavity resonator.

Example 4.3.2
In rectangular resonator, we calculate the quality factor Q = ω0U/rPd ,

where ω0 is the resonant angular frequency. Under the assumption of a loss-
less medium, we find

U =
1
2
Re

{∫ d

0

dz

∫ b

0

dy

∫ a

0

dx

[
ε

2
|E|2 +

µ

2
|H|2

]}
= ε

abd

8
E2

110

(E4.3.2.1)
for the dominant TM110 mode in the rectangular cavity. Integrating over the
cavity walls, we obtain

Pd =
1
2

√
ω0µ/2σRe

{
2
∫ d

0

dz

∫ a

0

dx |Hx|2y=0

+2
∫ d

0

dz

∫ b

0

dy |Hy|2x=0 + 2
∫ a

0

dx

∫ b

0

dy
(
|Hx|2 + |Hy|2

)
z=0

}

=
1
2

√
ω0µ/2σ

[
ad

b2
+
bd

a2
+

1
2

(
b

a
+
a

b

)]
π2ω2

0ε
2

(π2/a2 + π2/b2)2
E2

110

Therefore,

Q =

√
2σ
ω0ε

πd(a2 + b2)3/2

2[ab(a2 + b2) + 2d(a3 + b3)]
(E4.3.2.2)
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In this derivation, we used the fact that ω0
√
µε =

√
(π2/a2) + (π2/b2). For

a cubic cavity with a = b = d = 2 cm, the resonant frequency, according to
(4.3.6), is 10 GHz; and the quality factor is Q ≈ 104 when the cavity is air-
filled and is made of copper walls. Other sources of loss, such as the material
filling the cavity, surface irregularities of the cavity walls, and coupling with
external systems, all contribute toward power dissipation Pd and thereby
decrease Q.

End of Example 4.3.2

Example 4.3.3
Consider a series R,L,C circuit. The terminal voltage Vs is related to

the current Is in the circuit by

Vs =
(
R + sL+

1
sC

)
I(s) =

(s− s+)(s− s−)
s/L

I(s)

where

s± = − R

2L
± i

√
1
LC
−

(
R

2L

)2

= −αr ± i
√
ω2

0 − α2
r ≈ −αr ± iωo

αr =
Pd
2U

=
1
2R|I|2

2 · 2 · 1
4L|I|2

=
R

2L

and ωo = 1/
√
LC . The power dissipated at s = iωo is

P (ωo) =
R

2
|I(s = iωo)|2 =

R

2

∣∣∣∣ iωoVs(ωo)/Lαr(i2ωo − αr)

∣∣∣∣
2

=
|Vs(ωo)|2

2R

The power dissipated at s = i(ωo ± αr) is

P (ωo ± αr) =
R

2
|I(s = i(ωo ± αr))|2 ≈

R

2

∣∣∣∣ iωoVs(ωo)/L
(αr ± iαr)(i2ωo ± αr − αr)

∣∣∣∣
2

≈ R

2

∣∣∣∣Vs(ωo)/L√
22αr

∣∣∣∣
2

=
|Vs(ωo)|2

4R
=

P (ωo)
2

Thus the half-power point bandwidth is BW = 2αr . It is seen that the
quality factor

Q = ωoU/Pd = ωo/2αr = ωo/BW = ωoL/R =
√
L/C/R

is expressible in terms of inverse attenuation rate, inverse bandwidth, res-
onator circuit elements, and stored energy over dissipated power.

End of Example 4.3.3
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B. Circular Cavity Resonator

Consider a circular cavity of height d and radius a [Fig. 4.3.2]. Under
the assumption that d < a, the fundamental mode is TM010, which
corresponds to the waveguide mode TM01 at cutoff. The fields inside
the cavity are

z

a

dd

Figure 4.3.2 Circular cavity resonator.

Ez = E0J0(kρ) (4.3.10a)

Hφ = −i
√
ε/µE0J1(kρ) (4.3.10b)

The resonant wavenumber is

kra = 2.405 (4.3.10c)

The time-average energy stored in the cavity is calculated as

U =
1
2

∫ a

0
2πρ dρ

[ ε
2
|Ez|2 +

µ

2
|Hφ|2

]
d = E2

0

πεd

2
a2J2

1 (ka) (4.3.11)

The integral formula for Bessel functions,∫
ρ dρB2

m(kρ) =
ρ2

2

[
B′2
m(kρ) +

(
1− m2

k2ρ2

)
B2
m(kρ)

]
(4.3.12)

is used, and so is J0(ka) = 0. The power dissipation caused by wall
loss is

Pd =
E2

0

2

√
ω0µ/2σ

[
2πad

ε

µ
J2

1 (ka) + 2
∫ a

0
2πρ

ε

µ
J2

1 (kρ)dρ
]

=
√
ω0µ/2σ E2

0

ε

µ
πa(d+ a)J2

1 (ka)
(4.3.13)
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The first term is due to loss on the side wall and the second term to
loss on the walls at z = 0 and z = d. The quality factor becomes

Q =
ω0U

Pd
=

√
2σ/ω0ε

2.405
2(1 + a/d)

(4.3.14)

where we made use of (4.3.10c) . In the mode designation TM010 the
three subscripts correspond to φ, ρ, and z variations, respectively.
The TE011 mode, for instance, is the waveguide mode TE01 forming
a standing wave in the ẑ direction.

C. Spherical Cavity Resonator

For a spherical cavity, the waveguide formulation breaks down because
there is no uniform cross section in any direction. Consider the Maxwell
equations in spherical coordinates [Fig. 4.3.3], and treat the case with
φ symmetry, ∂/∂φ = 0. Instead of decomposing a general field into
TM and TE to ẑ components, we decompose into TM and TE to r̂
components. For the TM waves, the Maxwell equations give

∂

∂r
(rEθ)−

∂Er
∂θ

= iωµrHφ (4.3.15a)

1
r sin θ

∂

∂θ
(Hφ sin θ) = −iωεEr (4.3.15b)

− ∂

∂r
(rHφ) = −iωεrEθ (4.3.15c)

x

y

z

θ

φ

r

Figure 4.3.3 Spherical coordinate system.
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Inserting (4.3.15b) and (4.3.15c) into (4.3.15a) yields an equa-
tion for Hφ

1
r

∂2

∂r2
(rHφ) +

1
r2 sin θ

∂

∂θ

(
sin θ

∂Hφ
∂θ

)
− 1
r2 sin2 θ

Hφ + k2Hφ = 0

(4.3.16)
A similar equation for Eφ , which is the dual of (4.3.16), can be ob-
tained for the TE waves.

Before solving for (4.3.15) and (4.3.16), we first study general solu-
tions to Helmholtz wave equations in spherical coordinates. From the
source-free Maxwell equations in isotropic media, the wave equation
for E and H is readily derived

(∇2 + k2)
{
E

H

}
= 0

Let W (r, θ, φ) denote any rectangular component of E or H. The
Helmholtz equation takes the form

1
r

∂2

∂r2
(rW ) +

1
r2 sin θ

∂

∂θ

(
sin θ

∂W

∂θ

)
+

1
r2 sin2 θ

∂2W

∂φ2
+ k2W = 0

(4.3.17)
Equation (4.3.16) can be derived directly from (4.3.17) by noting that
for H = φ̂Hφ , ∇2φ̂ = −φ̂ 1/(r2 sin2 θ) . The solution to the Helmholtz
equation (4.3.17) is obtained by separation of variables

W = R(r)Θ(θ)Φ(φ) (4.3.18)

The special functions satisfy the following differential equations:

r
d2

dr2
(rR) + [(kr)2 − n(n+ 1)]R = 0 (4.3.19a)

1
sin θ

d

dθ

(
sin θ

dΘ
dθ

)
+

[
n(n+ 1)− m2

sin2 θ

]
Θ = 0 (4.3.19b)

d2Φ
dφ2

+m2Φ = 0 (4.3.19c)

Solutions to (4.3.19a), (4.3.19b), and (4.3.19c) are, respectively, the
spherical Bessel functions, bn(kr), the associated Legendre polynomi-
als, Lmn (cos θ), and the harmonic functions, e±imφ.
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The spherical Bessel functions bn(ξ) are related to the cylindrical
Bessel functions Bn+1/2(ξ) which satisfy the Bessel equation

d2

dξ2
B(ξ) +

1
ξ

d

dξ
B(ξ) +

[
1− (n+ 1/2)2

ξ2

]
B(ξ) = 0

We can cast (4.3.19a) in the form of the Bessel equation by letting
R(ξ) = (π/2ξ)1/2B(ξ) with ξ = kr. We thus find that

bn(kr) =
√
π/2kr Bn+1/2 (kr) (4.3.20)

If n is an integer, Bn+1/2 reduces to simple sinusoids and powers of
r. For the first few orders, for instance

j0(kr) =
sin kr
kr

(4.3.21a)

j1(kr) = −cos kr
kr

+
sin kr
(kr)2

(4.3.21b)

j2(kr) = −sin kr
kr

− 3 cos kr
(kr)2

+
3 sin kr
(kr)3

(4.3.21c)

n0(kr) = −cos kr
kr

(4.3.22a)

n1(kr) = −sin kr
kr

− cos kr
(kr)2

(4.3.22b)

n2(kr) =
sin kr
kr

− 3 sin kr
(kr)2

− 3 cos kr
(kr)3

(4.3.22c)

The spherical Hankel functions of the first kind take the form

h
(1)
0 (kr) =

eikr

ikr
(4.3.23a)

h
(1)
1 (kr) = −e

ikr

kr

(
1 +

i

kr

)
(4.3.23b)

h
(1)
2 (kr) =

ieikr

kr

[
1 +

3i
kr

+ 3
(

i

kr

)2
]

(4.3.23c)

The spherical Hankel function of the second kind is the complex con-
jugate of h

(1)
n .
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The first few orders of the associated Legendre polynomials of
degree 1 take these forms:

P 1
0 (cos θ) = 0 (4.3.24a)

P 1
1 (cos θ) = sin θ (4.3.24b)

P 1
2 (cos θ) = 3 sin θ cos θ (4.3.24c)

It is a general property that all of the associated Legendre polynomials
P 1
n(cos θ) are zero at θ = 0 and π; at θ = π/2, they are zero if n is

even and maximum if n is odd. For the Hφ component,

H = φ̂Hφ = (−x̂ sinφ+ ŷ cosφ)Hφ
Substituting in (4.3.17) yields(

∇2 + k2 − 1
r2 sin2 θ

)
Hφ = 0

The effect of the last term on the solution is to increase the associated
Legendre polynomial by one more degree in m.

In view of (4.3.17) and its solution in (4.3.18), we see that the
solutions for Hφ in (4.3.16) take the form

Hφ = bn(kr)P 1
n(cos θ) (4.3.25)

There is no φ dependence. For a spherical cavity with radius a , the
spherical Bessel function is used because the origin is included. For the
lowest TM mode we let n = 1 and use three subscripts on TM to
denote the variations around r , φ, and θ, respectively. The TM101

mode has the field solutions

Hφ = H0 sin θ
√

π

2kr
J3/2(kr) = H0

sin θ
kr

(
sin kr
kr

− cos kr
)

(4.3.26a)

Er = i2H0

√
µ

ε

cos θ
k2r2

(
sin kr
kr

− cos kr
)

(4.3.26b)

Eθ = −iH0

√
µ

ε

sin θ
k2r2

(
k2r2 − 1

kr
sin kr + cos kr

)
(4.3.26c)

The boundary condition of vanishing Eθ at r = a gives

tan ka =
ka

1− k2a2

Solving this transcendental equation yields ka ≈ 2.74, which gives the
resonant wavenumber of the cavity.
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D. Cavity Perturbation

The resonant frequency of a cavity changes when a small perturbation
is applied to either the cavity wall or the medium inside the cavity.
First, we consider an inward perturbation of the cavity wall [Fig. 4.3.4].
The unperturbed fields have resonant frequency ω0 and satisfy the
Maxwell equations:

cavity after
inward perturbation
volume V, surface S inward perturbation

volume ∆V, surface ∆S

unperturbed cavity
volume V0, surface S0

Figure 4.3.4 Cavity perturbation.

∇× E0 = iω0µH0 (4.3.27a)
∇×H0 = −iω0εE0 (4.3.27b)

With the perturbation, the resonant frequency becomes ω and the
fields satisfy the Maxwell equations:

∇× E = iωµH (4.3.28a)
∇×H = −iωεE (4.3.28b)

The task is to calculate the deviation of ω from ω0. We dot-multiply
the complex conjugate of (4.3.27a) by H and subtract (4.3.28b), dot-
multiplied by E

∗
0. The result is

∇ ·
(
E

∗
0 ×H

)
= −iω0µH ·H∗

0 + iωεE · E∗
0 (4.3.29a)

Next, we dot-multiply (4.3.28a) by H
∗
0 and subtract the complex

conjugate of (4.3.27b) dot-multiplied by E. The result is

∇ ·
(
E ×H

∗
0

)
= iωµH ·H∗

0 − iω0εE · E∗
0 (4.3.29b)
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Integrating the sum of (4.3.29a) and (4.3.29b) over the unperturbed
volume V0 = V + ∆V, we find

©
∫∫

∆S
dS · E ×H

∗
0 = i(ω − ω0)

∫∫∫
V0

dV (εE · E∗
0 + µH ·H∗

0)

In these calculations, we use the fact that tangential E vanishes on
the perturbed cavity surface and tangential E0 vanishes on the unper-
turbed cavity surface. Note that the surface integration extends over
the small perturbed surface ∆S , while the volume integration extends
over the unperturbed volume. We obtain the exact equation

ω − ω0 = −i
©
∫∫

∆S
dS · E ×H

∗
0∫∫∫

V0

dV (εE · E∗
0 + µH ·H∗

0)
(4.3.30)

Now we assume that the perturbation is so small that we can replace E
and H on the right-hand side of (4.3.30) by their unperturbed values
E0 and H0 to obtain approximate values for ω − ω0 :

ω − ω0 ≈− i

©
∫∫

∆S
dS · E0 ×H

∗
0∫∫∫

V0

dV
(
ε
∣∣E0

∣∣2 + µ
∣∣H0

∣∣2)

=ω0

∫∫∫
∆V

dV
(
µ

∣∣H0

∣∣2 − ε
∣∣E0

∣∣2)∫∫∫
V0

dV
(
µ

∣∣H0

∣∣2 + ε
∣∣E0

∣∣2)

=ω0
∆Wm −∆We

Wm +We
(4.3.31)

The denominator is the unperturbed total energy stored in the cavity.
The numerator is the difference between the magnetic energy and the
electric energy removed by the inward perturbation. Thus, if the inward
perturbation is made at a place of large magnetic field, the resonant
frequency is raised; if it is made at a place of large electric field, the
resonant frequency is lowered. An opposite effect occurs for an outward
perturbation.
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Next, we investigate the resonant frequency change caused by ma-
terial perturbation inside the cavity. Let the unperturbed medium be
isotropic. To be more general, we include anisotropy in the perturba-
tion. The Maxwell equations before and after perturbation are

∇× E0 = iω0µH0 (4.3.32a)

∇×H0 = −iω0εE0 (4.3.32b)

and
∇× E = iωµH + iω∆µ ·H (4.3.33a)

∇×H = −iωεE − iω∆ε · E (4.3.33b)

We dot-multiply the complex conjugate of (4.3.32a) by H and sub-
tract (4.3.33b) dot-multiplied by E

∗
0. The result is

∇ · (E∗
0 ×H) = −iω0µH

∗
0 ·H + iωεE · E∗

0 + iω(∆ε · E) · E∗
0

A similar operation on (4.3.32b) and (4.3.33a) gives

∇ · (E ×H
∗
0) = iωµH ·H∗

0 + iω(∆µ ·H) ·H∗
0 − iω0εE · E∗

0

Integrating the sum of these two equations over the cavity volume
and making use of the boundary condition that both n̂ × E = 0 and
n̂× E0 = 0 on the cavity surface, we obtain

ω − ω0

ω
=
−

∫∫∫
V
dV

[
(∆µ ·H) ·H∗

0 + (∆ε · E) · E∗
0

]
∫∫∫

V
dV (µH ·H∗

0 + εE · E∗
0)

(4.3.34)

This is also an exact formula. When the perturbation is so small that
we can replace the perturbed fields on the right-hand side by their
unperturbed values, we obtain

ω − ω0

ω
≈ −∆Wm + ∆We

Wm +We
(4.3.35)

The denominator expresses the unperturbed total energy inside the
cavity, and the numerator corresponds to the increase in magnetic and
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electric energies caused by the material perturbation. Thus any in-
crease in the permeability or the permittivity of the material inside the
cavity decreases the resonant frequency. For instance, recall that the
resonant wavenumber for the dominant mode in a circular resonator
is kra = 2.405. As kr = ω

√
µε increases, the resonant frequency ω0

decreases. The material, of course, need not be uniformly distributed
throughout the cavity. The calculation of ∆Wm and ∆We correspond-
ing to ∆µ and ∆ε extends only over the region where perturbation
occurs.

Problems

P4.3.1
A rectangular cavity 1× 2× 3 cm is filled with a dielectric with permit-

tivity ε = 4εo and permeability µo .

z

x

y1cm

4εo, µo

E

H

a a′

3cm

1cm

2cm

Figure P4.3.1.1 Rectangular cavity.

(a) List the four lowest distinct resonant frequencies of the cavity and their
corresponding mode designations ( TEmnp, TMmnp ).

(b) In the above figure, replace the x coordinate with z, y with x, and
z with y . What is the mode designation now (TEmnp, TMmnp) corre-
sponding to the fields sketched in Figure P4.3.1.1?

(c) What is the mode designation (TEmnp, TMmnp) and resonant frequency
ω0 corresponding to the fields sketched in Figure P4.3.1.1?

(d) What is the internal QI of the rectangular cavity operating at its lowest
order mode if the dielectric material is slightly lossy with conductivity
σ = 10−4 mho/meter?

(e) We wish to slightly tune this cavity by appropriately hitting it from the
outside with a ball-peen hammer. On the diagram indicate the regions
where hitting the cavity increases the fundamental resonant frequency,
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and the region where the resonant frequency decreases. Compute pre-
cisely where (if anywhere), along the line aa′ , the boundary between
the two regions is, i.e., where hitting it has no effect on the resonant
frequency of the lowest order mode.

P4.3.2
Dissipation occurs when a cavity is filled with conducting media. Since

the resonance conditions restrict the values of kx , ky , and kz , the field
inside the resonator will attenuate in time. We write the field components for
the TM110 mode as

Ez = µ0A sin
mπx

a
sin

nπy

b
(ωR cosωRt− ωI sinωRt) e−ωI t

Hx = −nπ
b
A sin

mπx

a
cos

nπy

b
sinωRt e−ωI t

Hy =
mπ

a
A cos

mπx

a
sin

nπy

b
sinωRt e−ωI t

Determine the rate of attenuation in time and how much ωR is changed from
its value when there is no dissipation due to conductivity.

P4.3.3
Consider a resonator made of a section of coaxial line with length d and

short circuited with conducting plates at both ends as shown below.

→∞

d

µo εo

σ

inward pertubation

d/2 d/2

z = 0 z = d

µo εo

z

ρ

φ

a) b)

Figure P4.3.3.1 Coaxial resonator.

(a) What are the electric and magnetic fields for the TEM modes?

Eρ =
Eo
ρ

cos(kz − ωt) Hφ =
Eo
ηρ

cos(kz − ωt)

(b) Let d = 10 cm . What is the lowest nonzero resonant frequency (which
is associated with the TEM1 mode)?

(c) Find the magnitude of the electric field and the magnitude of the mag-
netic field as functions of z for the TEM2 mode.
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(d) Suppose the TEM2 mode is excited inside the resonator and an inward
perturbation, achieved by using a perfectly conducting screw, is made
near the center (z = d/2) of the resonator as shown in Fig. P4.3.3.1b.
Will the resonant frequency of that mode be lowered or raised?
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Answers

P4.1.1

(a) E layer: N = 1011m−3 , ωp = 56.349
√

1011 = 1.78 × 107 rad/sec
F layer: N = 6× 1011m−3 , ωp = 56.349

√
6× 1011 = 4.36× 107 rad/sec

(b) E layer: nE = 0.9590, θEt = sin−1
(
no
nE

sin θ
)

= sin−1 (1.0427 sin θ) .

F layer: nF = 0.7201, θFt = sin−1
(
no
nF

sin θ
)

= sin−1 (1.3888 sin θ) .

(c) no sin θ ≥ nE ,
εE
εo

= 1− ω2
p

ω2 ≤ sin2 θ = sin2 30◦ = 1
4 ,

E layer: f = ω
2π ≤ 1

π
√

3
ωp = 1

π
√

3
× 1.78× 107 Hz = 3.28 MHz

F layer: f ≤ 1
π
√

3
ωp = 1

π
√

3
× 4.36× 107 Hz = 8.10 MHz

P4.1.2

(a) φ = 2θ2 − 2(θ1 − θ2) = 2(2θ2 − θ1)

(b) dφ
dθ1

= d
dθ1

[
2 sin−1( sin θ1

n )− θ1
]

= 0⇒ sin θ1 =
√

(4− n2)/3
For n = 4/3 = 1.33 , sin θ = 0.86⇒ φ = 2(2θ2 − θ1) � 42◦ .

(c) For red light, θ1 = 59.58◦ , θ2 = 40.42◦ , φmax = 42.52◦ , and θs =
137.5◦ ; for violet light θ1 = 58.89◦ , θ2 = 39.64◦ , φmax = 40.78◦ , and
θs = 139◦ . The outer arc of the rainbow will be red, and violet will be
on the inner arc of the rainbow.

P4.1.3

(a) Et = ŷE0
2

1+
√
ε/ε0

eiktx

(b) ε = ε0(1− 2) = −ε0 ,
〈
S
〉

= 0

(c) ε ≈ iσ/ω ,
〈
S
〉

= −x̂ |E0T |2
2ωµ

√
ωµσ

2
e2x/δ

P4.1.4

The laser beam is a TM wave linearly polarized in the plane of the
paper as the multiple reflections occur at Brewster angle which provides total
transmission for TM waves and amplified inside the laser cavity.

For εb = 2.5 , tan θB =
√
ε/εb = 1/

√
2.5 = 0.6325 , θB = 32.3◦

θ = 90◦−θB = 57.7◦ , φ = 90◦−θB = 57.7◦ , α = 180◦−θ−φ = 2θB =
64.6◦

P4.1.5

The critical angle for the ordinary wave is θoc = sin−1
√
ε0/ε .

The critical angle for the extraordinary wave is θec = sin−1
√
ε0/εz .

Since εz < ε for a negative uniaxial crystal, θec > θoc . For the range of
incidence angle θ such that θec > θ > θoc , only the extraordinary wave will
be transmitted.
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P4.1.6

With R01 = Rga , R1t = Rag = −Rga , the reflection coefficient

R =
R01 +R1te

i2k1zd1

1 +R01R1tei2k1zd1
=

Rga −Rga e
−2α1z∆

1−R2
ga e

−2α1z∆

and the transmission coefficient

T =
4e−iktz∆e−α1z∆

(1 + p01)(1 + p1t)(1−R2
ga e

−2α1z∆)

For θ larger than the critical angle, |Rga| = 1 , p10 = 1/p01 = iεgα1z/εaktz
for TM waves, and p10 = 1/p01 = iα1z/ktz for TE waves. Note that as
∆ → ∞, R = Rga , and T = 0 ; and as ∆ = 0, R = 0 , and T = 1 . For
finite ∆ , T 	= 0 and is complex, thus transmission is now possible.

P4.1.7

(a) Let x = kt cos θt/k cos θ and e = εt/ε . we write

rTE−rTM=
(1− x)2(1 + x/e)2 − (1 + x)2(1− x/e)2

(1 + x)2(1 + x/e)2
= 4x

(1− 1/e)(x2/e− 1)
(1 + x)2(1 + x/e)2

x2/e = cos2 θt/ cos2 θ = (1− sin2 θ/e)/(1− sin2 θ)

For e > 1 , x2/e > 1 ; and for e > 1 , x2/e < 1 . Thus rTE − rTM > 1 .
(b) θb = tan−1

√
3 = 60◦

(c) TM waves reach our eyes.

P4.1.8

(a) θc = 60◦ .
(b) The Brewster angle is θb = 40.9◦ .
(c) It is impossible, sin θ < tan θ for any θ between 0◦ and 90◦ .

P4.1.9

(a) Nulls occur when Ei+Er = 0, which gives cos(kxx−φ) = 0 or kxx−φ =
−π2 nearest to x = 0 .
Thus

x0 =

[
− tan−1

√
εr sin2 θ − 1

cos θ
− π

2

]
1√

εrk0 cos θ

(b) For perfect conductor at x = 0 , the nearest null occurs at cos(kxx +
π/2) = 0 or kxx + π/2 = −π2 or kxx = −π . The effective position of
the perfect conductor is thus at
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xeff = xo − π/kx =
[
− tan−1

√
εr sin2 θ−1

cos θ + π
2

]
1√

εrk0 cos θ

(c) With εr = 2,

θ
π

4
7π
24

8π
24

9π
24

10π
24

11π
24

π

2
k0xeff 1.57 1.02 0.87 0.79 0.74 0.72 0.707

(d) The penetration depth, δ=1/ktxI . With εr= 2, k0δ=1/
√

2 sin2 θ−1.

θ
π

4
7π
24

8π
24

9π
24

10π
24

11π
24

π

2
k0δ ∞ 1.97 1.41 1.19 1.07 1.02 1.00

P4.1.10

(a) The incident wave vector is ki = x̂kx − ẑkz.

(b) ktz=
√
k2
0(1 + iσ/ωε0)−k2

0 sin2 θ ≈ k0

√
iσ/(ωε0)=k0

√
σ/(2ωε0)(1+ i)

tan θt =
Re{ktx}
Re{ktz}

=
√

2ωε0/σ sin θ ≈ 0

(c) Et = ŷTTEE0e
ikxxe−iktzz = ŷTTEE0e

ikxxe−ikRzekIz

TTE =
2kz

kz + ktz
≈

√
2ωε0
σ

cos θ(1− i)

Therefore, |TTE | ≈ 2
√
ωε0/σ cos θ � 1. .

P4.1.11

(a) ω =
√

2ωp, ωeff = 0 ⇒ εt = ε0

[
1− 1

2

]
=

ε0
2

⇒ k2
t =

k2
0

2
ki =

k0√
2
x̂− k0√

2
ẑ ⇒ kt = x̂ktx = x̂

k0√
2

TTE =
2µ0kz

µ0kz + µ0ktz
= 2 ⇒

〈
St

〉
= x̂
|Et|2
2ηt

= x̂
√

2
√

ε0
µ0

E2
0

(b) ω = ωp, ωeff = 0 ⇒ εt = 0
⇒ kt = x̂ k0√

2
+ ẑ

√
ω2µ0εt − k2

tx = x̂ k0√
2

+ ẑi k0√
2

Since this is an evanescent wave decaying in the z direction, the z
component of the transmitted time-average Poynting vector 〈Stz〉 = 0

(c) ω = ωp = ωeff ⇒ εt =
ε0
2

(1 + i)

k2
tz+k2

tx = k2
tz+

k2
0

2
= ω2µ0εt=

k2
0

2
(1+i)⇒ k2

tz = i
k2
0

2
⇒ ktz =

k0

2
(1+i)
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⇒ kt = x̂ k0√
2

+ ẑ k02 (1 + i)

TTE =
2µ0kz

µ0kz + µ0ktz
=

2 k0√
2

k0√
2

+ k0
2 (1 + i)

= 1− i
(√

2− 1
)

Et = ŷTTEE0e
i
k0√

2
x+i

k0
2 z

e
k0
2 z

〈Stz〉 =
1
2

(
4− 2

√
2
)(1

2

)
k0

ωµ0
E2

0e
k0z =

(
1− 1√

2

)√
ε0
µ0

E2
0e
k0z

P4.1.12

The reflectivity is r = |R|2 = 0 and the transmissivity is t = 1− r = 1
which implies that all the energy is transmitted.

The structure works as a filter, because the layers are λ/4 thick only
at the particular frequency. The next lowest frequency that can have total
transmission is three times higher. Therefore a signal with spectrum lower
than 3f (f is the frequency at which the layers are λ/4 -thick), only the
component around f can have large transmission.

P4.1.13

For an ice layer on water, water can be approximated by a perfect conduc-
tor. Under this assumption, from (3.3.24), with d0 = 0 , d1 = d , R12 = ±1 ,
the reflectivity is

|R|2 =

∣∣∣∣R01 ±R01e
iψ

1±R01eiψ

∣∣∣∣
2

where the upper sign applies for TM polarization, and the lower sign for TE
polarization. ψ = 2k1zd . The operation frequency is limited by two factors:
(1) When the frequency varies over a range smaller than one period of the os-

cillation, we cannot see two consecutive maxima (or minima). Therefore,
the minimum frequency fmin has to be such that

Re [ψ(f = fmin)− ψ(f = 0)] = 2π ⇒ fmin =
c

2d
√

3.2− sin2 θ

(2) From the expression of |R|2 , we see that the oscillation is damped by a
factor of e−Im(ψ) . Therefore, if Im(ψ) is too large, we cannot see the
oscillation. Now, suppose that the radiometer can detect the oscillation
when e−Im(ψ) ≥ e−α . Then, the maximum frequency fmax should be
such that

Im [ψ(f = fmax)] = α = 2d (2πfmax)
√
µ0ε0

[
0.016√

3.2− sin2 θ

]

fmax =
αc

√
3.2− sin2 θ

4πd(0.016)
=

5αc
d

√
3.2− sin2 θ
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Therefore, the frequency range is

c

2d
√

3.2− sin2 θ
< f <

5αc
d

√
3.2− sin2 θ

P4.1.14

∆ = φTE − φTM = 2
[
tan−1 εαtz

εtkz
− tan−1 αtz

kz

]
= 2 tan−1


 εαtz
εtkz
− αtz

kz

1 + εα2
tz

εtk2z




= 2 tan−1


 (n2 − 1)αtzkz

1 + εα2
tz

εtk2z


 = 2 tan−1

[√
sin2 θ − n−2

sin2 θ
cos θ

]

For n = 1.6 , θ is 58.8◦ or 42.5◦ . Thus α is either 58.8◦ or 42.5◦ .

P4.1.15

Total internal reflection occurs, then in balsam the wave is evanescent,
thus the output has very little TE wave, the output wave will be mainly TM
polarized.

P4.1.16

The critical angle θC = sin−1
√

εt
εo

. The Brewster angle θB = tan−1
√

εt
εo

.
The critical angle θC is always larger than the Brewster angle θB . It is
impossible to have total transmission and total reflection at the same time.

P4.2.1

(a) The radiation pattern of the Hertzian dipole on the x-y plane is a circle.
(b) Linearly polarized, perpendicular to the paper, TE wave.
(c) m = 1 ,

(√
2π/λo

)2 − (π/d)2 > 0 . m = 2 ,
(√

2π/λo
)2 − (2π/d)2 < 0 .

So λo/
√

2 < d <
√

2λo . The propagating mode is TE1 .

P4.2.2

(a) m <
dω

√
µoεo
π = dω

πc = 30×109×2
√

3π×10−2

3×108π
= 3.46 .

The possible guided modes are TMm (m = 0, 1, 2, 3 ) and TEm (m =
1, 2, 3 ).
(b) For TM2 mode,

E =
Ho

εoω

[
x̂kz cos

2πx
d

cos (kzz − ωt) + ẑ
2π
d

sin
2πx
d

sin (kzz − ωt)
]

(c) vp = ω
kz

= 30×109

100
√

2/3
= 3.67× 108 (m/s).

vg = dω
dkz

= kz
ωµoεo

= c2kz
ω = c2

vp
= (3×108)2

3.67×108 = 2.45× 108 (m/s).
(d) Since ε1 = 3εo > ε0 , there is no total reflection for any modes.
(e) TM3 wave can be totally transmitted.
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P4.2.3

(a) In region z < 0, the possible modes are TE1, TM0 TM1. In region
z > 0, the possible modes are TE1 TE2, TM0 TM1 TM2.

(b) p0t = ktz
k0z

=
√

55
7 R = 1−p0t

1+p0t
=

√
7−

√
55√

7+
√

55
= −0.4741.

(c) E = ŷEo sin
(
π
dx

)
sin (kzz) , where kz =

√
ω2µoεo −

(
π
d

)2
.

P4.2.4

Hy =
{
−Js2 cos 3πx

d eikzz z ≥ 0
Js
2 cos 3πx

d e−ikzz z ≤ 0

P4.2.5

The electric field solution for the asymmetric slab waveguide is

E0 = ŷA0

[
eikxx +RTE

+ e−ikxx
]
eikzz

= ŷA0e
iφ01+ikxd [2 cos (kxx− φ01 − kxd)] eikzz

The cutoff spatial frequency is, for n(−1) < n1 ,

kcm =
mπ + tan−1

(
µ
√

1− µ−1ε−1/µ1ε1

/
µ−1

√
µε/µ1ε1 − 1

)
d
√

1− µ1ε1/µε

P4.2.6

Js = x̂δ(y − h) = x̂
∑∞

n=1
2
d sin nπh

d sin nπy
d

Ex = −ωµ
d

∞∑
n=1




sin
(
nπh
d

)
sin

(
nπy
d

)
[
k2 − (nπ/d)2

]1/2
ekzn|z|




Hz = −i π
d2

∞∑
n=1



n sin

(
nπh
d

)
sin

(
nπy
d

)
[
k2 − (nπ/d)2

]1/2
ekzn|z|




Hy = ∓(z)
1
d

∞∑
n=1




sin
(
nπh
d

)
sin

(
nπy
d

)
[
k2 − (nπ/d)2

]1/2
ekzn|z|




P4.2.7

TE10 excitation is maximum if d = a/2.

P4.2.8

(a) Ez = 0 , m = 1 and n = 0 , the mode is TE10 .
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(b) kx = kz = π/a , k =
√
k2
x + k2

z =
√

2π
a , f = c/

√
2a = 5 GHz .

(c) kz = π/a , vp = ω/kz =
√

2c .
(d) k2

c − (π/a)2 = 0 , fc = c/2a = 5/
√

2 GHz .
(e) k2 =

(√
2π/a

)2
= (mπ/a)2 + (nπ/b)2 + (pπ/d)2 , m = 1 , n = 0 , p = 1

and d = a . The mode is TE101 .

P4.2.9

The cutoff wavenumber is kc =
√

(mπ/a)2 + (nπ/b)2 and for a = 2b ,
fc = c

2a

√
m2 + 4n2 . Therefore, the first five modes are TE 10 , TE 20 , TE 01 ,

TE 11 , and TM 11 and the cutoff frequencies are 15 GHz, 30 GHz, 30 GHz,
33.5 GHz, and 33.5 GHz respectively.

At a frequency of 20 GHz , k = ω/c = 400π/3. Therefore the propaga-
tion constants are

TE10 : kz = 100π
√

(4/3)2 − 1 = 100π
√

7/9

TE20 : kz = i100π
√

20/9
TE01 : kz = i100π

√
20/9

TE11 : kz = i100π
√

29/9
TM11 : kz = i100π

√
29/9


 evanescent modes

Cutoff frequencies are 43 GHz for TE 21 and TM 21 modes, 45 GHz for
TE 30 modes and 50 GHz for TE 31 and TM 31 modes.

At a frequency of 50 GHz , there will be 8 propagating modes TE 10 ,
TE 20 , TE 01 , TE 11 , TM 11 , TE 21 , TM 21 , TE 30.

P4.2.10

(a) The coaxial cable is modeled as a waveguide with

fc,mn =
c

2π

√
(
mπ

2πa
)2 + (

nπ

δ
)2

Since δ � a , if n 	= 0 , fc,mn will be very high, so choose n = 0 . Since
TMm0 mode dose not exist, we consider only TEm0 modes. Lowest
three modes: TE20, TE40, TE60

(b) fc,20 = c
2π

2π
2πa = c

2πa , fc,40 = c
2π

4π
2πa = c

πa , fc,60 = c
2π

6π
2πa = 3c

2πa

P4.2.11

fc = 6× 1014 Hz
Comparing with the slab waveguide:

Let d = 2a = 2 × 10−6,
√

1− n2/n2
1 = 0.191, fc = 1.57 × 1015 Hz.

Slab waveguide has wider capacity, but optical fiber has physical compactness.

Comparing with metallic circular waveguide.
The width of capacity is ∆f = fc2 − fc1 = 0.54 × 1014 Hz. In contrast

optical fiber has ∆f = 6× 1014 Hz and also optical fiber has flexibility.
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P4.3.1

(a) ωmnp = c
2

√(
mπ
a

)2
+

(
nπ
b

)2
+

(
pπ
d

)2
and the four lowest order modes:

TM110, f = 4.5 GHz; TM210, f = 6.25 GHz; TE101/TM120, f = 7.9
GHz; TE011, f = 8.4 GHz.

(b) For mnp → yzx , TE101, f = 4.5 GHz; TE102, f = 6.25 GHz;
TE011/TE201, f = 7.9 GHz; TM110, f = 8.4 GHz.

(c) E field has one peak along x and y direction, but uniform on z direc-
tion. As a > b > d , ωo = 3×108

2

√
( π
0.03 )2 + ( π

0.02 )2 = 2.83×1010rad s−1 .

(d) ω0 = ω101 WT = 2WE = 1
8ε |E101|2 abd , 〈pd〉 =

∫
V

1
2Re

{
σE · E∗

}
dV

QI =� ω0WT
〈Pd〉 =

√
13
6

πc
2d

ε
σ =

√
13
6

π×3×108

2×10−2
4·(8.9×10−12)

10−4 = 10, 080
(e) To increase the resonant frequency, we indent regions where H is strong:

these are the sides of the cavity and part of the top near the edges. To
decrease the resonant frequency, we indent those portions where E is
strong: these are the top and bottom of the cavity, in the inner circle.
Hitting the box for TM110 at y = b/2 will have no effect where:

µ0H ·H
∗

= ε0E · E
∗ ⇒ µ0

(
π

a

)2

cos2
πx

a
= 4ε0ω2

0µ
2
0 sin2 πx

a

⇒ x = 0.483 cm and x = 2.516 cm .

P4.3.2

It is seen that ∇ × E = ∂H/∂t is satisfied. ∇ × E = ∂H/∂t leads to
ωI and ωR which yield the rate of attenuation in time ωI = σ

2ε0
and that

ω2
Rµε = (mπ/a)2 + (nπ/b)2 − µ0σ

2/4ε0 .

P4.3.3

(a) The total field in the cavity is Eρ = E1
ρ e

ikz + E2
ρ e

−ikz .

Eρ = 2i
E1

ρ
sin

nπ

d
z

H =
∇× E

iωµ0
=

1
iωµ0

φ̂
∂Eρ
∂z

= φ̂
2E1

ηρ
cos

(
nπ

d
z
)

(b) d = 0.1m = λ
2 , therefore f = 3×108

2×0.1 = 1.5 GHz .
(c) For TEM2 mode, n = 2 , and

|Eρ| =
2E1

ρ

∣∣∣sin(2π
d
z
)∣∣∣ , |Hφ| =

2E1

ηρ

∣∣∣cos
(2π
d
z
)∣∣∣

(d) At z = d
2 , |Eρ| = 0 , |Hφ| = maximum, thus for an inward perturbation

at z = d
2 , the resonant frequency will be raised.
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5.1 Čerenkov Radiation

In 1934, P. A. Čerenkov (1904–1990) discovered experimentally that
all liquids and solids emit visible radiation when bombarded by fast-
moving electron beams. He discovered that (i) in order to achieve radi-
ation, the velocity of the electrons must be very large, (ii) the angles of
radiation are related to the velocity of the beam, and (iii) the emitted
light has the electric field vector polarized parallel to the plane deter-
mined by the direction of the beam and the direction of the radiation.
Many unsuccessful attempts were made to explain the discovery with
various microscopic approaches. In 1937, I. Frank (1908–1990) and Ig.
Tamm (1895–1971) used the macroscopic theory and established that
an electron moving uniformly in a medium characterized by a refractive
index larger than unity radiates light if the electron velocity is greater
than the velocity of light in the medium. Because the discovery of
this phenomenon, known as Čerenkov radiation, marked a significant
triumph for macroscopic electromagnetic theory, we shall devote this
section to this subject.

The source of radiation is a particle with charge q moving at a
velocity v in an isotropic medium. The velocity will decrease as a result
of radiation. To simplify discussions, we assume that v is a constant
in the direction ẑ . The current density of the moving charge is

J(r, t) = ẑqvδ(x)δ(y)δ(z − vt)

In the cylindrical coordinate system, we have φ symmetry. Noticing
that ∫

dρ δ(ρ) = 1 =
∫∫

dx dy δ(x)δ(y) =
∫

2πρdρ δ(x)δ(y)

We can write δ(x)δ(y) = δ(ρ)/2πρ and therefore

J(r, t) = ẑqvδ(z − vt)
δ(ρ)
2πρ

(5.1.1)

This source is not time harmonic. We transform to the frequency do-
main and obtain

J(r, ω) =
1
2π

∫
dt J(r, t)eiωt = ẑ

q

4π2ρ
eiωz/v δ(ρ) (5.1.2)
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For each spectrum component ω we solve for the electric field

E(r) =
1
2π

∫
dt E(r, t)eiωt

The time-domain values are obtained by the inverse Fourier transform:

E(r, t) =
∫

dω E(r)e−iωt (5.1.3)

The governing equation for the electric field becomes

∇×∇× E(r)− k2E(r) = ẑ
iωµq

4π2ρ
eiωz/v δ(ρ) (5.1.4)

This equation is conveniently solved by defining a vector Green’s func-
tion g(ρ, z) such that

E(r) =
[
I +

1
k2
∇∇

]
· g(ρ, z) = g(ρ, z) +

1
k2
∇[∇ · g(ρ, z)] (5.1.5)

We obtain from (5.1.4) the wave equation for g(ρ, z) :

(∇2 + k2)g(ρ, z) = −ẑ
iωµq

4π2ρ
eiωz/v δ(ρ) (5.1.6)

In view of the z dependence on the right-hand side and the azimuthal
symmetry of the problem, we write the wave equation in the cylindrical
coordinate system. Let

g(ρ, z) = ẑg(ρ)
iωµq

2π
eiωz/v (5.1.7)

Then we obtain[
1
ρ

d

dρ

(
ρ

d

dρ

)
− ω2

v2
+ k2

]
g(ρ) = −δ(ρ)

2πρ
(5.1.8)

For ρ �= 0 , the above equation becomes
[
1
ρ

d

dρ

(
ρ

d

dρ

)
+ k2

ρ

]
g(ρ) = 0 (5.1.9)
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where

kρ =

√
k2 − ω2

v2
= n

ω

c

√
1− 1

(nβ)2
(5.1.10)

β = v/c , and n = c
√

µε . Eq. (5.1.9) is the Bessel equation of zeroth
order. Since (5.1.8) exhibits a singularity at ρ = 0 and the solution to
the Bessel equation should represent an outgoing wave, we choose

g(ρ) = CH
(1)
0 (kρρ) (5.1.11)

The constant C is determined by matching the boundary condition
at ρ → 0 . Integrating (5.1.8) over an infinitesimal area 2πρdρ and
letting ρ→ 0 , we have

lim
ρ→0

2πρ
dg(ρ)

dρ
= −1

Using the asymptotic formula for H
(1)
0 (kρρ) ≈ i(2/π) ln(kρρ) , we ob-

tain C = i/4 and from (5.1.11)

g(ρ) =
i

4
H

(1)
0 (kρρ) (5.1.12)

This is the scalar Green’s function in cylindrical coordinates. For two-
dimensional problems independent of z , the scalar Green’s function is
simply (5.1.12) with kρ = k .

The solution for the electric field is determined from (5.1.7) and
(5.1.5) .

E(r) =
−q

8πωε

[
ẑk2 + i

ω

v
∇

]
H

(1)
0 (kρρ)eiωz/v (5.1.13)

Since we are interested in radiation from the charge, we use the asymp-
totic values of H

(1)
0 (kρρ) to find the far-field solutions. In the radiation

zone, kρρ	 1 , and H
(1)
0 (kρρ) ≈

√
2/iπkρρ eikρρ . We get

E(r) ≈ q

8πωε

√
2kρ
iπρ

[
ρ̂

ω

v
− ẑkρ

]
ei(kρρ+ωz/v) (5.1.14)

This represents a plane wave with wave vector k = ρ̂kρ + ẑω/v , pro-
vided that kρ in (5.1.10) is real.
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All phenomena observed by Čerenkov can be explained with (5.1.14) .
(i) We see that kρ is real if nβ > 1 , i.e.,

v >
c

n
(5.1.15)

Thus, plane waves are radiated if the velocity of the charge is larger
than the velocity of light in the medium. When the charge velocity
v is smaller than the light velocity, kρ is imaginary and the wave is
evanescent in the ρ̂ direction.

(ii) The constant phase front of the plane waves forms a cone
around the ẑ direction. The direction θ that k makes with ẑ [Fig.
5.1.1] is determined from

θθ

k = ρ̂kρ + ẑ
ω

v

v̂

E
O phase front

A

B

k

z

v

Figure 5.1.1 Čerenkov radiation.

cos θ =
kz
k

=
ω

kv
=

1
nβ

(5.1.16)

where β = v/c . Note that θ has a real value only if nβ > 1 . Notice
from Figure 5.1.1 that for the phase front represented by AB, OA is
the distance traveled by the charge particle and OB is the distance
traveled by the wave originated from point O.

(iii) With regard to the polarization of the emitted electromagnetic
wave, we observe from (5.1.14) that E lies in the plane determined
by k and ẑ [Fig. 5.1.1]. It is clear that E is also perpendicular to the
k vector because k · E = 0 .
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Example 5.1.1 Čerenkov radiation power.
To calculate radiated power, we first compute the magnetic field from

Faraday’s law, which gives, when terms of order ρ−3/2 are neglected,

H = φ̂
q

8π

√
2kρ
iπρ

ei(kρρ+ωz/v) (E5.1.1.1)

The corresponding magnetic field in space-time domain is

H(r, t) = φ̂
q

4π

√
2

πρ

∫ ∞

0

dω
√

kρ cos
(

ωt− kρρ−
ωz

v
+

π

4

)
(E5.1.1.2)

where we use the inverse Fourier transform (5.1.3). Noting that kρ is propor-
tional to ω because kρ = nω

c

√
1− 1/n2β2 , we change the integration limits

from (−∞,∞) to (0,∞) . Similarly, the space-time domain electric field is,
by taking the inverse Fourier transform of (5.1.14),

E(r, t) = − q

4π

√
2

πρ

∫ ∞

0

dω
1
ωε

(
ẑkρ − ρ̂

ω

v

)√
kρ cos

(
ωt− kρρ−

ωz

v
+

π

4

)
(E5.1.1.3)

Consider a cylinder of length l and radius ρ . The total energy radiated
through the surface of the cylinder is given by

Sρ = 2πρl

∫ ∞

−∞
dt [E(r, t)×H(r, t)]ρ = 2πρl

∫ ∞

−∞
dt [Ez(r, t)Hφ(r, t)]

=
q2l

4π2

∫ ∞

−∞
dt

∫ ∞

0

dω

∫ ∞

0

dω′ kρ

√
kρ

ωε

√
k′
ρ

cos
(

ωt− kρρ−
ωz

v
+

π

4

)
cos

(
ω′t− k′

ρρ−
ω′z

v
+

π

4

)
(E5.1.1.4)

where k′
ρ = ω′

c (1 − 1/n2β2)1/2 . First we integrate with respect to t. Let
α = kρρ/ω + z/v , we observe that∫ ∞

−∞
dt cos

[
ω′(t + α) +

π

4

]
cos

[
ω(t + α) +

π

4

]

=
1
2

∫ ∞

−∞
dt cos[(ω − ω′)(t + α)] = πδ(ω − ω′) (E5.1.1.5)

where we make use of the delta function

δ(ω − ω′) =
1
2π

∫ ∞

−∞
dt ei(ω−ω

′)t
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Thus we obtain

Sρ =
q2l

4π

∫ ∞

0

dω
k2
ρ

ωε
=

µq2l

4π

∫ ∞

0

dω ω

[
1− 1

n2β2

]
(E5.1.1.6)

Even though the integration limit is from 0 to ∞ , we must remember that
the above result is valid only for n2 > 1/β2 in order to achieve Čerenkov
radiation. Since all materials are dispersive, the integration limit is actually
determined by the frequency range of the refractive index n for which the
Čerenkov radiation condition is satisfied. With the use of the above equation,
energy radiated per unit length of the electron path can be calculated for
materials of various refractive indices. Furthermore, we must note that the
above theoretical treatment assumes a constant velocity v . As the charge
radiates, the particle slows down and eventually ceases to radiate as β2 ≤
1/n2 .

End of Example 5.1.1

Problems

P5.1.1
In the Čerenkov radiation, the total energy radiated out of a cylinder of

path l and radius ρ is given by (E5.1.1.6). The energy lost per unit length
per unit frequency band is

d2Sρ
dl dω

=
µq2

4π
ω

(
1− 1

n2β2

)

(a) By Ephoton = h̄ω and dω/dλ = 2πc/λ2 , show that the number of
photon radiated on unit path at wave length λ is

d2N

dl dλ
=

q2c

2λ2h̄
µ

(
1− 1

n2β2

)

and show the frequently used formula dN
dl ∝ dλ

λ2 sin2 θ , which gives the
dependence of N on λ and θ .

(b) Gas Čerenkov detector is widely used in high energy particle experiment.
The refractive index of the gas n is typically 1.002. What will be the
angle for the Čerenkov radiation in case of β = 1 ?

(c) Most energy is radiated by the waves in the band 350 nm∼ 550 nm.
How many photons can you get on unit path? In order to get 100
photons for the detector, how long is the path ( l )? This is the size
the detector should be. Note that the parameters are as follows: h̄ =
6.63× 10−34/(2π) J · s/rad , q = 1.6× 10−19 C , β = 1 .
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5.2 Green’s Functions

A. Dyadic Green’s Functions

In antenna and radiation problems, we are interested in finding the solution of
electromagnetic fields in the presence of a source distribution J(r) and ρ(r). The
current and charge distributions are related by the conservation law. For time-
harmonic fields, iωρ(r) = ∇ · J(r). From the Maxwell equations

∇× E(r) = iωµH(r) (5.2.1)

∇×H(r) = −iωεE(r) + J(r) (5.2.2)

we can eliminate H(r) and obtain the following equation for E(r):

∇×∇× E(r)− k2E(r) = iωµJ(r) (5.2.3)

where k2 = ω2µε. To determine E in terms of the given source J , we introduce
the use of dyadic Green’s functions. A more traditional approach can be taken by
making use of a vector potential.

——————————————————–

George Green (14 July 1793 – 31 May 1841)
In 1828, George Green published ‘An Essay on the Application of

Mathematical Analysis to the Theories of Electricity and Magnetism’, containing
Green’s functions and Green’s theorem. The paper had only 51 subscribers. In
1833 he enrolled as an undergraduate in Gonville and Caius College, Cambridge
University. In 1845 his essay of 1828 was rediscovered by William Thomson (Lord
Kelvin) and republished in 1850–1854.

——————————————————–

A Green’s function characterizes the response due to a point source and is
useful in expressing a field in terms of its source. Since E(r) is a vector and so is
J(r), we write

E(r) = iωµ

∫∫∫
d r′ G(r, r′) · J(r′) (5.2.4)

where G(r, r′) is the dyadic Green’s function that enables one to determine the
electric field E from a given source J . The triple integration extends over the
volume occupied by J(r′). Since the electric field E is a vector and the current

source J is also a vector, the Green’s function G is called a dyadic operator that
operates on a vector giving rise to another vector.
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The dot product, or the inner product of two vectors A · B pro-
duces a scalar, and the cross product A×B produces a vector. A vector
is also a tensor of rank one, or a first rank tensor. The Cartesian compo-
nents of A are Aj . From the identity B×(A×C) = A B ·C−B ·A C ,
we can identify the direct product A B as a dyad D = A B . A dyad
is a tensor of rank two or a second rank tensor, whose Cartesian com-
ponents are Djk = AjBk . The operation D · C yields the vector
A(B · C) , which is the vector A weighted by the scalar B · C . From
∇×∇×E = ∇∇·E−∇2E , we see that ∇∇ is now a dyadic operator.

The operation of a dyad on a vector may be thought of as a square
matrix representing G multiplying a column matrix representing J ,
giving rise to another column matrix representing E . The right-hand
side of (5.2.3) can be cast in a form similar to (5.2.4) by using the
three-dimensional delta function δ(r − r′) such that

J(r) =
∫∫∫

d r′δ(r − r′)I · J(r′) (5.2.5)

where I is a unit dyad which can be represented by a unit diago-
nal matrix. The operation of I on any vector yields the vector itself.
Substituting (5.2.4) and (5.2.5) into (5.2.3) and noting that the inte-
gral holds for arbitrary J(r′) , we obtain a differential equation for the
dyadic Green’s function G(r, r′)

∇×∇×G(r, r′)− k2G(r, r′) = Iδ(r − r′) (5.2.6)

The interchange of the differential operator ∇×∇× and the volume
integral in (5.2.4) has serious implications when r is inside the source
region. Here the observation point r is always assumed to be outside
the source distribution.

The dyadic Green’s function can in turn be expressed in terms of
a scalar Green’s function g(r, r′)

G(r, r′) =
[
I +

1
k2
∇∇

]
g(r, r′) (5.2.7)

Here we make use of the dyadic operator ∇∇ . We introduce (5.2.7) in
(5.2.6) and notice that the operator ∇×∇× yields zero when operated
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on the second term in (5.2.7). Also ∇×∇× (Ig) = ∇∇g − I∇2g. We obtain the
following differential equation for g(r, r′):

(∇2 + k2)g(r, r′) = −δ(r − r′) (5.2.8)

It is seen that Green’s functions are responses to point sources. We now determine
the scalar Green’s function g(r, r′) from (5.2.8) in the spherical coordinate system.

We first translate the coordinate origin such that r′ = 0. We write

∇ · ∇g(r) + k2g(r) = −δ(r) (5.2.9)

We see that (5.2.9) and its solution for g(r) are spherically symmetric and
independent of θ and φ.

We write (5.2.9) in the spherical coordinate system

1

r

d2

dr2
[rg(r)] + k2g(r) = −δ(r)

For r 6= 0 the right-hand side is zero and we have

d2

dr2
[rg(r)] + k2rg(r) = 0 (5.2.10)

The solution must represent an outgoing wave. We find

g(r) = C
eikr

r
(5.2.11)

The constant C is determined by integrating (5.2.9) over a sphere of infinitesimal
radius δ centered at the origin. In view of Gauss’ theorem in vector calculus,
integration of the first term of (5.2.9) yields

∫∫∫
dV ∇2g = ©

∫∫

r=δ

dS r̂ · ∇g =

[
4πr2 dg(r)

dr

]

r=δ

(5.2.12)

We obtain from (5.2.9)

[
4πr2 dg(r)

dr

]

r=δ

+ k2

∫ δ

0

dr 4πr2g(r) = −1 (5.2.13)

Introducing (5.2.11) we see that in the limit of δ → 0, the second term is
proportional to δ2 and vanishes. The first term gives −4πC. Thus we find C = 1/4π.
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Notice that r is the distance between the source and the obser-
vation point. Transforming back to the original coordinate system, it
is seen that the distance r becomes |r − r′| . We obtain the scalar
Green’s function

g(r, r′) =
eik|r−r′|

4π |r − r′| (5.2.14)

where |r − r′| is the distance between the field point r and the source
point r′ [Fig. 5.2.1].

x

y

z

r̂ · r
′

r = r̂r

r
− r

′

r
′

J(r′)

Figure 5.2.1 Observation point r is outside the source region.

We assume the observation point is outside of the source region. Sub-
stituting (5.2.7) into (5.2.4) and noting that the integration is over the
primed quantities while the del operators operate only on the unprimed
quantities, we can take the operators out of the integral and write

E(r) = iωµ

[
I +

1
k2
∇∇

]
·
∫∫∫

d r′ g(r, r′)J(r′) (5.2.15)

In terms of the scalar Green’s function in spherical coordinates as de-
termined in (5.2.14), we find

E(r) = iωµ

[
I +

1
k2
∇∇

]
·
∫∫∫

d r′
eik|r−r′|

4π |r − r′|J(r′) (5.2.16)

Thus, for a prescribed source distribution J(r′) in an unbounded
isotropic medium, the electric field is determined by evaluating the
integral (5.2.16). The magnetic field is then calculated from Faraday’s
law in (5.2.1).
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B. Radiation Field Approximation

When the observation point r is very far away from the source, we see
from Figure 5.2.1 that the line joining the remote observation point to
the origin is almost parallel to the line connecting the observation point
to the source points where integration is performed. The radiation field
approximation consists of the following two conditions:∣∣r − r′

∣∣ ≈ r − r̂ · r′ (5.2.17)
kr 	 1 (5.2.18)

In the radiation zone, the k vector is in the r̂ direction, k = r̂k . We
find

E(r) = iωµ

[
I +

1
k2
∇∇

]
·
∫∫∫

d r′
eik|r−r′|

4π |r − r′|J(r′)

≈ iωµ

[
I +

1
k2
∇∇

]
· e

ikr

4πr

∫∫∫
d r′ J(r′)e−ik·r′ (5.2.19)

In the approximation, we neglect r̂ · r′ in the denominator. The term
kr̂ ·r′ is kept in the exponent in (5.2.19) because its contribution to the
phase variation can be significant when it is of the order of, or larger
than, π .

We define a vector current moment

f(θ, φ) =
∫∫∫

d r′ J(r′)e−ik·r′ (5.2.20)

We see that the current density J(r′) , weighted with the phase-retar-
dation factor e−ik·r′ , is integrated over the volume. Since the integrand
is a function of r′ , the current moment after integration will be a
function of θ and φ only and independent of the observation distance
from the origin r .

The del operator ∇ in (5.2.19) can be replaced by ik in the far-
field approximation. For instance, consider the gradient

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ

The operator ∂/∂r when operated on eikr gives ik which yields a
term of the order of 1/r . All other terms of the del operator give
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rise to terms of the order of (1/r)2 or higher. Under the far field
approximation of kr 	 1 , we keep only the term of the order of 1/r
and replace the del operator by ik = r̂ik . The radiated electric field
becomes

E(r) = iωµ[I − r̂r̂] · f eikr

4πr

= iωµ
eikr

4πr
(θ̂fθ + φ̂fφ) (5.2.21)

The term feikr/4πr is also referred to as the radiation vector. The
magnetic field H(r) is, under the same far-field approximation,

H(r) =
1

iωµ
∇× E(r) =

k

ωµ
× E(r)

= ik
eikr

4πr
(φ̂fθ − θ̂fφ) (5.2.22)

The time-average Poynting’s power density is

< S > =
1
2
Re

{
E ×H

∗}

= r̂
1
2

√
µ

ε

(
k

4πr

)2

(|fθ|2 + |fφ|2) (5.2.23)

Thus, to calculate the radiation field for a given source J , the first
task is to evaluate the vector current moment f(θ, φ) .

Example 5.2.1 Vector potential A.
An alternate approach to the solution of radiation problems is by means

of vector potentials. This approach is especially useful for isotropic media.
Difficulties will arise when radiation occurs in non-isotropic media.

For an isotropic medium, Gauss’ law ∇ ·B = ∇ · µH = 0 , we write

µH = ∇×A

where A is the vector potential. This definition does not uniquely determine
A , since letting A

′
= A +∇ψ with ψ representing any scalar function, we

find µH = ∇×A
′
= ∇×A +∇×∇ψ = ∇×A . Thus both A

′
and A give

rise to the same µH . To uniquely define the vector potential A , we need to
also specify its divergence.
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From Faraday’s law ∇× E = iωB = ∇× (iωA), we write

E = iωA−∇φ

where φ is called a scalar potential. We now specify the divergence of A by

∇ ·A− iωµεφ = 0

The above equation is known as the Lorenz gauge condition.
From Gauss’ law ∇ · εE = ρ , we obtain(

∇2 + ω2µε
)

φ = −ρ/ε.

This is Helmholtz equation for the scalar potential φ .
From Ampère’s law ∇ × H = −iωεE + J , we find ∇ × (∇ × A) =

k2A + iωµε∇φ + µJ = k2A +∇∇ ·A + µJ . It follows that

∇2A + k2A = −µJ.

which is Helmholtz equation for the vector potential A .
Solution to this equation for the vector potential A is

A =
∫∫∫

dv
µJ(r′)eik|r−r

′|

4π|r − r′| .

With this solution, we can calculate the fields

E = iωA +
i

ωµε
∇(∇ ·A) = iωµ

(
I +
∇∇
k2

)
·
∫∫∫

d3r′
eik|r−r

′|

4π|r − r′|J(r′)

This result is identical to (5.2.16) obtained with the dyadic Green’s function
approach.

End of Example 5.2.1

Example 5.2.2 Radiation condition.
For source distributions of a finite extent radiating in unbounded space,

boundary conditions must be imposed at infinity to obtain unique solutions to
the radiation problem. Such boundary conditions are called radiation condi-
tions and require that solutions attenuate no slower than the inverse distance
far away from the source and that the wave must propagate outward to infin-
ity. In mathematical terms, the radiation conditions for E and H take the
form

lim
r→∞

r[H − r̂ × E/η] = 0

lim
r→∞

r[E + r̂ × ηH] = 0
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(a) Show that these conditions are satisfied with the radiation fields

E = iωµ
eikr

4πr
(θ̂fθ + φ̂fφ)

H = iωµ
eikr

4πηr
(φ̂fθ − θ̂fφ)

where fθ and fφ are the θ̂ and φ̂ components of the vector current
moment.

(b) Applying the Maxwell equations for E and H , show that

lim
r→∞

r[∇× E − ikr̂ × E] = 0

lim
r→∞

r[∇×H − ikr̂ ×H] = 0

and show that the radiation condition for the dyadic Green’s function is

lim
r→∞

r[∇×G(r, r′)− ikr̂ ×G(r, r′)] = 0

Solution:
(a) As r →∞

lim
r→∞

r
[
H − r̂ × E/η

]
= lim

r→∞
iωµ

eikr

4πη

[
φ̂fθ − θ̂fφ − φ̂fθ + θ̂fφ

]
= 0

lim
r→∞

r
[
E + r̂ × ηH

]
= lim

r→∞
iωµ

eikr

4π

[
θ̂fθ + φ̂fφ − θ̂fθ − φ̂fφ

]
= 0

(b)

lim
r→∞

r
[
∇× E − ikr̂ × E

]
= iωµ lim

r→∞
r
[
H − r̂ × E/η

]
= 0

lim
r→∞

r
[
∇×H − ikr̂ ×H

]
= −iωε lim

r→∞
r
[
E + r̂ × ηH

]
= 0

0 = lim
r→∞

r
[
∇× E − ikr̂ × E

]
= iωµ

∫∫∫
dr′

{
lim
r→∞

r
[
∇×G(r, r′)− ikr̂ ×G(r, r′)

]}
· J(r′)

for arbitrary J(r′) of finite extent. Therefore

lim
r→∞

[
∇×G(r, r′)− ikr̂ ×G(r, r′)

]
= 0

End of Example 5.2.2
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For spherically symmetric g(r) , the Laplacian operator

∇ · ∇g(r) = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)g(r)

∂2

∂x2
g(r) =

∂

∂x
(
∂r

∂x

∂g(r)
∂r

) =
∂

∂x
(
x

r

∂g(r)
∂r

) =
1
r

∂g(r)
∂r

+ x
x

r

∂

∂r
(
1
r

∂g(r)
∂r

)

=
1
r

∂g(r)
∂r

+
x2

r
(
−1
r2

∂g(r)
∂r

+
1
r

∂2g(r)
∂r2

)

We thus have

∇ · ∇g(r) =
3
r

∂g(r)
∂r

+ r(
−1
r2

∂g(r)
∂r

+
1
r

∂2g(r)
∂r2

) =
2
r

∂g(r)
∂r

+
∂2g(r)

∂r2

=
1
r2

∂

∂r
(r2 ∂g(r)

∂r
) (5.2.24)

=
1
r

∂2

∂r2
[rg(r)] (5.2.25)

The Laplacian operator for spherically symmetric functions can be written
either in the form of (5.2.24) or in the form of (5.2.25).

Problems

P5.2.1
What is the differential equation that governs the one-dimensional scalar

Green’s function in free space g(x, x′) ? Show that Green’s function is

g(x, x′) =
ieik|x−x

′|

2k

P5.2.2
Show that the two-dimensional Green’s function is

g(ρ) =
i

4
H(1)
o (kρ) =

i

4π

∫ ∞

−∞
dkx

eikxx+iky|y |

ky

P5.2.3
Show that the three-dimensional Green’s function is

g(r) =
eikr

4πr
=

i

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

eikxx+ikyy+ikz|z |

kz
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5.3 Hertzian Dipoles

A. Hertzian Electric Dipole

The most fundamental model for radiating structures is a Hertzian
electric dipole which consists of a current-carrying element with an in-
finitesimal length l . Denoting the current dipole moment with Il, the
current density J(r) of a Hertzian dipole pointing in the ẑ direction
and located at the origin [Fig. 5.3.1] is

J(r′) = ẑIl δ(r′) (5.3.1)

A Hertzian dipole can be modeled as two charge reservoirs of equal and
opposite charge q and separated by an infinitesimal distance l . One
may think of two conducting spheres or a capacitor connected by a
constant current source. The dipole has moment p = ql and oscillates
in time with angular frequency ω . The current dipole moment is thus
Il = −iωp .

To determine the radiation field of the Hertzian dipole, we insert
(5.3.1) into (5.2.20) and find the vector current moment to be

f(θ, φ) = ẑIl = (r̂ cos θ − θ̂ sin θ) Il (5.3.2)

Noticing that fθ = −Il sin θ , we obtain from (5.2.21)–(5.2.22) the
electric and magnetic field vectors

φ
x

θ

r
z

y

Ilδ(r)

z

Figure 5.3.1 Hertzian electric dipole.



5.3 Hertzian Dipoles 505

E(r) = θ̂ iωµ
eikr

4πr
fθ = −θ̂ iωµIl

eikr

4πr
sin θ (5.3.3)

H(r) = φ̂ ik
eikr

4πr
fθ = −φ̂ ikIl

eikr

4πr
sin θ (5.3.4)

z

θ |Eθ|
xx

Figure 5.3.2 Radiation field pattern.

and from (5.2.23) the time-average Poynting’s power density

< S > = r̂
1
2

√
µ

ε

(
kIl

4πr

)2

sin2 θ (5.3.5)

The total radiated power Pr is calculated by integrating r̂ · < S >
over a sphere of radius r with r →∞ . We obtain

Pr =
∫ 2π

0
dφ

∫ π

0
dθ r2 sin θ < Sr >=

4π

3
η

[
kIl

4π

]2

(5.3.6)

The directive gain G(θ, φ) is defined as the power density Sr(θ, φ) at
observation angles (θ, φ) divided by the total radiated power averaged
over all angles, which gives

G(θ, φ) =
< Sr(θ, φ) >

Pr/4πr2
=

3
2

sin2 θ (5.3.7)

The directivity D of an antenna is defined to be the gain at the angle
where it is maximum. For the Hertzian dipole,

D = G(θ, φ)max =
3
2

(5.3.8)

which occurs at θ = π/2 , that is perpendicular to the dipole axis.
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z

x

Figure 5.3.3 Radiation power pattern.

A radiation field pattern can be sketched for the magnitude of
|Eθ| at a constant distance r as a function of the angle θ [Fig. 5.3.2].
The pattern consists of two circles describing sin θ and is symmetrical
about the z axis. The power pattern or the gain pattern is seen to be
proportional to sin2 θ . As shown in Figure 5.3.3, it is in the form of a
horizontal “figure eight” in any plane containing the dipole axis.

We now derive the exact expressions for the electric field vector
E(r) for an Hertzian dipole with

J(r′) = I lδ(r′)

We find, noting that (Il · ∇)r = Il ,

E(r) = iωµ

[
I +

1
k2
∇∇

]
· Il

eikr

4πr

= iωµ

[
Il +

1
k2

(Il · ∇)∇
]

eikr

4πr

= iωµ

[
Il

eikr

4πr
+ (Il · ∇)r̂[

i

kr
+ (

i

kr
)2]

eikr

4π

]

= iωµ

[
Il

eikr

4πr
+

1
r
[

i

kr
+ (

i

kr
)2]

eikr

4π
(Il · ∇)r

+r(Il · ∇)
1
r
[

i

kr
+ (

i

kr
)2]

eikr

4π

]

= iωµ

[
Il [1 +

i

kr
+ (

i

kr
)2]− r̂(r̂ · Il)[1 + 3

i

kr
+ 3(

i

kr
)2]

]
eikr

4πr

(5.3.9)

H(r) =
1

iωµ
∇× E = ∇× Il

eikr

4πr
= ikr̂ × Il

[
1 +

i

kr

]
eikr

4πr
(5.3.10)
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S(r) = E ×H
∗ = η

[
k

4πr

]2 {
r̂(Il)2(1 +

i

k3r3
)

−r̂(r̂ · Il)2
[
1 +

2i

kr
+

3i

k3r3

]
+ (r̂ · Il)Il

[
2i

kr
+

2i

k3r3

]}
(5.3.11)

< S(r) >=
1
2
Re{E ×H

∗} = η

[
k

4πr

]2 {
r̂(Il)2 − r̂(r̂ · Il)2

}
(5.3.12)

For a Hertzian dipole in the ẑ direction, the electric and magnetic
fields are

E(r) =
iωµeikr

4πr
Il

{
ẑ

(
1 +

i

kr
− 1

k2r2

)
+ r̂

z

r

[
−1− 3i

kr
+

3
k2r2

]}

=− iωµeikr

4πr
Il

{
r̂

[
i

kr
+

(
i

kr

)2
]

2cos θ+θ̂

[
1+

i

kr
+

(
i

kr

)2
]

sin θ

}

(5.3.13)

H(r) = −φ̂ ikIl
eikr

4πr

[
1 +

i

kr

]
sin θ (5.3.14)

The magnetic fields are in the φ̂ direction circulating the dipole. The
complex Poynting power density is

S = E ×H
∗

= η

[
kIl

4πr

]2
{

r̂

[
1−

(
i

kr

)3
]
sin2 θ−θ̂

[(
i

kr

)
−

(
i

kr

)3
]
sin 2θ

}
(5.3.15)

The time-average Poynting power density is

<S >=
1
2
Re{S} = r̂

η

2

[
kIl

4πr

]2

sin2 θ

which is identical to that obtained in (5.3.5).
When the observation point is very far away from the dipole such

that kr 	 1 , we can neglect the terms of order higher than 1/kr as
compared with unity. From (5.3.13) and (5.3.14), we find the electric
and magnetic field vectors E and H in the radiation zone reduce to
(5.3.3) and (5.3.4).
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B. Hertzian Magnetic Dipole and Small Loop Antenna

Consider a small current loop with an infinitesimally small radius
a as shown in Figure 5.3.4. Its current density takes the form

J(r′) = φ̂Iδ(ρ′ − a)δ(z′)
= (−x̂ sin φ′ + ŷ cos φ′)Iδ(ρ′ − a)δ(z′) (5.3.16)

x
φ

a

I

z

θ

r

yy

Figure 5.3.4 Small loop antenna.

The electric field vector due to the current loop, is calculated from

E(r) = iωµ

[
I +

1
k2
∇∇

]
·
∫∫∫

d r′
eik|r−r′|

4π |r − r′|J(r′)

= iωµ

[
I +

1
k2
∇∇

]
·
∫ 2π

0
dφ′

∫ ∞

0
dρ′

∫ ∞

−∞
ρ′dz′

eik|r−r′|

4π |r − r′|J(r′)

= iωµ

[
I +

1
k2
∇∇

]
·
∫ 2π

0
adφ′ eik|r−r′|

4π |r − r′| (−x̂ sin φ′ + ŷ cos φ′)I

(5.3.17)

where in terms of their Cartesian components, the radial vectors r and
r′ are

r = x̂ r sin θ cos φ + ŷ r sin θ sin φ + ẑ r cos θ

r′ = x̂ a cos φ′ + ŷ a sin φ′
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The distance |r − r′| from observation point r to source point r′ is

∣∣r−r′
∣∣ =

∣∣x̂(r sin θ cos φ−a cos φ′)+ŷ(r sin θ sin φ− a sin φ′) + ẑr cos θ
∣∣

= r

√
1 +

a2

r2
− 2a

r
sin θ cos(φ− φ′) (5.3.18)

We then expand the scalar Green’s function in the form of a MacLaurin
series for a/r → 0 . Taking the first two terms, we have

eik|r−r′|

4π |r − r′| ≈
eikr

4πr
+

a

r

[
d

d(a
r )

eik|r−r′|

4π |r − r′|

]
a/r→0

=
eikr

4πr
+

a

4πr

[
(ik |r − r′| − 1)eik|r−r′|

|r − r′|2
d

d(a
r )

∣∣r − r′
∣∣]

a/r→0

=
eikr

4πr
+

a

r
(−ikr + 1) sin θ cos(φ− φ′)

eikr

4πr
(5.3.19)

Colin Maclaurin (February 1698 – 14 June 1746)
In 1742 Maclaurin published his 2 volume Treatise of fluxions. The Trea-

tise of fluxions is a major work of 763 pages. It is in the Treatise of fluxions
that Maclaurin uses the special case of Taylor’s series now named after him.
The Maclaurin series was not an idea discovered independently of the more
general result of Taylor for Maclaurin acknowledges Taylor’s contribution.

The integral in (5.3.17) for the electric field is evaluated using
(5.3.19), we find

∫ 2π

0
a dφ′(−x̂ sin φ′ + ŷ cos φ′)

Ieik|r−r′|

4π |r − r′|

= (−x̂ sin φ + ŷ cos φ)
πa2Ieikr

4πr2
(1− ikr) sin θ

= φ̂
Iπa2eikr

4πr2
(1− ikr) sin θ (5.3.20)

Substituting the above result back into (5.3.17) and noticing that
(5.3.20) is independent of φ , we see that the del operator ∇∇ does
not contribute.
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The electric field vector becomes, letting M = Iπa2 ,

E = φ̂ ωµkM
eikr

4πr

[
1 +

i

kr

]
sin θ (5.3.21)

The magnetic field vector is

H(r) =
1

iωµ
∇× E(r)

= −k2M
eikr

4πr

{
r̂

[
i

kr
+

(
i

kr

)2
]
2 cos θ+θ̂

[
1+

i

kr
+

(
i

kr

)2
]
sin θ

}

(5.3.22)

We identify M = Iπa2 = IA as the magnetic dipole moment of the
current loop. The small current loop is also called a Hertzian magnetic
dipole.

To summarize the exact expressions of electromagnetic fields pro-
duced by both an electric and a magnetic dipole, we let the electric
current moment and the magnetic moment be in a general direction.

E(r) =
iωµeikr

4πr

{
Il

(
1 +

i

kr
− 1

k2r2

)
− r̂(r̂ · Il)

[
1 +

3i

kr
− 3

k2r2

]}
(5.3.23)

H(r) =r̂ × Il
ikeikr

4πr

[
1 +

i

kr

]
(5.3.24)

Applying duality, we find the electric and magnetic fields for a magnetic
dipole to be

E(r) =− r̂ ×M
ωµkeikr

4πr

[
1 +

i

kr

]
(5.3.25)

H(r) =
k2eikr

4πr

{
M

(
1 +

i

kr
− 1

k2r2

)
− r̂(r̂ ·M)

[
1 +

3i

kr
− 3

k2r2

]}
(5.3.26)

We observe the duality of electric and magnetic dipoles with the re-
placement of E → H , H → −E , µ → ε , ε → µ , Il = −iωP →
−iωµM , and iωµM → Il = −iωP .
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This follows from the duality principle E → H, H → −E, µ →
ε, ε → µ, D → B, B → −D with D = εE + P , B = µH + µM and
Il = −iωP → −iωµM , and iωµM → −iωP = Il .

When the magnetic dipole is in ẑ-direction, (5.3.25) and (5.3.26)
reduce to (5.3.21) and (5.3.22).

Note: The correspondence between the electric and magnetic dipoles can
be quantified by letting the Hertzian dipole moment Il to be

(Il)e = (ikIA)m (5.3.27)

where the subscripts e and m are used to denote the electric dipole and the
current loop, respectively. The solution for a small current loop in (5.3.21)
and (5.3.22) can be obtained from the solutions for electric dipoles by letting

Em = ηHe (5.3.28)

Hm = −Ee

η
(5.3.29)

Such relations as illustrated in (5.3.28)–(5.3.29) depict the duality principle.
What we have shown is that the complete solution for a small current loop,
including both near and far fields, is the dual of that for a Hertzian electric
dipole. A small loop can thus be regarded as a magnetic dipole that is the
dual of an electric dipole.

Problems

P5.3.1
Derive the instantaneous electric and magnetic fields from the solutions

in (5.3.13) and (5.3.14), we multiply (5.3.13) and (5.3.14) by e−iωt and take
the real part.

P5.3.2
Consider the following two Hertzian dipoles as shown in Fig. P5.3.2.1

driven at an angular frequency ω and with the same dipole moment. The
first dipole is located at the origin (0, 0, 0) and oriented in the ŷ direction.
The second dipole is located at (0, 0,−3λ/4) and oriented in the x̂ direction.
(a) Give the expression for the vector current moment f(θ, φ) .
(b) Show that in the far field the electric field is given by

E =η0
ikI06

4πr
eikr

{
φ̂
[
cosφ−sinφei

3π
2 cos θ

]
+θ̂ cosθ

[
sin φ+cos φei

3π
2 cos θ

]}
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z

x

yλ/43

I06

I06

Figure P5.3.2.1

(c) Give all directions (θ, φ) for which the wave is right-hand circularly
polarized.

(d) Give all directions (θ, φ) for which the wave is left-hand circularly po-
larized.

(e) Give all directions (θ, φ) for which the wave is linearly polarized.

P5.3.3
A turnstile antenna consists of two Hertzian dipoles positioned at right

angles to each other with constant current distributions given by

J1 = x̂Ilδ(r) and J2 = ŷiIlδ(r)

respectively.

(a) Show that the electric field produced by this antenna is

E = −η
ikIleikr

4πr
eiφ

{
r̂

[
i

kr
+

(
i

kr

)2
]

2 sin θ

−θ̂

[
1 +

i

kr
+

(
i

kr

)2
]

cos θ − φ̂ i

[
1 +

i

kr
+

(
i

kr

)2
]}

(b) Find the total electric field in the far-field (kρ 	 1) in the x-y plane
with θ = π/2. Show that the real space-time dependence of the electric
field is of the form cos(ωt− φ− kρρ). Note that

x̂ = r̂ cos φ sin θ − φ̂ sin φ + θ̂ cos φ cos θ

ŷ = r̂ sin φ sin θ + φ̂ cos φ + θ̂ sin φ cos θ

What is the polarization of the radiated wave in the x-y plane?
(c) Find the radiation power pattern in the x-y plane.
(d) Find the total radiated electric field on the z axis. What is the polar-

ization of the radiated wave in the ẑ direction?
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(e) Calculate the power density radiated in the +ẑ direction in the far field
and compare it with the radiated power density in the +x̂ direction.

P5.3.4
Consider a nucleus with magnetic moment M placed in a dc magnetic

field B0 . The classical equation of motion for M is

dM

dt
= γM ×B

where γ is the gyromagnetic ratio.

(a) Let M = M0(−x̂ cos ωt + ŷ sin ωt) . Find the static magnetic field B in
terms of the frequency ω and the gyromagnetic ratio γ .

(b) Let the nucleus be placed at the origin (at r = 0 ). Find the magnetic
field produced by M on the z -axis at z = d .

(c) A pick-up coil with a very small radius R is placed at the z -axis with
the center at z = d . Let the plane of the coil be parallel to the yz -plane
and assume that the magnetic field linking the area A = πR2 of the
loop is uniform. Find the induced voltage on the pick-up coil.

P5.3.5
In magnetic resonance imaging (MRI) applications, assume the magnetic

moment of a nucleus is M = M0(x̂ cos ωt + ŷ sin ωt) , where the angular
Larmor frequency ω = γB0 and the static magnetic field B0 is in the ẑ
direction.
(a) Show that the magnetic field produced by the spinning nucleus in the

vicinity of the nucleus is

H(r) =
1

4πr3

{
−M + 3r̂(r̂ ·M)

}
(b) Find the x-component of the time-varying magnetic field linking a pickup

coil placed on the y-z plane at a distance x = d with its center lined
up with the x-axis. The induced voltage (magnetomotive force) on the
pick-up coil can be determined using the following formula

V = − ∂

∂t

∫
A

daBx(r, t)

Show that the induced voltage on the pick-up coil has the form

V = U(ω) sin ωt

Find the coefficient U(ω) . Why a large static magnetic field B0 is
needed to obtain large induced voltage on the pick-up coil?

(c) Consider two magnetic dipoles with the same gyromagnetic ratio γ
placed on the z-axis with separation δ . Assume that the two magnetic
dipoles are close to the origin so that the induced voltage due to each
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one can be approximated by Vi = U(ωi) sin ωit (i = 1, 2) . Using a radio-
frequency (RF) pick-up coil, the Larmor frequency ωi can be measured
accurately. Let ω1−ω2 = ∆ω . Find the difference of the static magnetic
field B0 acting on the two magnetic dipole moments in terms of ∆ω
and γ .

(d) Let the static magnetic field be B0 = ẑ(b0 + b1z) and the difference of
the Larmor frequencies be ω1 − ω2 = ∆ω . Find the separation δ of the
two magnetic dipole moments in terms of ∆ω , γ , and b1 .

(e) Assume that magnetic dipoles are spinning protons of water at room
temperature, and gyromagnetic ratio of proton is γ = 2.7× 108 T−1s−1.
Let the two protons locate on the z-axis. The applied static magnetic
field is B = ẑ(b0 + b1z) , where b0 = 1.0 T and b1 = 1.0 T/m . Find
the frequency resolution in kHz of the pick-up coil to measure the two
protons with separation δ = 0.5 mm on the z-axis.

P5.3.6
In Magnetic Resonance Imaging (MRI) study, it is very useful to define

a rotating frame of reference which rotates about the z axis at the Lar-
mor frequency ( ω0 = γB0 , γ is the gyromagnetic ratio). Consider the bulk
magnetic moment M0ẑ placed in a DC magnetic field B0ẑ . When a MRI
transmitting coil generates a magnetic field of frequency ω1 , effective total
magnetic field can be described as

B = B0ẑ + B1(x̂ cos ω1t− ŷ sin ω1t)

And the rotating coordinate can be defined as

x̂′ = x̂ cos ω1t− ŷ sin ω1t

ŷ′ = x̂ sin ω1t + ŷ cos ω1t

ẑ′ = ẑ

The classical equation of motion for M is

dM

dt
= γM ×B

(a) Show that when ω1 �= ω0 (called “off resonance”), magnetic moment M
will precess about the ( B1x̂′ +∆B0ẑ′ ) axis, where ∆B0 = (ω0−ω1)/γ .

(b) Show that when ω1 = ω0 = γB0 (called “on resonance”), magnetic
moment M will respond to this B1 field as a rotation about the x′

axis in the rotating frame.

P5.3.7
(a) In MRI, the resonance frequency (Larmor frequency) ω0 of a spin parti-

cle is related to the magnetic field B0 by gyromagnetic ratio, ω0 = γB0 .
1 H nucleus has two spin states. The energy of the photon needed to cause
a transition between the two spin states of 1 H nucleus in a 1.5 T mag-
netic field is 4.2346× 10−26 J. What is the gyromagnetic ration of 1 H?
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(Note that the energy E of a photon at frequency ω is E = h̄ω , where
h̄ = 6.63× 10−34/(2π) J · s/rad .)

(b) A sample contains two small distinct water locations where there is 1 H
spin density. In a uniform field, each of the 1 H has the same Larmor
frequency. However, if a linear gradient Gx is superimposed on the main
magnetic filed B0 , the Larmor frequency will depend on position along
the x axis. ω = γ(B0+xGx) = ω0+γxGx . The MRI spectrum contains
frequencies of 63.8717 MHz and 63.8666 MHz when B0 is 1.5 T and
Gx = 1× 10−2 T/m. What are the locations of the water?

P5.3.8
In MRI, it is required to generate a uniform B field in the vicinity of

a certain point. Helmholtz coil, as shown in Figure P5.3.8.1, can realize this.
The two identical circular loops of radius a , separated by distance d , carry
the same current I in the same direction.

z

z = d/2

z = −d/2

I

I

z = 0

a

a

Figure P5.3.8.1

(a) Show the magnetic field along the z-axis is

Bz =
µ0Ia2

2 [(d/2− z)2 + a2]
3
2

+
µ0Ia2

2 [(d/2 + z)2 + a2]
3
2

(b) Show when d = a , the Bz is most uniform in the vicinity of z = 0 ,
i.e., dBz

dz = 0 and d2Bz
d2z

= 0 at z = 0 .
(c) Plot the Bz(z) when d = a = 5 cm and I = 2 A for −d

2 ≤ z ≤ d
2 .
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5.4 Linear Dipole Arrays

A. Uniform Array Antenna with Progressive Phase Shift

Consider an array of N elements, pointing in the ẑ direction and
placed along the x axis with equal spacing d [Fig. 5.4.1]. Each element
has a progressive phase shift α relative to its adjacent element. The
current density J(r′) takes the form

J(r′) = ẑIl

N−1∑
n=0

einαδ(x′ − nd)δ(y′)δ(z′) (5.4.1)

z
r

x

y

ξ

θ

φ

ψ

dd

Figure 5.4.1 Linear antenna arrays.

The vector current moment is calculated to be

f(θ, φ) =
∫

dx′
∫

dy′
∫

dz′ J(r′)e−ik(x′ sin θ cosφ+y′ sin θ sinφ+z′ cos θ)

= ẑIl
N−1∑
n=0

e−in(kd sin θ cosφ−α) (5.4.2)

The electric field E in the radiation zone is, with cos ψ = sin θ cos φ
and ψ is the angle between the x axis and the position vector r
[Fig. 5.4.1],

Eθ = −iωµ
Ileikr

4πr
sin θ

[
N−1∑
n=0

e−in(kd cosψ−α)

]
= −iωµ

Ileikr

4πr
sin θ F (u)

(5.4.3)
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The factor in front of the square bracket in (5.4.3) is seen to be the
radiation field of the individual Hertzian dipoles. The group behavior
of the array is governed by the summation term known as the array
factor F (u) ,

F (u) =
N−1∑
n=0

e−inu (5.4.4)

where
u = kd cos ψ − α (5.4.5)

The summation in the array factor is easily carried out and yields the
magnitude of F (u)

|F (u)| =
∣∣∣∣∣sin (Nu/2)

sin (u/2)

∣∣∣∣∣ (5.4.6)

The magnitude of the array factor |F (u)| forms a periodic pattern in
u, and is plotted in Figure 5.4.2 for N = 5 .

The part of the radiation pattern that is physically observed is
determined from (5.4.5) for ψ between 0 and π which corresponds
to going from the +x̂ direction to the −x̂ direction. This is called
the visible range for which u spans the range kd and −kd . We can
sketch the radiation pattern for the array factor as a function of the
observation angle ψ .

In Figure 5.4.2 we plot the array factor as a function of u for
N = 5 . Letting α = 0 , the visible range corresponding to d = λ/2
is illustrated in Figure 5.4.2 together with the radiation pattern. As
the observation angles ψ span from 0 to π , the projection u =
kd cos ψ changes from kd to −kd and the corresponding values for
the array factor are obtained from the |F (u)| plot. We note that these
patterns are physically observed on the x-y plane for which θ = π/2 .
In other planes containing the x axis, the patterns must be modified
by multiplication of the unit pattern of the array elements. Because the
principal maximum is perpendicular to the array at ψ = π/2 , such a
uniform linear array is called broadside.

From (5.4.6) we see that the principal maxima umax occur when
the denominator goes to zero, namely umax/2 = mπ or

umax = 2mπ m = 0,±1,±2, . . . (5.4.7)

The magnitudes of these principal maxima are all equal to

|F (umax)| = N (5.4.8)
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|F (u)|

u
−2π −π π 2π

visible range

kd cosψ

ψ
u = −kd

u = kd

u

u

Figure 5.4.2 Array factor and radiation pattern for N = 5 and kd = π.

This is obtained from (5.4.6) by L’Hôpital’s rule introduced by Guil-
laume L’Hôpital (1661–1704) in his book on differential calculus pub-
lished in 1692.

The location of the nulls un occur when the numerator goes to
zero, namely Nun/2 = nπ or

un =
2nπ

N
n = ±1,±2, . . . (5.4.9)

which must be different from umax . For the five-element array shown
in Figure 5.4.2, un = ±2π/5 and ±4π/5 . The magnitude of the side-
lobes can be determined from (5.4.6). First locate the positions of the
maxima um by setting the derivative of |F (u)| equal to zero and then
evaluate their magnitudes from (5.4.6).

For broadside arrays, α = 0 and the visible range covers −kd ≤
u ≤ kd as ψ changes from π to 0 . For a nonzero phase shift α , the
visible range will be shifted to the left of the u coordinate.
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visible range

|F (u)|

−2π

u = −2kd

0

ψ

u

u

kd cosψ

Figure 5.4.3 Visible range for N = 5, and α = kd = π.

u = −2kd

u

u

kd cos ψ

ψ

visible range

|F (u)|

u

Figure 5.4.4 Visible range for N = 5, and α = kd = 8π/5.
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Consider the case of α = kd . We have

u = kd(cos ψ − 1) (5.4.10)

The visible range covers −2kd ≤ u ≤ 0 . We illustrate the visible range
and the radiation patterns in Figure 5.4.3 for N = 5 and d = λ/2 ,
and in Figure 5.4.4 for N = 5 and d = 4λ/5 . We see that there may
be more than one principal maximum occurring in the visible range
for kd ≥ π . A principal maximum always occurs at ψ = 0 . Thus for
α = kd , the array is called endfire.

Example 5.4.1
For a very large array, the sidelobe maxima can be assumed to be located

midway between the nulls,

um ≈
(2m + 1)π

N
m = 1, 2, 3, . . .

The magnitudes are

|F (um)| =
∣∣∣∣ sin [(2m + 1)π/2]
sin [(2m + 1)π/2N ]

∣∣∣∣ ≈ 2N

(2m + 1)π
(E5.4.1.1)

for large N within the visible range. Since the principal maxima magnitude
is N , the relative magnitudes of the sidelobes are

|F (um)|
|F (umax)|

=
2

(2m + 1)π

For a large array, the first sidelobe (m = 1) magnitude is 2/3π or
20 log(2/3π) = −13.5 dB relative to the main lobe.

End of Example 5.4.1

Example 5.4.2
It is useful to estimate the beamwidth and directivity for both the broad-

side and the endfire arrays. There are two kinds of beamwidths we can define.
One measures the angular spread of the main lobe in ψ between the first-
null positions; the other measures the angular spread between the half-power
points of the main lobe. To determine the first-null beamwidth, we find that
the first null u < 0 occurs at

u1 = kd cos ψ1 − α =
−2π

N
(E5.4.2.1)
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For a broadside array, α = 0 and the principal maximum occurs at ψ = π/2 .
The beamwidth is (BW)b = 2(ψ1− π

2 ) . From (E5.4.2.1), we see that for large
N ,

− 2π

Nkd
= cos ψ1 = − sin

[
ψ1 −

π

2

]
≈ −

[
ψ1 −

π

2

]
Thus,

(BW)b ≈
4π

Nkd
(E5.4.2.2)

For an endfire array, α = kd and the principal maximum occurs at ψ = 0 .
The beamwidth is (BW)e = 2ψ1 . From (E5.4.2.1), we see that for large N ,

− 2π

Nkd
= cos ψ1 − 1 ≈ −ψ2

1

2
Thus,

(BW)e = 2

√
4π

Nkd
(E5.4.2.3)

The first-null beamwidth for large broadside arrays is inversely proportional
to N , whereas that for large endfire arrays is inversely proportional to

√
N .

Therefore, large endfire arrays are seen to have a larger first-null beamwidth.
End of Example 5.4.2

Example 5.4.3
The directivity D is defined as the ratio of the peak power to the total

radiated power distributed over 4π steradians

D = G(θ, φ)max =
4π |E(θ, φ)max|2∫ 2π

0

dφ

∫ π

0

dθ sin θ |E(θ, φ)|2
(E5.4.3.1)

From (5.4.3), we have

Eθ = E0 sin θ

[
N−1∑
n=0

e−inu

]
(E5.4.3.2)

where u = kd cos ψ − α , and E0 = −iωµIleikr/4πr . The directivity is

D =
4πN2∫ 2π

0

dφ

∫ π

0

dθ sin3 θ

[
N + 2

N−1∑
m=1

(N −m) cos mu

] (E5.4.3.3)
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To facilitate the integration over 4π steradians, we use the angles ψ and ξ
as shown in Figure 5.4.1 and integrate over dξ dψ sin ψ for ψ from 0 to π
and ξ from 0 to 2π . The directivity is calculated as

D=4πN2

{∫ 2π

0

dξ

∫ π

0

dψ sin ξ (1−cos2 ξ sin2 ψ)

[
N +2

N−1∑
m=1

(N−m) cos mu

]}−1

= 4πN2

{∫ π

0

dψ sin ψ (2π − π sin2 ψ)

[
N + 2

N−1∑
m=1

(N −m) cos mu

]}−1

= 4N2

{∫ kd−α

−kd−α

du

kd

[
1+

1
(kd)2

(u + α)2
][

N +2
N−1∑
m=1

(N−m) cos mu

]}−1

= 4N2

{
8
3

N +
2
kd

N−1∑
m=1

(N −m)
[ 4

m
sin(mkd) cos(mα)

+
4

m2kd
cos(mkd) cos(mα)− 4

m3(kd)3
sin(mkd) cos(mα)

]}−1

= N2

{
2
3

N + 2
N−1∑
m=1

(N −m)
[(

1
mkd

− 1
(mkd)3

)
sin(mkd)

+
1

(mkd)2
cos(mkd)

]
cos(mα)

}−1

(E5.4.3.4)

As kd→ 0 , we have

D = N2

{
2N

3
+

2
3
(N −m) cos mα

}−1

Letting α = 0 , we obtain

D = N2

{
2N

3
+

2
3

N(N − 1)
}−1

=
3
2

(E5.4.3.5)

which is the directivity for a single Hertzian dipole.
End of Example 5.4.3
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B. Array Antennas with Nonuniform Current Distributions

We see that for uniform linear arrays, whether broadside or endfire, the
relative power level of the first sidelobe as compared with the principal
maximum is −13.5 dB and even higher for modified endfire arrays.
With the use of nonuniform current excitations, the sidelobe levels can
be reduced. One simple example is a gabled array which has an array
factor equal to the square of that for a uniform linear array,

F̃ (u) =

[
N−1∑
n=0

e−inu

]2

=1 + 2e−iu + · · ·+ Ne−i(N−1)u + · · ·

+ 2e−i(2N−3)u + e−i2(N−1)u (5.4.11)

The gabled array consists of 2N − 1 elements with the center element
having current amplitude N relative to the end ones having unit am-
plitude. The array pattern plotted against u is seen to be the square
of the uniform array. The first sidelobe level is now −27 dB relative to
the main lobe.

A similar construction leads to a binomial array which has no
sidelobes. Consider a uniform linear array consisting of two elements.
The array factor

∣∣∣F̃ (u)
∣∣∣ =

∣∣∣∣∣
1∑

n=0

e−inu

∣∣∣∣∣ =

∣∣∣∣∣ sin u

sin u
2

∣∣∣∣∣ (5.4.12)

broadside visible range

endfire visible range

−2π −π 0 π 2π

∣∣∣∣ sin u

sin u
2

∣∣∣∣

uu

Figure 5.4.5 Array factor for N = 2.
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If we choose d such that kd ≤ π , we see from the array factor in
Figure 5.4.5 (with kd = π ) that neither the broadside nor the endfire
pattern has sidelobes. Taking the N th power of F̃ (u) , we still do not
have any sidelobes,

∣∣∣F̃ (u)
∣∣∣N =

∣∣∣∣1 +
(

N
1

)
e−iu +

(
N
2

)
e−i2u + · · ·+

(
N
N

)
e−iNu

∣∣∣∣
=

∣∣∣∣∣
N∑

n=0

(
N
n

)
e−inu

∣∣∣∣∣ (5.4.13)

The amplitudes of the current distribution are thus equal to the coef-

ficients of a binomial series
(

N
n

)
.

Example 5.4.4
In general, linear arrays with nonuniform excitations can be analyzed

with the z -transform method if the envelope of the current distribution is
describable in functional form. As an example, consider a linear array with
the sinusoidal current distribution such that

J(r′) = ẑIol

N−1∑
n=0

sin(kax′) δ(x′ − nd)δ(y′)δ(z′) (E5.4.4.1)

For symmetric excitation we also have

(N − 1)kad = π (E5.4.4.2)

The array factor becomes

F̃ (u) =
N−1∑
n=0

sin(nkad)e−inu (E5.4.4.3)

Notice that the array has only N −2 elements because the two end elements
have zero excitation. The array factor can be cast in a standard z -transform
format by letting

z = eiu (E5.4.4.4)

F̃ (u) is then in the form of a shifted finite z -transform for the function
sin(nkad) . Regarding z as a real quantity, we carry out the summation in
(E5.4.4.3) in the following manner
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N−1∑
n=0

sin(nkad)z−n =− Im

{
N−1∑
n=0

z−ne−inkad

}
= −Im

{
1− z−Ne−iNkad

1− z−1e−ikad

}

=
(z−1 + z−N ) sin

( π
N−1

)
1− 2z−1 cos

( π
N−1

)
+ z−2

(E5.4.4.5)

where we made use of the symmetry condition in (E5.4.4.2). In fact, once the
summation is cast in the z -transform format, standard formulas for many
frequently encountered functions are available in tabulated forms.

The magnitude of the array factor is obtained from (E5.4.4.3)–(E5.4.4.5),

∣∣F̃ (u)
∣∣ =

∣∣∣∣∣∣
cos

[
(N−1)u

2

]
sin

( π
N−1

)
cos u− cos

( π
N−1

)
∣∣∣∣∣∣ (E5.4.4.6)

The principal maximum occurs at u = 0 for which∣∣F̃ (umax)
∣∣ = cot

π

2(N − 1)
(E5.4.4.7)

Nulls occur at un = ±(2n + 1)/(N − 1) for n = 1, 2, 3, . . . The value corre-
sponding to n = 0 or u0 = π/(N − 1) does not yield a null because both
the numerator and the denominator of (E5.4.4.6) are zero and in the limit,∣∣F̃ (u0)

∣∣ = (N − 1)/2 .

ψ = 127◦ ψ = 53◦

Figure E5.4.4.1 Radiation pattern for N = 6 and d = λ/2.

For N = 6 and d = λ/2 , the radiation pattern is shown in Figure
E5.4.4.1. The first sidelobe maximum occurs at u = ±2.44 with |F̃ (2.44)|/
|F̃ (umax)| = 0.12 or −18 dB. When d = λ/2 , the directivity is calculated to
be D = 3.79 for both broadside and endfire arrays.

End of Example 5.4.4
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C. Dolph-Chebyshev Arrays

Dolph-Chebyshev arrays have equal sidelobes. The array elements are
equally spaced and symmetrically excited, with a uniform progressive
phase shift, and with current amplitudes determined by the coefficients
of the Chebyshev polynomials. As a result of the properties of Cheby-
shev polynomials, such arrays provide the minimum beamwidth for a
prescribed sidelobe level, and conversely, the minimum sidelobe level
for a prescribed beamwidth.

Tm(x)

−1.0

T1

T3

T0

T2

T4

1

2

3

4

x1.0

−.5 .5

(1,1)T0

T1

T2

T3

T4

−1

−2

−3

−4

T

Figure 5.4.6 Chebyshev polynomials T0, T1, T2, T3 and T4.

The Chebyshev (also spelled Tchebyscheff) polynomials are de-
fined by

Tn(x) = cos
[
n cos−1 x

]
(5.4.14)

The first few polynomials are

T0(x) = 1 (5.4.15a)
T1(x) = x (5.4.15b)
T2(x) = 2x2 − 1 (5.4.15c)
T3(x) = 4x3 − 3x (5.4.15d)
T4(x) = 8x4 − 8x2 + 1 (5.4.15e)
T5(x) = 16x5 − 20x3 + 5x (5.4.15f)
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Polynomials of higher degree can be obtained from the recurrence re-
lation

Tn+1 = 2x Tn(x)− Tn−1(x) (5.4.16)

which can be obtained from the trigonometric identity
cos((n + 1) cos−1 x) + cos((n − 1) cos−1 x) = 2x cos(n cos−1 x) . The
polynomials Tn(x) are of degree n in x . For n even, Tn(x) contains
only even powers of x ; for n odd, Tn(x) contains only odd powers
of x . For |x| > 1 , we let cos−1 x = θ = θR + iθI . It follows that for
x > 1 , θ = i cosh−1 x and thus Tn(x) = cos(n θ) = cosh[n cosh−1 x] .
For x < −1 , θ = π + i cosh−1 x and thus Tn(x) = cos(n θ) =
(−1)n cosh[n cosh−1 |x|] . Within the range −1 ≤ x ≤ 1 , Tn(x) os-
cillates between ±1 . The polynomial Tn(x) passes 1 at x = 1 and
(−1)n at x = −1 . For n > 0 the zeros of Tn(x) occur at

xp = cos
(2p− 1)π

2n
p = 1, 2, . . . , n (5.4.17)

For n > 1 the extrema for Tn(x) within the interval −1 ≤ x ≤ 1
occur at

xm = cos
mπ

n
m = 1, 2, . . . , n− 1 (5.4.18)

The Chebyshev (Pafnuty Lvovich Chebyshev, 16 May 1821 – 8 Decem-
ber 1894) polynomials of degrees 0 through 4 are shown in Figure
5.4.6.

To determine the excitation amplitudes of an N -element array
excited symmetrically, we place the coordinate origin at the midpoint
of the array and write the array factor as

F̃ (u) =




2
N/2∑
m=1

am cos
(2m− 1)u

2
N = even (5.4.19a)

a0 + 2
(N−1)/2∑
m=1

am cos mu N = odd (5.4.19b)

where
u = kd cos ψ − α

and α is the phase shift between adjacent array elements, and am are
the excitation amplitudes.
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The excitation amplitudes of an N -element Dolph-Chebyshev ar-
ray are determined by equating the array factor F̃ (u) with the Cheby-
shev polynomial TN−1(x) . The relationship between u and x is

x = b cos
u

2
(5.4.20)

which was introduced by Charles L. Dolph in 1946, is known as the
Dolph transformation, where b is a parameter larger than one, b > 1 .

By the Dolph transformation (5.4.20),

u = 2 cos−1 x

b
(5.4.21)

Equating the array factor to TN−1(x) , we find

TN−1(x) =




2
N/2∑
m=1

amT2m−1(x/b) N = even (5.4.22a)

a0 + 2
(N−1)/2∑
m=1

amT2m(x/b) N = odd (5.4.22b)

The excitation amplitudes am are determined by comparing coeffi-
cients of like powers on both sides of (5.4.22).

We write the array factor for a five-element Dolph-Chebyshev ar-
rays as

F̃ (u) = TN−1

[
b cos

u

2

]
= T4 [x] (5.4.23)

For the five-element Dolph-Chebyshev array,

F̃ (u) = a0 + 2
(N−1)/2∑
m=1

am cos mu N = odd

Thus we have

a0 + 2a1T2(x/b) + 2a2T4(x/b) = T4(x)

The excitation amplitudes a0, a1 , and a2 are determined by making
use of (5.4.15c) and (5.4.15e)

a0 + 2a1

[
2(x/b)2 − 1

]
+ 2a2

[
8(x/b)4 − 8(x/b)2 + 1

]
= 8x4 − 8x2 + 1
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and comparing the coefficients of like powers. We find a2 = b4/2 ,
a1 = 2b4 − 2b2 , and a0 = 3b4 − 4b2 + 1 .

We illustrate the case of a five-element endfire Dolph-Chebyshev
array with d = λ/4 as shown in Figure 5.4.7. We let the visible range
cover the Chebyshev polynomial from x = −1 to x = x0 , where
principal maximum occurs. The principal maximum F̃ (umax) = R
occurs at ψ = 0 , corresponding to

x0 = b cos
kd− α

2
(5.4.24)

To include all sidelobes in the array pattern and to exclude a main
lobe at ψ = π , we require that ψ = π corresponds to x = −1 . From
the Dolph transformation (5.4.20) we have

−1 = b cos
kd + α

2
(5.4.25)

R

−1

visible range

array axis

=2kd=π

0

u

π

b

−π

x = b cos u
2

b cos u
20

0x
1x

T4 b cos u
2( )

Figure 5.4.7 Endfire Dolph-Chebyshev array with N = 5 and kd = π/2.
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which determines the progressive phase shift α . The visible range lies
between u = kd − α and u = −kd − α . The construction of the
radiation pattern when d = λ/4 is shown in Figure 5.4.7. The variable
b is determined by either the main lobe maximum R or the main lobe
beamwidth.

For array synthesis suppose the beamwidth 2ψ1 is specified, we
see that

b cos
kd cos ψ1 − α

2
= cos

π

2(N − 1)
(5.4.26)

From (5.4.25) and (5.4.26) α and b can be determined.
If instead the sidelobe level 1/R is specified, we find

R = TN−1

[
b cos

kd− α

2

]
(5.4.27)

Making use of (5.4.14), we obtain the equation

b cos
kd− α

2
= cosh

[
1

N − 1
cosh−1 R

]
(5.4.28)

From (5.4.25) and (5.4.28), α and b can be determined.
Notice that the choice of x = −1 corresponding to ψ = π and the

choice of element separation d fix the visible range 2kd . Main lobes
at angles other than ψ = 0 will appear if 2kd becomes too large, for
instance d = λ/2 .

To illustrate the optimum properties of the Chebyshev polynomi-
als, let the largest value of Tn(x) be at x0 , and the first zero be at
x1 . For −1 ≤ x ≤ 1 , Tn(x) lies between −1 and 1 . Let the visible
range cover the Chebyshev polynomial from x = −1 to x = x0 . We
wish to show that for a given beamwidth with first null at x1 , the
sidelobe level 1/R is the smallest, and conversely for a given sidelobe
level, the beamwidth provided by Tn(x) is the smallest.

To prove this statement, we let there be another polynomial Pn(x)
with the same degree n and the same magnitude R > 1 at x = x0 .
For the case of a given beamwidth, Tn(x) and Pn(x) intersect at
values x = x0 and x = x1 . If Pn(x) ≤ 1 for −1 ≤ x ≤ x1 , then Pn(x)
intersects Tn(x) at least n− 1 more times. However, since specifying
n + 1 values for a polynomial of degree n uniquely determines all the
coefficients of the polynomial, the two polynomials Pn(x) and Tn(x)
must be identical.
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Conversely, for a given sidelobe level 1/R , if Pn(x) is to stay
within the bounds ±1 and is to possess the largest zero at x′

1 , such
that x1 < x′

1 < x0 , it must intersect Tn(x) at least n more times, and
again Pn(x) = Tn(x) . This concludes the proof that Tn(x) provides
the optimum properties for an array pattern.

Example 5.4.5 Broadside Dolph-Chebyshev array.
Consider the construction of the radiation pattern for a five-element

broadside Dolph-Chebyshev array with d = λ/2 and α = 0 as shown in Fig-
ure E5.4.5.1. The visible range is between u = −kd = −π and u = kd = π .

ψ

array axis

π

visible range
2kd=2π

u

0

−π

b b cos u
2

x = b cos u
2

R

0

(u) = T4

(
b cos u

2

)

0

F̃

Figure E5.4.5.1 Broadside Dolph-Chebyshev array with N = 5, kd = π.

Let the first-null beamwidth of the broadside array be 2[(π/2) − ψ1] .
At the first null x = b cos[(kd cos ψ)/2] , we obtain from (5.4.17) by letting
p = 1 and n = N − 1 ,

b cos
kd cos ψ1

2
= cos

π

2(N − 1)
(E5.4.5.1)

The principal maximum occurs at u = 0 where F̃ (u) = TN−1(b) = R .
Notice that as b > 1 , we have

R = TN−1(b) = cosh[(N − 1) cosh−1 b] (E5.4.5.2)
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Thus with b specified, the beamwidth and sidelobe levels are immediately de-
termined from (E5.4.5.1) and (E5.4.5.2). Conversely, if we specify the sidelobe
level 1/R , b is determined from (E5.4.5.2)

b = cosh
[ 1

N − 1
cosh−1 R

]
and consequently, the beamwidth from (E5.4.5.1).

End of Example 5.4.5

Example 5.4.6 Riblet transformation for broadside array.
In the construction of the radiation pattern for broadside arrays, we see

that if d ≥ λ/2 , the visible range will be larger than that shown in Figure
E5.4.5.1, and additional main lobes may be exhibited. However, if d < λ/2 ,
the visible range will be smaller than that shown in Figure E5.4.5.1, and the
whole range of the Chebyshev polynomial will not be used.

The Dolph-Chebyshev arrays will no longer be the optimum arrays. This
can be seen for a broadside array with an odd number of elements by consid-
ering another array factor described by, instead of TN−1(x) , another sym-
metric polynomial PN−1(x) which has the property that PN−1(b) = R at
the principal maximum and zero at cos[π/2(N −1)] but with |PN−1(x)| < 1
for b cos(kd/2) < x < cos[π/2(N − 1)] . This is possible because |PN−1(x)|
can be larger than unity for 0 < x < b cos(kd/2) , which is not in the vis-
ible range. The result is an array pattern that has the same beamwidth as
a Dolph-Chebyshev array but has a smaller sidelobe level. Thus the opti-
mum characteristic of the broadside Dolph-Chebyshev array is restricted to
d ≥ λ/2 .

The restriction was removed in 1947 by H. J. Riblet who modified the
Dolph transformation (5.4.20) to

x = b cos u + c (E5.4.6.1)

for a broadside array with an odd number of elements. R. H. DuHamel in
1953 extended Riblet’s method to synthesize broadside arrays, and in 1955
R. L. Pritchard developed the formulation to include arrays of even numbers
of elements.

In Figure E5.4.6.1, we employ Riblet transformation (E5.4.6.1) to plot
the radiation pattern of a five-element broadside array with separation d =
0.3λ . Notice that the Riblet transformation is not reducible to the Dolph
transformation x = b cos u

2 as c = 0 . In order to determine uniquely the
excitation coefficients for an (2N + 1) element array, the array factor is set
to equal to the N th order polynomial TN (x) , which is not the same as that
for the Dolph-Chebyshev array where the array factor for 2N +1 elements is
set equal to the 2N th order polynomial T2N (x) . The excitation coefficients
are obtained by comparing the coefficients of the equation
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x = b cos u + c

u = kd cos ψ

−
kd

T2(x)

ψ

x

N = 5

kd

1

-1

-1 1

Figure E5.4.6.1 Broadside array with Riblet transformation
for N = 5 and d = .3λ.

TN (x) = a0 + 2
N∑

m=1

amTm

[
x− c

b

]
The whole range of the Chebyshev polynomial can again be used when d <
λ/2 by requiring x = −1 for u = ±kd or b cos(kd)+ c = −1 . The principal
maximum now occurs at x = b + c .

End of Example 5.4.6

D. Array Pattern Synthesis

In array synthesis, we are asked to find a set of physically realizable
excitation currents for the array elements for a given specification of the
array pattern with regard to its beamwidth, sidelobe level, positions
of nulls, directivity, and so forth. Consider the synthesis of an array
having symmetric and nonnegative excitations with maximum possible
number of nulls. The array factor takes the form

F̃ (u) = 1+I1e
−iu+I2e

−i2u+. . .+IN−2 e−i(N−2)u+e−i(N−1)u (5.4.29)

where we assume I0 = IN−1 = 1 for the two end elements and Im =
IN−1−m for m = 1, 2, . . . , N−2 . The polynomial in z = e−iu is of the
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order N − 1 roots for z . Note that F̃ (u) has (N − 1)/2 unknown
coefficients when N is odd and (N − 2)/2 unknown coefficients when
N is even. For odd N, we can factor F̃ (u) in the form

F̃o(u) =
(N−1)/2∏
m=1

(1 + cme−iu + e−i2u) (5.4.30)

which gives rise to a polynomial with symmetric coefficients. For even
N we factor F̃ (u) in the form

F̃e(u) = (1 + e−iu)
(N−2)/2∏
m=1

(1 + cme−iu + e−i2u) (5.4.31)

Note that the first factor in (5.4.31) is the result of combining the
terms from symmetric positions of the polynomial. For instance, the
first and last elements yield 1 + e−i(N−1)u, and, since N is an even
number, this term possesses the factor 1 + e−iu .

The power patterns consist of magnitude squares of the elementary
factors of F̃ (u) . Note that, assuming real cm ,

(1 + cme−iu + e−i2u)(1 + cmeiu + ei2u) = (ξ + cm)2

where we let

ξ = eiu + e−iu = 2 cos u = 2 cos[kd cos ψ − α] (5.4.32)
The power patterns corresponding to F̃o(u) and F̃e(u) are, in terms
of the new variable ξ ,

Po(ξ) =
∣∣∣F̃o

∣∣∣2 =
(N−1)/2∏
m=1

(ξ + cm)2 (5.4.33)

for odd N and

Pe(ξ) =
∣∣∣F̃e

∣∣∣2 = (ξ + 2)
(N−2)/2∏
m=1

(ξ + cm)2 (5.4.34)

for even N . We see from (5.4.32) that −2 ≤ ξ ≤ 2 ; within this interval
the power pattern P (ξ) must be real and positive for a physically
realizable array. For the maximum possible number of nulls we also
have cm real and |cm| < 2 so that all zeros of the polynomial occur
in the range −2 ≤ ξ ≤ 2 .
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Example 5.4.7
As an example, consider the synthesis of a broadside array consisting of

five elements with equal spacing of λ/2 [Ma, 1974]. The power pattern and
the corresponding array factor are, respectively,

Po(ξ) = (ξ + c1)2(ξ + c2)2 (E5.4.7.1)

F̃ (u) = (1 + c1e−iu + e−i2u)(1 + c2e−iue−i2u)

= 1+(c1 + c2)e−iu+(2 + c1c2)e−i2u+(c1 + c2)e−i3u+e−i4u (E5.4.7.2)

From (E5.4.7.1) we see that nulls occur at ξ = −c1 and −c2 . The positions
of the sidelobes are determined by setting dPo(ξ)/dξ = 0 which yields ξ1 =
−(c1 + c2)/2 . The values ξ = −c1 and −c2 are neglected because they are
known to be nulls. For non-negative excitation coefficients, we require that
c1 + c2 ≥ 0 and c1c2 ≥ −2 which assures broadside maximum at ξ = 2 .
Substituting back in (E5.4.7.1) we find the corresponding sidelobe level

P [ξ1 = −(c1 + c2)/2]
P (ξm = 2)

=
(c1 − c2)4

16(c1 + 2)2(c2 + 2)2
(E5.4.7.3)

we also regard the point ξ = −2 as a sidelobe maximum and find

P (ξ2 = −2)
P (ξm = 2)

=
(c1 − 2)2(c2 − 2)2

(c1 + 2)2(c2 + 2)2
(E5.4.7.4)

The directivity D is defined as the ratio of the peak power to the total
radiated power distributed over 4π steradians

D = G(ψ, φ)max =
4πP (ξ)max∫ 2π

0

dφ

∫ π

0

dψ sin ψP (ξ)

=
2kdP (ξ)max

W
(E5.4.7.5)

where

W =
∫ π

0

dψ sin ψP (ξ) = 2
∫ 2

2 cos kd

dξ
P (ξ)√
4− ξ2

We obtain

W = 2π
[
6 + 2(c2

1 + c2
2) + 8c1c2 + c2

1c2
2

]
D =

(2 + c1)2(2 + c2)2

6 + 2(c2
1 + c2

2) + 8c1c2 + c2
1c2

2
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In the following we discuss several special cases.

Case 1

We require that all excitation amplitudes be equal. From (E5.4.7.2) we
set c1 + c2 = 1 and c1c2 = −1 and obtain c1 = (1 −

√
5)/2 and c2 =

(1 +
√

5)/2 . The array factor is plotted in Figure E5.4.7.1. The first sidelobe
level is (1/4)2 (≈ −12 dB) and the second sidelobe level (1/5)2 (≈ −14 dB) .
The first-null beamwidth is 47.2◦ . The directivity is D = 5.

|F (u)|

−π 72◦ 144◦ π
u

ψ = 37◦

66.4◦
47.2◦

Figure E5.4.7.1 Array factor for Case 1.

Case 2

We require all sidelobe levels be zero (−∞ dB) . From (E5.4.7.3) and
(E5.4.7.4) we find c1 = c2 = 2 . All sidelobe nulls are moved to ξ = −2 or
ψ = 0 and π . Thus no sidelobes occur in the visible range. From (5.4.32) we
see that this gives a binomial array with excitation coefficients 1 : 4 : 6 : 4 : 1 .
The first-null beamwidth becomes 180◦ .

Case 3

We require that both sidelobe levels be maintained at −20 dB. From
(E5.4.7.3) and (E5.4.7.4) we set

16(c1 + 2)2(c2 + 2)2 = 100(c1 − c2)2

and

(c1 + 2)2(c2 + 2)2 = 100(2− c1)2(2− c2)2
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|F (u)|

−π 89◦

60.4◦
59.2◦

146◦

ψ = 36◦

u

π

Figure E5.4.7.2 Array factor for Case 3.

which yield c1 = −0.0413 and c2 = 1.6498 . From (E5.4.7.2) we find the
required excitation coefficients to be 1 : 1.6085 : 1.9318 : 1.6085 : 1 . The
array factor is plotted in Figure E5.4.7.2. The first-null beamwidth is 59.2◦ .
The directivity is D = 4.686 . Comparing with the uniform excitation, we
see that the present case does give a lower sidelobe level of (1/10)2 (−20 dB)
but at the expense of a larger first-null beamwidth.

When d = λ/2 , the entire visible range in u is 2π . The prescribed array
pattern F̃ (u) can be expanded into a Fourier series and approximated by a
sum of the first few terms of the series. For general d including d = λ/2 ,
we study, in the following, the synthesis of a linear array with a prescribed
array pattern by using the method of Lagrange interpolation with Chebyshev
polynomials.

End of Example 5.4.7

Example 5.4.8
A given array power pattern can be written in the form of G(ξ) with

ξ = 2 cos u and u = kd cos ψ − α . As an example consider the synthesis of
the array pattern [Ma, 1974]

G(ξ) = e−(ξ−2)2/4 − 2 ≤ ξ ≤ 2 (E5.4.8.1)

with N = 4
We first let x = ξ/2 so that

g(x) = e−(1−x)2
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and the interval is normalized to −1 ≤ x ≤ 1 [Fig. E5.4.8.1]. We wish to
match this function with a polynomial of degree 3. To do that, we choose the
zeros of the Chebyshev polynomial T4(x) as the sampling points. We have
xN−1− l = cos[(2l + 1)π/2N ] with l = 0, 1, 2, . . . , N − 1 or

x0 = −0.924, x1 = −0.383, g(x2) = 0.6840, g(x3) = 0.9958

x

g(x)

1

−1 1

Figure E5.4.8.1 Plot of g(x) = exp[−(1− x)2].

To construct the third-degree polynomial, we apply the Lagrange interpola-
tion formula

L(x) =
N−1∑
l=0

π(x)g(xl)
(x− xl)π′(xl)

(E5.4.8.2)

where

π(x) = (x− x0)(x− x1)(x− x2)(x− x3) (E5.4.8.3)

π′(x) is the derivative of π(x) , and L(x) denotes the approximating poly-
nomial of g(x) such that L(xi) = g(xi) at x = x0, x1, x2, and x3 over the
normalized interval −1 ≤ x ≤ 1 .

With the sampling points taken to be the zero of the Chebyshev polyno-
mial T4(x) , we find the Lagrange interpolation formula (E5.4.8.2)

L(x) = (x− x1)(x− x2)(x− x3)
g(xo)

(x0 − x1)(x0 − x2)(x0 − x3)

+ (x− x0)(x− x2)(x− x3)
g(x1)

(x1 − x0)(x1 − x2)(x1 − x3)

+ (x− x0)(x− x1)(x− x3)
g(x2)

(x2 − x0)(x2 − x1)(x2 − x3)

+ (x− x0)(x− x1)(x− x2)
g(x3)

(x3 − x0)(x3 − x4)(x3 − x2)

=− 0.24628x3 + 0.13343x2 + 0.73586x + 0.39643 (E5.4.8.4)
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We now estimate the maximum possible error committed by the ap-
proximation of g(x) with L(x) as shown in (E5.4.8.2). The accuracy of the
approximation is measured by the remainder

R = π(x)
g(N)(x)

N !
x0 < x < xN−1

where the superscript N denotes the N th derivative of g(x) . This is similar
to the remainder term in a Taylor series expansion where the first N terms
are approximated by the (N−1) th order polynomial. The maximum possible
error is

εmax ≤
|π(x)|max

∣∣g(N)(x)
∣∣
max

N !

The error size depends on the prescribed function g(x) , the number of sam-
pling points, and their locations.

The choice of the sampling points to coincide with the zeros of T4(x)
not only provides a way to determine the otherwise arbitrary sampling point
positions but also makes the estimation of |π(x)|max simpler. Using the fact
that TN−1(x) = 2N−1(x−x0)(x−x1) . . . (x−xN−1) and that |gN−1(x)| ≤ 1
for −1 ≤ x ≤ 1 , we find

|π(x)|max = |(x− x0)(x− x1) . . . (x− xN−1)|max

=
1

2N−1

∣∣∣T (x)
N−1

∣∣∣
max

=
1

2N−1

We note that

g(4)(x) = (16x4 − 64x3 + 48x2 + 32x− 20)e−(1−x)2

Its maximum occurs at x = 1 giving
∣∣g(4)(x)

∣∣
max

= 12 . We have

εmax =
12

23 · 4!
= 0.0625

The actual maximum deviation between g(x) and L(x) occurs at x ≈ 0
which gives an error of ε(0) = L(0)−G(0) ≈ 0.0284 .

Replacing x = ξ/2 , we find the power pattern

P (ξ) = −0.03078ξ3 + 0.03331ξ2 + 0.36787ξ + 0.39651

Plotted in the region −2 ≤ ξ ≤ 2 , we find P (ξ) > 0 . As ξ → ±∞, P (ξ)→
∓∞ .

For arrays with a uniformly progressive phase shift, the power pattern
must satisfy the realization condition

P (ξ) =
N−1∑
m=0

Amξm ≥ 0 for − 2 ≤ ξ ≤ 2
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The Weierstrass approximation theorem guarantees the existence of the coef-
ficients Am and the positive integer N if g(ξ) is continuous for −2 ≤ ξ ≤ 2
such that for a positive quantity ε, |g(ξ)− P (ξ)| < ε for −2 ≤ ξ ≤ 2 . The
polynomial can be plotted for an extended region of ξ values and is found
to have a zero at ξ = 4.4340 . We write

P (ξ) = −0.03078(ξ − 4.4340)(ξ2 + 3.3350ξ + 2.9042) (E5.4.8.5)

There are no more zeros with real ξ for the second factor.
The power pattern must be inverted to give the array factor in order to

determine the excitation coefficients. Note that by definition ξ = 2 cos u =
eiu + e−iu . If the power pattern has the factor

Pl(ξ) = (ξl ± ξ) (E5.4.8.6a)

then the corresponding array pattern has the factor

F̃l(u) =
1√
cl

(1± cle
−iu) (E5.4.8.6b)

with cl = [ξl ± (ξ2
l − 4)1/2]/2 . When the power pattern has the factor

Pl(ξ) = (ξ + ξl)2 (E5.4.8.7a)

with real ξl and |ξl| < 2 , the corresponding array pattern has the factor

F̃ (u) = 1 + ξle
−iu + e−i2u (E5.4.8.7b)

If the power pattern has the factor

Pl(ξ) = ξ2 + 2ξl1ξ + ξ2
l1 + ξ2

l2 (E5.4.8.8a)

then the corresponding array has the factor

F̃l(u) =
1√

cl1cl2
[1 + (cl1 + cl2)e−iu + cl1cl2e−i2u] (E5.4.8.8b)

with cl2 = c∗l1 and cl1 = [ξl1 − iξl2 ± ((ξl1 − ξl2)2 − 4)1/2]/2 for real ξl1 and
ξl2 . In fact we can see that for the realizable P (ξ) such that P (ξ) ≥ 0 for
−2 ≤ ξ ≤ 2 , the polynomial only contains those elementary factors as listed
in (E5.4.8.5)–(E5.4.8.7).

Returning to (E5.4.7.2), we now find the corresponding array factor to
be the multiplication of

F̃1(u) =
1

2.0484
(1− 4.1957eiu)

or

1
0.4882

(1− 0.2383e−iu)
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with

F̃2(u) =
1

1.3013
(1 + 2.1064eiu + 1.6931e−i2u)

or

1
0.7685

(1 + 1.2440e−iu + 0.5906e−i2u)

Clearly, solutions for the array factor F̃ (u) = F̃1(u)F̃2(u) , and therefore
the excitation coefficients are not unique. With the Chebyshev interpolation
method as shown above, four sets of excitation coefficients give rise to the
same power pattern P (ξ) .

End of Example 5.4.8

Problems

P5.4.1
(a) Consider an array of two out-of-phase but equal amplitude ẑ-directed

Hertzian dipoles as shown in Fig. P5.4.1.1.

I6

d
φ

I6eiψ

N

E

S

W

Figure P5.4.1.1

Show that the array factor |F (φ)| may be expressed as

|F (φ)| =
∣∣∣∣2 cos

[
kd

2
sin φ− ψ

2

]∣∣∣∣
(b) A broadcast array of two vertical towers with equal current amplitude is

to have a horizontal plane pattern such that
(i) maximum field intensity is to the north (φ = 90◦)
(ii) the only nulls are at φ = 225◦ and φ = 315◦.
Specify the arrangement of the towers, their spacing and phasing.
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P5.4.2
Synthesize a seven-element, equally spaced, broadside Dolph-Chebyshev

array with d = λ/2, which has −20 dB sidelobe levels. Determine the excita-
tion coefficients. Find the first-null beamwidth and the directivity if the array
elements are isotropic radiators. Now let d = λ/4. If the above excitation
coefficients are used, find the first-null beamwidth and the directivity.

P5.4.3
Consider a linear dipole array with sinusoidal excitation coefficients and

u = kd cos ψ − α . The array factor

F̃ (u) =
N−1∑
n=0

sin
(

nπ

N − 1

)
e−inu

=
1
2i

[
N−1∑
n=0

{
exp in

[
π

N − 1
− u

]}
−

N−1∑
n=0

{
exp in

[
− π

N − 1
− u

]}]

|F̃ (u)| =

∣∣∣∣∣cos
(
N−1

2 u
)

sin
(

π
N−1

)
cos u− cos π

N−1

∣∣∣∣∣
Notice the two end elements of the array have zero excitation.
(a) Determine the global maximum at u = 0 and find an asymptotic value

as N →∞.

(b) Show that the global maxima of |F̃ (u)| occurs at u = 0 and that
cos u = cos π

N−1 is not even a local maxima. Zeros of F̃ (u) occur when

u =
(2m + 1)π

N − 1

where m is any integer but m/(N−1) is not an integer and m/(N +1)
is not an integer. Determine the exact sidelobe locations and levels and
also obtain asymptotic values as N → ∞. Calculate and compare the
results for N = 6, 10, 15, 50.

(c) The formula for the directivity of the array u = kd cos ψ − α and du =
−kd sin ψdψ is

D =
4π|F̃ (u)|2max∫

dΩ |F̃ (u)|2
=

4πF̃ (0)|2∫ 2π

0

dφ

∫ π

0

dψ sin ψ|F̃ (u)|2
=

2kd cot2
(

π
2(N−1)

)
∫ kd−α

−kd−α
du |F̃ (u)|2

For N = 6 , and d = λ/2, calculate D.

P5.4.4
Consider the synthesis of the array pattern [Ma, 1974]

G(ξ) = e−(ξ−2)2/4 − 2 ≤ ξ ≤ 2
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with four elements, where ξ = 2 cos u = 2 cos[kd cos ψ − α].

(a) Let x = ξ/2 and choose the zeros of the Legendre polynomials P4(x)
as the sampling points for g(x) = exp[−(1− x)2]. The zeros are

x0 = −0.861, x1 = −0.340, x2 = 0.340, x3 = 0.861

Making use of the Lagrange interpolation formula, determine g(x) ,
which is positive for −1 ≤ x ≤ 1. Find the power pattern P (ξ) , which
is positive for −2 ≤ ξ ≤ 2.

(b) Estimate the maximum error, εmax, noting that

|π(x)|max =
N !

(2N − 1)(2N − 3) . . . 1
|PN (x)|max

and that PN (x) ≤ 1 for −1 ≤ x ≤ 1.

P5.4.5
The method of trigonometric interpolation is very useful when the sam-

pling points are equally spaced [Ma, 1974]. With this method it is more con-
venient to deal with the power patterns as a function of u, P (u). Remember
that ξ = 2 cos u . The original visible range can be transformed to give the
range of u from 0 to π. The sampling positions are obtained by dividing
the u range into N − 1 intervals.

ul =
lπ

N − 1
l = 0, 1, . . . , N − 1

For every given function of bounded variation G(u), the trigonometric inter-
polation method provides P (u) which converges unlimitedly to G(u) as the
number of sampling points increases.

Consider Example 4.4.2 and let kd = π and α = 0 so that the range of
u is [0, π] without additional transformations. We take

u0 = 0,

G(u0) = 1,

u1 = π/3,

G(u1) = 0.779,

u2 = 2π/3,

G(u2) = 0.105,

u3 = π

G(u3) = 0.018

Find P (u) and P (ξ) . Show that the power pattern satisfies the realiza-
tion condition P (ξ) ≥ 0 for −2 ≤ ξ ≤ 2.

P5.4.6
Consider the approximation of a given power pattern by the use of Bern-

stein polynomials. For a real function g(x) defined in the interval 0 ≤ x ≤ 1,
the Bernstein polynomial approximation of order n of g(x) is [Ma, 1974]

Bg
n(x) =

n∑
l=0

n!
l!(n− l)!

g(l/n)xl(1− x)n−l
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The convergence of Bg
n(x) to g(x) is also unlimited as n is increased. We

see that when g(x) is a constant, Bg
n(x) is equal to the same constant for all

n. The most important property of Bg
n(x) in array synthesis is that if g(x)

is bounded, Bg
n(x) is bounded with the same upper and lower limits. Thus

the resultant approximating polynomial will always satisfy the realization
condition while the other interpolation methods provide no such guarantee.
For the array pattern as given in Example 4.4.2, find the Bernstein polynomial
approximation for n = 3 and determine the corresponding array pattern.
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5.5 Linear Antennas

From the input terminals of an antenna, the field radiated by the an-
tenna can be viewed as power dissipated in a resistor called the ra-
diation resistance of the antenna. For a wire antenna with a current
distribution J(r′) = ẑI(z′)δ(x′)δ(y′) , the θ component of the vector
current moment is

fθ = − sin θ

∫∫∫
d3r′ J(r′)e−ik·r′ = − sin θ

∫
dz′ I(z′)e−ikz′ cos θ

(5.5.1)
The electric field is calculated as

Eθ = iwµ
eikr

4πr
fθ

and the magnetic field as

Hφ = ik
eikr

4πr
fθ

The total radiated power is

Pr =
∫ 2π

0
dφ

∫ π

0
dθ r2 sin θ

1
2

EθH
∗
φ

=
∫ π

0
dθ sin θ πη

(
k

4π

)2

|fθ|2 (5.5.2)

where η = (µ/ε)1/2. The radiation resistance is

Rr = 2Pr/I2
0

where I0 is the input current amplitude.
Consider a wire antenna with zero radius and length 2l excited

at the center by a constant current source I0 [Fig. 5.5.2]. When l
is infinitesimally small, we may use the Hertzian dipole model with
I(z′) = 2I0lδ(z′) . The current moment is found from (5.5.1) to be

fθ = −2I0l sin θ (5.5.3)

This is the result of the current moment obtained from (5.5.1) by ig-
noring the contribution from the retardation factor. The total radiated
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−l

l
z

z′

θ

r

|r − r′|

xI0

z

Figure 5.5.1 Wire antenna excited by a current source.

I(z)

z

l

−l

I0

z

Figure 5.5.2 Uniform current distribution.

power for a wire antenna with the current moment fθ is calculated
from (5.5.2) to be

Pr =
∫ π

0
dθ sin3 θ (k/4π)24πη I2

0 l2 =
(2kI0l)2

12π
η

Thus the radiation resistance is

Rr =
2Pr

I2
0

=
(2kl)2

6π
η = 20(2kl)2 (5.5.4)

where we made use of the fact that η = 120π ohms. Clearly, the radi-
ation resistance Rr as calculated in (5.5.4) is not applicable to a wire
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antenna with any significant length. For instance, when 2l = λ/2 , we
will find Rr ≈ 200 ohms where the more accurate value from measure-
ment and from more rigorous calculation is 73 ohms.

In the calculation of Rr in (5.5.4), we assume the current dis-
tribution on the wire is uniform [Fig. 5.5.2]. If the wire is made of
conductors, boundary conditions at z = ±l will require I(z) be zero
there. A better approximation for the current distribution for a small
l takes the form of a triangular shape [Fig. 5.5.3],

I(z′) =
I0

l
(l −

∣∣z′∣∣)
z

l

I(z)

−l

I0

z

Figure 5.5.3 Triangular current distribution.

In the calculation of the current moment, we neglect the phase
retardation factor e−ikz′ cos θ by assuming the wire length is small,

fθ ≈ − sin θ

∫ l

−l
dz′

I0

l
(l −

∣∣z′∣∣) = −I0l sin θ (5.5.5)

This is equivalent to replacing the current moment −2I0l sin θ for a
Hertzian dipole of uniform current distribution as shown in Figure 5.5.2
with the average current moment −I0l sin θ of the triangular distribu-
tions as shown in Figure 5.5.3. The radiation resistance is calculated
to be

Rr =
2Pr

I2
0

= 5(2kl)2 (5.5.6)
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−l

l

z

I0

I(z)

z

Figure 5.5.4 Sinusoidal current distribution.

which is four times smaller than that in (5.5.4). Stretching the limit
of 2l to a half-wavelength, we find Rr = 50 ohms. For a wire antenna
with 2l smaller than λ/2 , taking into account the phase-retardation
factor will serve to decrease the current moment because the integrand
in (5.5.5) is always positive and the phase-retardation factor causes its
magnitude to decrease. Therefore, the reason for the underestimation
of Rr cannot be attributed to the omission of the phase-retardation
factor. It must be due to the inaccuracy in the assumption of the
current distribution.

For a wire antenna that is not infinitesimally small, the more accu-
rate current distribution is approximated by a sinusoidal distribution.
We assume in [Fig. 5.5.4]

I(z′) = Im sin k(l −
∣∣z′∣∣) (5.5.7)

Notice that Im is the amplitude of the sinusoid that is related to I0

by I0 = Im sin(kl) . The θ component of the vector current moment
is

fθ = − sin θ

∫ l

−l
dz′ Im sin k(l −

∣∣z′∣∣)e−ikz′ cos θ

The integration can be evaluated and gives rise to a closed-form for-
mula.
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Before evaluating the integral exactly we again assume that the
length 2l is small and that the contribution from the phase factor
e−ikz′ cos θ is uniformly close to 1. Evaluating the integral without tak-
ing into account the phase factor, we find

fθ = − sin θ
2Im
k

(1− cos kl) (5.5.8)

Under the limit of kl� 1 , we get the approximate result

fθ ≈ −Im(kl2) sin θ (5.5.9)

Notice that Im ≈ I0/kl . Thus (5.5.9) is identical to (5.5.5).
Applying the result to a half-wavelength wire, we obtain from

(5.5.8),

fθ = − sin θ

(
2Im
k

)
= − sin θ

(
4
π

)
I0l

where from fθ = − sin θ(2Im/k) we find Im = I0 . Comparing with
(5.5.5), it is seen from (5.5.4) that the radiation resistance is

Rr = 5(2kl)2
(

4
π

)2

= 80 ohms (5.5.10)

The reason that the sinusoidal current distribution gives a larger radi-
ation resistance than the triangular assumption is that the area under
the sine is larger than the triangle. However, the phase-retardation
effect has been neglected. If it is not neglected, the result will be ap-
plicable to wire antennas with any length, small or large.

The current moment for a wire antenna of length 2l and with
the sinusoidal current distribution, taking into account the phase -
retardation factor, is calculated as

fθ = − sin θ

∫ l

−l
dz′ Im sin k(l −

∣∣z′∣∣)e−ikz′ cos θ

= −2Im
k

[
cos(kl cos θ)− cos kl

sin θ

]
(5.5.11)

The electric field vector is

E = θ̂ iωµ
eikr

4πr
fθ = −θ̂

iηImeikr

2πr

[
cos(kl cos θ)− cos kl

sin θ

]
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The total radiated power Pr is

Pr =
∫ π

0
dθ sin θ

ηIm
2

4π

[
cos(kl cos θ)− cos kl

sin θ

]2

The radiation resistance is, using Im as the input current

Rr =
2Pr

Im
2 =

η

2π

∫ π

0
dθ

[cos(kl cos θ)− cos kl]2

sin θ
(5.5.12)

Changing variables of integration, we find

Rr =
η

2π

∫ 1

−1
du

[cos(klu)− cos kl]2

1− u2

=
η

4π

∫ 1

−1
du

{
[cos(klu)− cos kl]2

1 + u
+

[cos(klu)− cos kl]2

1− u

}

=
η

2π

∫ 2

0
dv

{
[cos(klv)− cos kl]2

v

}

=
η

2π

{(
1 +

1
2

cos 2kl

) ∫ 2

0
dy

1
y
−

∫ 2

0
dy

cos kly

y

−
∫ 2

0
dy

cos [kl(y − 2)]
y

+
∫ 2

0
dy

cos [2kl(y − 1)]
2y

}

=
η

2π

{∫ 2

0

dy

y
(1− cos kly)

+ sin(2kl)
[∫ 2

0

dy

2y
sin 2kly −

∫ 2

0

dy

y
sin kly

]

+ cos(2kl)
[∫ 2

0

dy

y
(1− cos kly)−

∫ 2

0

dy

2y
(1− cos 2kly)

]}

=
η

2π

{
γ + ln(2kl)− Ci(2kl) + sin(2kl)

[
1
2

Si(4kl)− Si(2kl)
]

+
1
2

cos(2kl) [γ + ln(kl) + Ci(4kl)− 2Ci(2kl)]
}

(5.5.13)

where

Si(x) =
∫ x

0
dx′ sin x′

x′

Ci(x) = −
∫ ∞

x
dx′ cos x′

x′
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Figure 5.5.5 Functions Si(x) and Ci(x) and radiation resistance Rr.

and γ = 0.5772 . . . In the above derivation, we made use of the relation∫ x

0
dx′ 1− cos x′

x′ = γ + ln x− Ci(x)
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The sine integral Si(x) and the cosine integral Ci(x) are illustrated
in Figures 5.5.5a,b. A numerical plot for Rr as a function of 2l is
shown in Figure 5.5.5c. When 2l = λ/2 , we find Rr = 73 ohms.

In the above discussions, we have illustrated how an antenna prob-
lem is attacked. The results clearly become more accurate as the as-
sumptions become more realistic, which also bring in more complicated
mathematical manipulations. Nevertheless, we cannot claim that the
wire antenna problem has now acquired a satisfactory answer. Two
major problems still remain: (i) The radius of the wire has been tac-
itly assumed to be infinitesimally small. What if it is not? (ii) How do
we know whether the sinusoidal current distribution on the wire is the
valid assumption? Why do we not assume other types of current distri-
butions which also satisfy the boundary conditions of zero current at
z = ±l ? These questions can be answered only with a detailed model
of the antenna. With a precise physical structure, the current on the
antenna can be determined from the Maxwell equations, not assumed.

cylindrical spheroidal biconical

Figure 5.5.6 Models of antenna.

To address the above questions, at least three different models
[Fig. 5.5.6] have been used with a rigorous boundary value problem ap-
proach. The model by Hällén and King [1969] is a perfectly conducting
cylinder with finite radius a and length l with a gap at z = 0 where
the electric field strength is −V δ(z). The problem is formulated in
the form of integral equations. The second approach is due to Stratton
and Chu [1941] who modeled a dipole antenna as a pair of ellipsoids
or prolate spheroids. Normal modes associated with the structure are
used to match boundary conditions. The third approach is developed
by Schelkunoff [1943] with the model of a biconical structure. In the
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next section we shall pursue Schelkunoff’s approach to the solution of
this fundamental problem.

Problems

P5.5.1
(a) Find the far field electric and magnetic vectors due to a line current

source with I(z) = I0eikzz, placed along the z axis in free space.
(b) Evaluate the real part of the complex Poynting’s vector in the far field.

What happens if kz > k ?
(c) Determine the equi-phase surfaces (phase fronts) in the far field, both

for kz < k and kz > k . Is the real part of the Poynting’s vector normal
to the equi-phase surfaces?

P5.5.2
Consider a conducting wire with zero radius and length 2l excited by a

constant current source I0 . The current density is

J(r′) = ẑI0 sin (kl − k |z′|) δ(x′)δ(y′)

which satisfies the boundary condition of zero current at z′ = ±l . For the
radiation field, show that the vector current moment f(θ, φ) is

f(θ, φ) = ẑ
2I0

k sin2θ
[cos(kl cos θ)− cos(kl)]

Find the electric field E in the radiation zone. What is E at θ = 0 and
π ? Plot the radiation field pattern for 2l = 3λ/2 and find that the null
positions. To help understand these null positions, consider three collinear
dipoles separated by λ/2 in distance with the center element π out of phase
with the two end dipoles. Show that the far field is the sum e−iπ cos θ − 1 +
eiπ cos θ and determine the null positions.

P5.5.3
(a) Estimate Rr for a half-wavelength dipole.
(b) Calculate the radiation resistance as kl → 0 and compare with that of

a Hertzian dipole.

P5.5.4
Find an asymptotic formula for the radiation resistance Rr of a thin,

linear dipole antenna, for large l/λ.
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5.6 Biconical Antennas

A. Formulation and Wave Solutions

The geometrical configuration of a biconical antenna is shown in Fig-
ure 5.6.1. Due to the symmetry, we expect that all field solutions are
φ -independent. The Maxwell equations can then be reduced to two un-
coupled sets of equations; one set relates Er , Eθ , and Hφ and forms
the TM modes, and the other set relates Hr , Hθ , and Eφ and forms
the TE modes. For the biconical antenna problem, the currents are in
the r̂ direction and we expect TM waves solutions.

antenna region air regionS0

l

θ0

θ

Figure 5.6.1 Biconical antenna.

We deal with the solutions of the Maxwell equations satisfying the
following boundary conditions:

(i) In the air region, the electromagnetic field must be an outgoing
wave.

(ii) In the antenna region, the tangential electric field vanishes on the
surfaces of the cones

Er(θ0) = Er(π − θ0) = 0 (5.6.1)

At the input,

V0 = lim
r→0

∫ π−θ0

θ0

dθ rEθ (5.6.2)
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where V0 is the given external excitation voltage.
(iii) On the boundary surface S0 separating the antenna region and

the air region

Eθ(l + 0) = 0 0 ≤ θ ≤ θ0 and π − θ0 ≤ θ ≤ π (5.6.3)
Eθ(l + 0) = Eθ(l − 0) θ0 < θ < π − θ0 (5.6.4)
Er(l + 0) = Er(l − 0) θ0 < θ < π − θ0 (5.6.5a)
Hφ(l + 0) = Hφ(l − 0) θ0 < θ < π − θ0 (5.6.5b)

Note that boundary conditions (5.6.5a) and (5.6.5b) are not inde-
pendent of each other because (5.6.5a) is associated with Gauss’ law
and (5.6.5b) with Ampère’s law. They depend on each other as a con-
sequence of the charge-current conservation law. We shall use either
(5.6.5a) or (5.6.5b), depending on whichever is more convenient. The
governing equations for the TM waves are

1
r sin θ

∂

∂θ
(sin θ Hφ) = −iωεEr (5.6.6a)

−1
r

∂

∂r
(r Hφ) = −iωεEθ (5.6.6b)

1
r

∂

∂r
(rEθ)−

1
r

∂

∂θ
(Er) = iωµHφ (5.6.6c)

Substituting (5.6.6a) and (5.6.6b) in (5.6.6c) to eliminate Er and
Eθ , we obtain

∂2

∂r2
rHφ +

1
r2

∂

∂θ

[
1

sin θ

∂

∂θ
(sin θ r Hφ)

]
+ k2 r Hφ = 0 (5.6.7)

Equation (5.6.7) is solved by the separation of variables technique. Let

Hφ = R(r)Θ(θ) (5.6.8)

We obtain the following two equations

1
r

d2

dr2
rR(r) +

[
k2 − n(n + 1)

r2

]
R(r) = 0 (5.6.9)

d

dθ

[
1

sin θ

d

dθ
(sin θΘ(θ))

]
+ n(n + 1)Θ(θ) = 0 (5.6.10)
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with n(n + 1) as the separation constant.

Solutions to (5.6.9) are the spherical Hankel functions h
(1)
n (kr)

and h
(2)
n (kr) . For the first few orders n = 0 to n = 2 , the spherical

Hankel functions of first kind are

h
(1)
0 (kr) = −i

eikr

kr
(5.6.11a)

h
(1)
1 (kr) = −

[
1 +

i

kr

]
eikr

kr
(5.6.11b)

h
(1)
2 (kr) = i

[
1 + 3

(
i

kr

)
+ 3

(
i

kr

)2
]

eikr

kr
(5.6.11c)

The second kind spherical Hankel functions h
(2)
n (kr) are complex con-

jugates of h
(1)
n (kr) . The spherical Bessel functions bn(ξ) are related

to the cylindrical Bessel functions Bn(ξ) by

bn(ξ) =
√

π

2ξ
Bn+ 1

2
(ξ)

with bn(ξ) representing h
(1)
n or h

(2)
n and Bn(ξ) representing H

(1)
n or

H
(2)
n . The recurrence formulas are

B′
ν(ξ) = Bν−1(ξ)−

ν

ξ
Bν(ξ)

= −Bν+1(ξ) +
ν

ξ
Bν(ξ)

The spherical Bessel functions jn(kr) are defined as the real part of
either h

(1)
n (kr) or h

(2)
n (kr) . For the first few orders, they are

j0(kr) =
sin kr

kr
(5.6.12a)

j1(kr) = −cos kr

kr
+

sin kr

(kr)2
(5.6.12b)

j2(kr) = −sin kr

kr
− 3 cos kr

(kr)2
+

3 sin kr

(kr)3
(5.6.12c)

Note that the jn(kr) functions remain finite as kr → 0 . The imagi-
nary parts of h

(1)
n (kr) are known as the spherical Neumann functions,

which become infinite as kr → 0 .



5.6 Biconical Antennas 557

Solutions to (5.6.10) are derivatives of the Legendre polynomial
P (θ)

Θ(θ) =
d

dθ
P (θ) (5.6.13)

where P (θ) satisfies the ordinary Legendre equation

1
sin θ

d

dθ

[
sin θ

dP (θ)
dθ

]
+ n(n + 1)P (θ) = 0 (5.6.14)

The two independent solutions to (5.6.14) are Pn(cos θ) and Qn(cos θ)
where

Pn(cos θ) =
∞∑
q=0

(−1)q(n + q)!
(n− q)!(q!)2

sin2q(θ/2) (5.6.15)

The other independent solution is Qn(cos θ) = Pn(− cos θ) for nonin-
teger values of n. For integer values of n, we have

Qn(cos θ) = Pn(cos θ) ln
(

cot
θ

2

)
−

n∑
s=1

Pn−sPs−1

s
(5.6.16)

where the summation term contributes when n ≥ 1 . The Rodrigues’
formula for generating Legendre polynomials states, for integer values
of n ,

Pn(u) =
1

2nn!
dn

dun
(u2 − 1)n

where u = cos θ . The first few Legendre polynomials Pn(cos θ) are

P0(cos θ) = 1 (5.6.17a)
P1(cos θ) = cos θ (5.6.17b)

P2(cos θ) =
1
2
(3 cos2 θ − 1) =

1
4
(3 cos 2θ + 1) (5.6.17c)

Note that the Qn(cos θ) functions for integer values of n become
infinite at θ = 0 and θ = π . For noninteger values of n the functions
Pn(− cos θ) become infinite at θ = π .

In terms of R(r) and P (θ) , we now find from (5.6.6a), (5.6.6b),
and (5.6.8)

Hφ = R(r)
dP (θ)

dθ
(5.6.18a)

Er = −R(r)
iωεr

1
sin θ

d

dθ

[
sin θ

dP (θ)
dθ

]
=

n(n + 1)
iωεr

R(r)P (θ) (5.6.18b)

Eθ =
1

iωεr

d[rR(r)]
dr

dP (θ)
dθ

(5.6.18c)



558 5. Radiation

Figure 5.6.2 Electric field lines for TM1 mode.

B. Solution in the Air Region and Dipole Fields

We first consider solutions in the air region. They take the form, for
n = 0, 1, 2, . . .

Hφ =
1
2π

∑
n

bnh(1)
n (kr)

d

dθ
Pn(cos θ) (5.6.19a)

Er =
1

2πiωεr

∑
n

n(n + 1)bnh(1)
n (kr)Pn(cos θ) (5.6.19b)

Eθ =
1

2πiωεr

∑
n

bn
d

dr
[rh(1)

n (kr)]
d

dθ
Pn(cos θ) (5.6.19c)

We choose the Hankel functions of the first kind because they repre-
sent outgoing waves. The functions with noninteger values of n and
the Qn(cos θ) solutions are excluded because they are singular in the
directions θ = 0 and θ = π . The electric field lines for the TM 1 and
TM 2 modes are plotted in Figures 5.6.2–5.6.3.

We note that the TEM (or the TM 0 ) mode is not present in the
air region because n = 0 and P0(cos θ) = 1 . For the TM 1 mode, we
find

Hφ =
b1e

ikr

2πkr

[
1 +

i

kr

]
sin θ (5.6.20a)
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Figure 5.6.3 Electric field lines for TM2 mode.

Er =
ηb1e

ikr

πkr

[
i

kr
+

(
i

kr

)2
]

cos θ (5.6.20b)

Eθ =
ηb1e

ikr

2πkr

[
1 +

i

kr
+

(
i

kr

)2
]

sin θ (5.6.20c)

where η = k/ωε = (µ/ε)1/2. These are the fields for a Hertzian dipole.
We can determine b1 by using the cylindrical coordinate system and
noting that the current dipole moment is

I0leff =
∫ ∞

−∞
dz Iz (5.6.21)

where

Iz =
∫ 2π

0
ρ dφ Hφ

As r = (z2 + ρ2)1/2 and sin θ = ρ/r , we obtain from (5.6.20a) as
ρ→ 0 and z → 0

Iz ≈
ib1ρ

2

k2(z2 + ρ2)3/2

Notice that Iz → 0 as ρ→ 0 . At the point z = 0 , however, Iz →∞
as ρ→ 0 . Carrying out the integral (5.6.21), we find

I0leff =
i2b1

k2

∫ ∞

0
dz

ρ2

(z2 + ρ2)3/2
=

i2b1

k2
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which yields

b1 =
k2

i2
I0leff

The solutions expressed in (5.6.20) are identical to those for an in-
finitesimal dipole antenna. The electric field lines for the quadrupole
field are illustrated in Figure 5.6.3.

C. Solution in the Antenna Region

In the antenna region, we note from (5.6.18b) that the boundary con-
ditions for Er as expressed in (5.6.1) are satisfied either when n = 0
or when

P (θ0) = P (π − θ0) = 0 (5.6.22)

When n = 0 , we have the TEM mode. The solution for R(r) is a linear
combination of eikr/r and e−ikr/r , which represent waves guided by
the cones and reflected at the terminals. The Q0(cos θ) function is
used since P0(cos θ) = 1 and d[P0(cos θ)]/dθ = 0 .

For higher-order TM modes, n is determined from (5.6.22) and is
in general not an integer. We denote it with u . We choose P (θ) to be
a linear combination of Pu(cos θ) and Pu(− cos θ) :

P (θ) = Tu(θ) =
1
2

[Pu(cos θ) + aPu(− cos θ)]

Equation (5.6.22) requires that

Pu(cos θ0) + aPu(− cos θ0) = 0
Pu(− cos θ0) + aPu(cos θ0) = 0

We find that a = ±1 . Therefore we have either

Tu(θ) =
1
2

[Pu(cos θ)− Pu(− cos θ)]

which is an odd function in cos θ , or

Tu(θ) =
1
2

[Pu(cos θ) + Pu(− cos θ)]

which is an even function. The derivatives
d

dθ

{
1
2

[Pu(cos θ)− Pu(− cos θ)]
}

= −1
2

[
P ′
u(cos θ) + P ′

u(− cos θ)
]
sin θ

d

dθ

{
1
2

[Pu(cos θ) + Pu(− cos θ)]
}

= −1
2

[
P ′
u(cos θ)− P ′

u(− cos θ)
]
sin θ
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are, respectively, even and odd functions. Hence Hφ due to odd Tu(θ)
functions are even functions of θ, which means that the currents in
the upper and the lower cones are in the same direction. (If current at
r0 in the upper cone is flowing away from the origin, then the current
at r0 in the lower cone is flowing toward the origin.) For the even
Tu(θ) functions, Hφ is an odd function of θ , which means the current
in the upper and lower cones at some distance r0 will be flowing in
opposite directions. (Both currents will be flowing away from or toward
the origin.)

We will only consider the balanced type of feed described by a
series of odd Tu(θ) functions, which is the most important case from
the practical point of view. Thus we choose

Tu(θ) =
1
2

[Pu(cos θ)− Pu(− cos θ)] (5.6.23)

The complete solution may be written as a summation over u with u
indicating the nearest integer of u ,

Hφ=
I0(r)

2πr sin θ
+

1
2π

∑
u

auju(kr)
d

dθ
Tu(θ) (5.6.24a)

Er =
1

2πriωε

∑
u

u(u + 1)auju(kr)Tu(θ) (5.6.24b)

Eθ =
1

2πriωε sin θ

d

dr
I0(r)+

1
2πriωε

∑
u

au
d

dr
[rju(kr)]

d

dθ
Tu(θ)(5.6.24c)

where Tu(θ) is given in (5.6.23). The first terms in (5.6.24a) and
(5.6.24c) are the TEM solutions obtained from (5.6.9) and (5.6.10)
with n = 0 and I0(r) ∼ e±ikr. For higher-order modes, we choose the
spherical Bessel functions ju(kr) only. This is because when the Neu-
mann function Nu(kr) is included, not only would the field quantities
Hφ and Eθ become infinite as kr → 0 , but their integrals, which rep-
resent currents and voltages, would become too singular as kr → 0 .
In the following we shall elaborate on a transmission line model to
understand the implications of the above solutions.

D. Transmission Line Model

First we assume the antenna to be infinitely long and we study the
outgoing TEM solution. Let I0(r) = Aeikr in (5.6.24). A voltage V (r)



562 5. Radiation

ZtZ0

r = 0 r = l

Figure 5.6.4 Transmission line model for the TEM mode.

and current I(r) for the TEM mode can be defined at r as follows:

V0(r) =
∫ π−θ0

θ0

dθ rEθ =
η

π
A

[
ln

(
cot

θ0

2

)]
eikr

I0(r) = r sin θ0Hφ(θ = θ0) = Aeikr

The ratio of V0(r) and I0(r) gives the characteristic impedance Z0

Z0 =
η

π
ln

(
cot

θ0

2

)
(5.6.25)

which is a constant for all r.
Since the antenna has a finite length l, we can, for the TEM mode,

model the antenna as a transmission line [Fig. 5.6.4] with length l,
characteristic impedance Z0 , and terminated with an impedance Zt

which is to be determined.
For the TEM mode on a biconical antenna with length l, we write

Hφ =
I0(r)

2πr sin θ
(5.6.26a)

Eθ =
η

Z0

V0(r)
2πr sin θ

(5.6.26b)

where, according to transmission line theory, the voltage along the
line can be expressed in terms of the voltage V0(l) at the terminating
impedance Zt ,

V0(r) = V0(l)
[
cos k(l − r)− i

Z0

Zt
sin k(l − r)

]
(5.6.27a)

I0(r) =
V0(l)
Z0

[
−i sin k(l − r) +

Z0

Zt
cos k(l − r)

]
(5.6.27b)
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Thus the voltage at any point r is a superposition of the two indepen-
dent solutions of sine and cosine functions of kr . Note that

Eθ =
1

iωεr

∂

∂r
(rHφ)

is satisfied and that for r = l , V0(l)/I0(l) = Zt . The impedance Zt

will be shown to account for all higher-order modes inside the antenna
region and the radiation field in the air region.

To include all higher-order modes, we note that along any meridian
between the cones, ∇× E = 0 . We define a voltage V (r)

V (r) =
∫ π−θ0

θ0

dθ rEθ

= V0(r) +
1

2πiωε

∑
u

au
d

dr
[r ju(kr)] [Pu(− cos θ0)− Pu(cos θ0)]

= V0(r) (5.6.28)

The second equality follows from (5.6.24c) and the third equality is due
to the boundary condition (5.6.1). The result states that the voltage
for all r along the transmission line is none other than that of the
TEM mode.

The current along the line I(r) is given by

I(r) = 2πr sin θ0Hφ(θ = θ0)

= I0(r) +
∑
u

aurju(kr) sin θ0

[
d

dθ
Tu(θ)

]
θ=θ0

= I0(r) + Ĩ(r) (5.6.29)

where we used Ĩ(r) to denote complementary currents due to higher-
order TM modes. However, at the input end (r = 0)

I(r = 0) = I0(r = 0) + Ĩ(r = 0) = I0(r = 0) (5.6.30)

because rju(kr)→ 0 as r → 0 . Thus the input current is still the same
as that for the TEM modes. As a consequence, the input impedance
at the antenna terminal is

Zi =
V (0)
I(0)

=
V0(0)
I0(0)

(5.6.31)
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which depends only on the TEM mode. In terms of the terminal
impedance Zt , the input impedance Zi is immediately determined
from (5.6.27) which yields

Zi =
V0(0)
I0(0)

= Z0
Zt − i Z0 tan kl

Z0 − i Zt tan kl
(5.6.32)

The terminal impedance Zt contains all the information about all the
higher-order modes and the antenna configurations. To determine the
terminal impedance Zt , we now turn to the solutions in the air region
and match them with those in the antenna region.

In terms of the transmission line model in Figure 5.6.4, the equiv-
alent terminal impedance Zt is

Zt =
V0(l)
I0(l)

=
V0(l)

I(l)− Ĩ(l)
(5.6.33)

where I(l) denotes the total current on the antenna at r = l and Ĩ(l)
is the complementary current due to all modes other than TEM.

The equivalent terminal admittance Yt of the transmission line
model as shown in Figure 5.6.4 is the reciprocal of (5.6.33). For very
thin antennas

Yt =
I(l)
V0(l)

− Ĩ(l)
V0(l)

≈ − Ĩ(l)
V (l)

(5.6.34)

This is because the total current at the ends of a thin antenna is vanish-
ingly small. In fact the term I(l)/V0(l) = I(l)/V (l) is the admittance
between the two caps of the antenna and as such is approximately
equal to the susceptance of the electrostatic capacitance between the
caps.

The complementary current Ĩ(r) due to the higher-order TM
modes (n �= 0) is, from (5.6.29)

Ĩ(r) =
∑
u

aurju(kr) sin θ0

[
d

dθ
Tu(θ)

]
θ=θ0

≈ 120
Z0

∑
u

aurju(kr) (5.6.35)

The second equality is due to the fact that as θo → 0, u→ 2m+1+∆,
and [

d

dθ
Tu(θ)

]
θ=θ0

� − 1
2π

sin uπ cot
θ0

2
≈ −sin uπ

πθ0
≈ ∆

θ0
=

120
Z0θ0

(5.6.36)
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The complete field solutions in the antenna and air regions are given
by (5.6.24) and (5.6.19). At r = l , Er should be continuous, hence

∑
u

u(u + 1)au ju(kl) Tu(θ) =
∑
n

n(n + 1)bn h(1)
n (kl) Pn(cos θ)

As θ0 → 0 and Z0 →∞ , u approaches 2m + 1 and Tu approaches
P2m+1(cos θ) , the limiting value of au is

lim
θ0→0

au = lim
θ0→0

a2m+1+∆ = b2m+1
h

(1)
2m+1(kl)

j2m+1(kl)

Therefore,

Ĩ(r) =
120
Z0

∞∑
m=0

b2m+1
h

(1)
2m+1(kl)

j2m+1(kl)
r j2m+1(kr)

For very thin antennas, the current distribution approaches the sinu-
soidal distribution of the principal wave

I(r) = I0 sin k(r − l) (5.6.37)

with
I0 = i

V0(l)
Z0

The coefficients b2m+1 can be obtained by comparing the expressions
of the field due to the current distribution given by (5.6.37) with the
field expressions in the air region. For the sinusoidal current distribu-
tion of (5.6.37) we have, in the far-field approximation,

Hφ = ik
eikr

4πr
fθ

where
fθ = I0

2
k sin θ

[cos(kl cos θ)− cos kl]

The radial electric field Er is

Er =
1
−iωε

1
r sin θ

∂

∂θ
(sin θ Hφ) = −ηI0l

eikr

2πr2
sin(kl cos θ) (5.6.38)
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The expansion of sin(kl cos θ) in terms of spherical harmonics is known
to be

sin(kl cos θ) =
∞∑

m=o

(−1)m(4m + 3)j2m+1(kl) P2m+1(cos θ) (5.6.39)

Thus (5.6.38) can be written as

Er = −ηIol
eikr

2πr2

∞∑
m=0

(−1)m(4m + 3)j2m+1(kl)P2m+1(cos θ) (5.6.40)

On the other hand, in the far-field approximation, (5.6.19b) becomes

Er =
1

iωε

eikr

2πr2

1
k

∞∑
m=0

2(2m + 1)(m + 1)b2m+1(−1)m+1P2m+1(cos θ)

(5.6.41)
due to the fact that for large arguments

h(1)
n (kr) ≈ (−i)n+1 eikr

kr

Equating (5.6.40) and (5.6.41) we obtain

b2m+1 = −V0(l)
Z0

(4m + 3)
2(2m + 1)(m + 1)

k2l j2m+1 (kl) (5.6.42)

and

Ĩ(r) = − 60
Z2

0

V0(l)
∞∑

m=0

(4m + 1)
(2m + 1)(m + 1)

kl h
(1)
2m+1(kl) kr j2m+1(kr)

(5.6.43)
therefore,

Yt = − Ĩ(l)
V0(l)

=
Za(kl)

Z2
0

=
1

Z2
0

[Ra(kl)− iXa(kl)] (5.6.44)

where

Ra(kl) = 60
∞∑

m=0

(4m + 3)
(2m + 1)(m + 1)

[kl j2m+1(kl)]2 (5.6.45)

Xa(kl) = −60
∞∑

m=0

(4m + 3)
(2m + 1)(m + 1)

kl j2m+1(kl)kl n2m+1(kl) (5.6.46)
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Figure 5.6.5 Resistive and reactive components of Za = Ra − iXa .

In terms of cosine and sine integrals

Ra(kl) =60 [γ + ln(2kl)− Ci(2kl)] + 30 [γ + ln(kl)− 2Ci(2kl)
+Ci(4kl)] cos(2kl) + 30 [Si(4kl)− 2Si(2kl)] sin(2kl)

(5.6.47)

Xa(2kl) = 60Si(2kl) + 30 [Ci(4kl)− ln(kl)− γ] sin 2kl

− 30Si(4kl) cos(2kl) (5.6.48)

where γ = 0.5772 . . . Euler’s constant. The values of Ra and Xa are
shown in Figure 5.6.5.

We note that although Za = Ra−iXa is not a function of the cone
angle θ0 , the characteristic impedance Z0 is. In view of (5.6.32), the
input impedance Zi of a biconical antenna is thus a function of θ0 ,
which is assumed to be very small in the above discussions. The char-
acteristic impedance for the θ0 = 2.7◦ antenna is 450 ohms and that
for the θ0 = 0.027◦ antenna is 1000 ohms. At l/λ = 0.25 , the input
impedance for both antennas is Za(kl = π/2) � (73.129− i153.66) Ω .
For a specific l , the input impedance of the thinner antenna as a func-
tion of frequency changes over a much wider range than that of the
thicker one. This difference between thick and thin antennas is gener-
ally true and not restricted to the conical antenna. Thus, for a fixed
length l , the input impedances of thick antennas are less sensitive to
frequency changes and thick antennas are therefore more suitable for
wide-band applications than thin antennas.
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E. Formal Solution of Biconical Antenna Problem

In the general case when θ0 is not necessarily small, we may obtain
the formal solution by making use of the orthogonal properties of the
Legendre functions. The expressions for the fields in the antenna and
air regions are given by (5.6.24) and (5.6.19). The problem now is
to determine the coefficients au and bn by matching the boundary
conditions. First we note that Hφ in the antenna region (5.6.24a)
may be written as

Hφ(r = l) =
YtV0(l)
2πl sin θ

+
1
2π

∑
u

au ju(kl)
d

dθ
Tu(cos θ) (5.6.49)

Multiplying both sides by sin θ(dTu′(θ)/dθ) and integrating from θ0

to π − θ0 , we obtain

au =
2π

Nuju(kl)

∫ π−θ0

θ0

sin θ dθ Hφ(r = l)
d

dθ
Tu(θ) (5.6.50)

where we have used the fact that

∫ π−θ0

θ0

sin θdθ

[
d

dθ
Tu(θ)

] [
d

dθ
Tu′(θ)

]
=

{
0 if u �= u′

Nu if u = u′

However, from (5.6.19a)

Hφ(r = l) =
1
2π

∑
n odd

bn h(1)
n (kl)

d

dθ
Pn(cos θ) (5.6.51)

Substituting the above equation into (5.6.50) we obtain an infinite
system of linear equations of the form

au =
∑
n odd

αu,nbn (5.6.52)

where

αu,n =
h

(1)
n (kl)

Nuju(kl)

∫ π−θ0

θ0

sin θdθ

[
d

dθ
Tu(cos θ)

] [
d

dθ
Pn(cos θ)

]
(5.6.53)
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Another system of equations governing the coefficients can be obtained
by considering the Eθ components at r = l . In the air region Eθ(r =
l) is, from (5.6.19c),

l Eθ(r = l) =
1

2πiωε

∑
n odd

bn

{
d

dr

[
rh(1)

n (kr)
]}

r=l

d

dθ
Pn(cos θ)

(5.6.54)
Multiplying both sides by sin θd[Pn′(cos θ)]/dθ and integrating from
0 to π we obtain

bn =
2n(n + 1)

2n + 1
2πiωε{

d
[
rh

(1)
n (kr)

]
/dr

}
r=l

∫ π

0
sin θdθ lEθ(r= l)

d

dθ
Pn(cos θ)

(5.6.55)
where we have used the fact that∫ π

0
sin θdθ

[
d

dθ
Pn(cos θ)

] [
d

dθ
Pn′(cos θ)

]
=

{
2n + 1

2n(n + 1) if n = n′

0 if n �= n′

However, according to (5.6.24c)

lEθ(r = l) =
ηV0(l)

2πZ0 sin θ
+

1
2πiωε

∑
u

au

{
d

dr
[rju(kr)]

}
r=l

d

dθ
Tu(θ)

(5.6.56)
for θ0 < θ < π − θ0 and Eθ(r = l) = 0 otherwise.

Therefore, substituting the above equation into (5.6.55) we obtain

bn =
∑
u

βn,uau + Kn
V0(l)
Z0

(5.6.57)

βn,u=
2n(n + 1)

2n + 1

{
d[rju(kr)]

dr

}
r=l{

d[rh
(1)
n (kr)]
dr

}
r=l

·
∫ π−θ0

θ0

dθ sin θ

[
dPn(cos θ)

dθ

][
dTu(θ)

dθ

]

(5.6.58)

Kn =i
4n(n + 1)

2n + 1
k{

d[rh
(1)
n (kr)]/dr

}
r=l

Pn(cos θ0) (5.6.59)

Therefore, the problem is formally solvable, since the coefficients au

and bn may be determined by the linear system of equations given by
(5.6.52) and (5.6.57).
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Once the coefficients are obtained, the termination admittance Yt

can be easily obtained. First, integrating (5.6.49) from θ0 to π − θ0

we find

Yt =
ηl

Z0V0(l)

∫ π−θ0

θ0

dθ Hφ(r = l) (5.6.60)

where the characteristic impedance Z0 is given by (5.6.25). Next, sub-
stituting (5.6.51) into the above equation we obtain

Yt =
−η

Z0V0(l)
l

π

∑
n odd

bn h(1)
n (kl)Pn(cos θ0)

= − 120
Z0V0(l)

l
∑
n odd

bn h(1)
n (kl)Pn(cos θ0) (5.6.61)

The above equation can also be used to calculate Za by noting that
Za = Z2

0Yt.

Problems

P5.6.1
Find approximate values for the order of modes (that is, u ) in the case

of a spherical antenna as a limiting case of the biconical antenna when the
cone angle θ0 approaches π/2 .

P5.6.2
Consider the biconical antenna shown in Figure P5.6.2.1, where the con-

ical boundaries are given by θ = θ0 and θ = π − θ1 and where the antenna
region is filled with a dielectric of relative permittivity ε .

θ0

θ1
l

εε

Figure P5.6.2.1
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(a) Write the boundary conditions for this biconical antenna.
(b) Find the characteristic impedance and prove that the characteristic impe-

dance of a single cone of angle θ0 over a perfectly conducting ground
plane is half that of a biconical antenna with θ0 = θ1 .

(c) Find the capacitance and inductance per unit radial length of this bicon-
ical antenna.

(d) Find the approximate values of the orders of modes (that is, u ) that can
be excited in the antenna region for small cone angles θ0 and θ1 . Prove
that these are given by, with n an odd integer,

u � n + ∆ � n− 1
2

ln(sin θ0
2 sin θ1

2 )

ln(sin θ0
2 ) ln(sin θ1

2 )
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5.7 Dipole Antennas in Layered Media

A. Integral Formulation

The geometrical configuration of the problem is shown in Figure 5.7.1.
The origin of the coordinate system is placed in the location of the
dipole which can be a vertical magnetic dipole (VMD), a vertical elec-
tric dipole (VED), a horizontal electric dipole (HED), or a horizon-
tal magnetic dipole (HMD). There are M layers above the dipole at
z = d1, d2, . . . dM and N layers below it at z = d0, d−1, . . . , d−(N−1).
We shall first assume that all regions contain isotropic media. In region
l , we denote the permittivity and permeability by εl and µl. Notice
that in region 0, ε0 and µ0 are not necessarily equal to the free space
permittivity and permeability which we denote by εo and µo .

z

ρ

Region M

Region M−1

Region 1

Region 0

Region −1

Region −(N−1)

Region −N

z = dM

z = dM−1

z = d2

z = d1

z = d0

z = d−1

z = d−(N−2)

z = d−(N−1)

dipole

antenna

Figure 5.7.1 Dipole in layered medium.
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In the absence of the stratified medium, fields of a dipole radiating
in unbounded space with permittivity ε0 and µ0 are well known. The
solutions can be transformed from spherical coordinates to cylindrical
coordinates by using the Sommerfeld identity

eikr

r
=

i

2

∫ ∞

−∞
dkρ

kρ
kz

H
(1)
0 (kρρ)eikz|z| (5.7.1)

The electric and magnetic fields of electric dipoles are

E(r) = iωµ

[
I +

1
k2
∇∇

]
· Il

eikr

4πr
(5.7.2)

H(r) =
1

iωµ
∇× E = ∇× Il

eikr

4πr
(5.7.3)

The integrands of transverse field components Es = ρ̂Eρ + φ̂Eφ and
Hs = ρ̂Hρ+φ̂Hφ are derived from those of the longitudinal components
Ez and Hz. Let

Ez =
∫ ∞

−∞
dkρ Ez(kρ) (5.7.4)

Hz =
∫ ∞

−∞
dkρ Hz(kρ) (5.7.5)

We have from the Maxwell equations in source-free regions

Es(kρ) =
1
k2
ρ

[
∇s

∂

∂z
Ez(kρ) + iωµl∇s ×Hz(kρ)

]
(5.7.6)

Hs(kρ) =
1
k2
ρ

[
∇s

∂

∂z
Hz(kρ)− iωεl∇s × Ez(kρ)

]
(5.7.7)

In view of the four types of dipole configurations, we find that for

(1) Vertical electric dipole (VED)

Ez =
∫ ∞

−∞
dkρ Eved

{
eikzz

e−ikzz

}
H

(1)
0 (kρρ)

z ≥ 0
z ≤ 0

(5.7.8a)

Eved = −
Ilk3

ρ

8πωε0kz
(5.7.8b)

Hz = 0 (5.7.9)
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where Il is the electric dipole moment.

(2) Horizontal electric dipole (HED)

Ez =
∫ ∞

−∞
dkρ Ehed

{
eikzz

−e−ikzz

}
H

(1)
1 (kρρ) cos φ

z ≥ 0
z ≤ 0

(5.7.10a)

Ehed = i
Ilk2

ρ

8πωε0
(5.7.10b)

Hz =
∫ ∞

−∞
dkρ Hhed

{
eikzz

e−ikzz

}
H

(1)
1 (kρρ) sin φ

z ≥ 0
z ≤ 0

(5.7.11a)

Hhed = i
Ilk2

ρ

8πkz
(5.7.11b)

(3) Vertical magnetic dipole (VMD)

Ez = 0 (5.7.12)

Hz =
∫ ∞

−∞
dkρ Hvmd

{
eikzz

e−ikzz

}
H

(1)
0 (kρρ)

z ≥ 0
z ≤ 0

(5.7.13a)

Hvmd = −i
IA k3

ρ

8πkz
(5.7.13b)

where IA is the magnetic dipole moment.

(4) Horizontal magnetic dipole (HMD)

Ez =
∫ ∞

−∞
dkρ Ehmd

{
eikzz

e−ikzz

}
H

(1)
1 (kρρ) sin φ

z ≥ 0
z ≤ 0

(5.7.14a)

Ehmd =
IAωµ0k

2
ρ

8πkz
(5.7.14b)

Hz =
∫ ∞

−∞
dkρHhmd

{
eikzz

−e−ikzz

}
H

(1)
1 (kρρ) cos φ

z ≥ 0
z ≤ 0

(5.7.15a)

Hhmd = −
IAk2

ρ

8π
(5.7.15b)

Notice that the magnetic dipoles produce fields which are duals of
those produced by the corresponding electric dipoles. The results for
the magnetic dipoles can be obtained by the replacement E → H,
H → −E, µ0→← ε0, and Il→ iωµ0 IA.
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For the stratified media, the solutions to the wave equations can
be written as superpositions of TE and TM wave components. Let
Al and Bl denote amplitudes for the TM waves and Cl and Dl

denote amplitudes for the TE waves. We find in region l the following
solutions:

Elz =
∫ ∞

−∞
dkρ

[
Ale

iklzz + Ble
−iklzz

]
H(1)

n (kρρ)Cn(φ) (5.7.16)

Hlz =
∫ ∞

−∞
dkρ

[
Cle

iklzz + Dle
−iklzz

]
H(1)

n (kρρ)Sn(φ) (5.7.17)

Elρ =
∫ ∞

−∞
dkρ

iklz
kρ

[
Ale

iklzz −Ble
−iklzz

]
H(1)′

n (kρρ)Cn(φ)

+
∫ ∞

−∞
dkρ

iωµl

k2
ρρ

[
Cle

iklzz + Dle
−iklzz

]
H(1)

n (kρρ)S′
n(φ) (5.7.18)

Elφ =
∫ ∞

−∞
dkρ

iklz
k2
ρρ

[
Ale

iklzz −Ble
−iklzz

]
H(1)

n (kρρ)C ′
n(φ)

+
∫ ∞

−∞
dkρ
−iωµl

kρ

[
Cle

iklzz + Dle
−iklzz

]
H(1)′

n (kρρ)Sn(φ) (5.7.19)

Hlρ =
∫ ∞

−∞
dkρ

iklz
kρ

[
Cle

iklzz −Dle
−iklzz

]
H(1)′

n (kρρ)Sn(φ)

+
∫ ∞

−∞
dkρ
−iωεl
k2
ρρ

[
Ale

iklzz + Ble
−iklzz

]
H(1)

n (kρρ)C ′
n(φ) (5.7.20)

Hlφ =
∫ ∞

−∞
dkρ

iklz
k2
ρρ

[
Cle

iklzz −Dle
−iklzz

]
H(1)

n (kρρ)S′
n(φ)

+
∫ ∞

−∞
dkρ

iωεl
kρ

[
Ale

iklzz + Ble
−iklzz

]
H(1)′

n (kρρ)Cn(φ) (5.7.21)

In (5.7.16)–(5.7.21), H
(1)
n (kρρ) is the n th order Hankel function of

the first kind and H
(1)′
n (kρρ) denotes the derivative of H

(1)
n (ξ) with

respect to its argument ξ . The φ-dependent functions Sn(φ) and
Cn(φ) and the order of the Hankel functions n are all determined by
the dipole configurations.

The boundary conditions at the interfaces require that tangential
electric and magnetic field components be continuous for all ρ and φ.
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At z = dl , we obtain

klz

(
Ale

iklzdl −Ble
−iklzdl

)
= k(l−1) z

(
Al−1e

ik(l−1) zdl −Bl−1e
−ik(l−1) zdl

)
(5.7.22)

εl

(
Ale

iklzdl + Ble
−iklzdl

)
= ε(l−1)

(
Al−1e

ik(l−1) zdl + Bl−1e
−ik(l−1) zdl

)
(5.7.23)

klz

(
Cle

iklzdl −Dle
−iklzdl

)
= k(l−1) z

(
Cl−1e

ik(l−1) zdl −Dl−1e
−ik(l−1) zdl

)
(5.7.24)

µl

(
Cle

iklzdl + Dle
−iklzdl

)
= µ(l−1)

(
Cl−1e

ik(l−1) zdl + Dl−1e
−ik(l−1) zdl

)
(5.7.25)

There are altogether M + N boundaries which give rise to 4(M + N)
equations as shown above. There are altogether M +N +1 regions. In
regions M and −N we have BM = DM = 0 and A−N = C−N = 0
because there are no waves originating from infinity. Thus we have
a total of 4(M + N + 1) − 4 = 4(M + N) unknowns to be solved
from the 4(M +N) equations. The wave amplitudes are related to the
configurations and the excitation amplitudes of the dipole antenna in
region 0. The wave solutions in region 0 thus need special attention.

We note in particular that at z = 0 , the following field components
vanish:

(1) VED Eρ = 0 (5.7.26)

(2) HED Ez = Hρ = Hφ = 0 (5.7.27)

(3) VMD Hρ = 0 (5.7.28)

(4) HMD Hz = Eρ = Eφ = 0 (5.7.29)

This is seen from (5.7.6)–(5.7.7) and by noting from (5.7.1) that

∂

∂z

eikr

r
= 0 at z = 0 (5.7.30)



5.7 Dipole Antennas in Layered Media 577

In the presence of the stratified medium, we can write the fields in
region 0 by identifying A0 and B0 according to the four types of
dipoles and whether we have z > 0 or z < 0. We distinguish the wave
amplitudes in region 0 for z ≥ 0 from those in region 0 for z < 0.
For z > 0 we use A0+ , B0+ , C0+ , and D0+ ; and for z < 0 we use
A0− , B0− , C0− , and D0− . It is seen that for

(1) VED

A0+ = Aved + Eved A0− = Aved

B0+ = Bved B0− = Bved + Eved

C0+ = D0+ = C0− = D0− = 0


 (5.7.31)

where Aved and Bved characterize contributions due to the stratified
medium and are to be determined by the boundary conditions.

(2) HED

A0+ = Ahed + Ehed A0− = Ahed

B0+ = Bhed B0− = Bhed − Ehed

C0+ = Ched + Hhed C0− = Ched

D0+ = Dhed D0− = Dhed + Hhed




(5.7.32)

where Ahed , Bhed , Ched , and Dhed characterize contributions due to
the stratified medium and are to be determined by the boundary con-
ditions.

(3) VMD

A0+ = B0+ = A0− = B0− = 0

C0+ = Cvmd + Hvmd C0− = Cvmd

D0+ = Dvmd D0− = Dvmd + Hvmd




(5.7.33)
where Cvmd and Dvmd characterize contributions due to the stratified
medium and are to be determined by the boundary conditions.
(4) HMD

A0+ = Ahmd + Ehmd A0− = Ahmd

B0+ = Bhmd B0− = Bhmd + Ehmd

C0+ = Chmd + Hhmd C0− = Chmd

D0+ = Dhmd D0− = Dhmd −Hhmd




(5.7.34)
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where Ahmd , Bhmd , Chmd , and Dhmd characterize contributions due
to the stratified medium and are to be determined by the bound-
ary conditions. We have expressed the solution in region 0 where the
dipoles are located in terms of superpositions of the primary excita-
tions in the absence of the stratified medium and the homogeneous
solutions of the stratified medium in the absence of the source. It is
easily shown that they satisfy the boundary conditions at z = 0 by re-
membering the vanishing field components as listed in (5.7.26)–(5.7.29)
for the primary excitations.

We now determine the wave amplitudes in region 0. For TM
waves, (5.7.22)–(5.7.23) can be solved to express Al and Bl in terms
of Al−1 and Bl−1 . We find

Ale
iklzdl =

1
2

(
εl−1

εl
+

k(l−1) z

klz

)[
Al−1e

ik(l−1) zdl+RTM
l(l−1)Bl−1e

−ik(l−1) zdl
]

(5.7.35a)

Ble
−iklzdl =

1
2

(
εl−1

εl
+

k(l−1) z

klz

)[
RTM

l(l−1)Al−1e
ik(l−1) zdl+Bl−1e

−ik(l−1) zdl
]

(5.7.35b)

To express Al−1 and Bl−1 in terms of Al and Bl , we find

Al−1e
ik(l−1) zdl =

1
2

(
εl

εl−1
+

klz
k(l−1) z

) [
Ale

iklzdl + RTM
(l−1) lBle

−iklzdl
]

(5.7.36a)

Bl−1e
−ik(l−1)zdl =

1
2

(
εl

εl−1
+

klz
k(l−1)z

) [
RTM

(l−1)lAle
iklzdl + Ble

−iklzdl
]

(5.7.36b)

In (5.7.35)–(5.7.36),
RTM

(l−1)l = −RTM
l(l−1)

A similar procedure applies to TE waves. The results are duals of those
of (5.7.35)–(5.7.36) with the replacements of A by C , B by D , and
ε by µ .

For z ≥ 0, we notice that BM = DM = 0. Letting l = 0, we ob-
tain the reflection coefficients RTM

0+ = B0+/A0+ and RTE
0+ = D0+/C0+
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in the form of continued fractions. We find

RTM
0+ =

B0+

A0+
=

ei2k0zd1

RTM
01

+

[
1−

(
1/RTM

01

)2
]

ei2(k0z+k1z)d1

(1/RTM
01 )ei2k1zd1 + (B1/A1)

(5.7.37)

RTE
0+ =

D0+

C0+
=

ei2k0zd1

RTE
01

+

[
1−

(
1/RTE

01

)2
]

ei2(k0z+k1z)d1

(1/RTE
01 )ei2k1zd1 + (D1/C1)

(5.7.38)

where B1/A1 and D1/C1 can be expressed in terms of B2/A2 and
D2/C2 and so on until region M where BM/AM = 0 = DM/CM .

For z ≤ 0, we notice that A−N = C−N = 0. Letting l = 0,
we obtain the reflection coefficients RTM

0− = A0−/B0− and RTE
0− =

C0−/D0− in the form of continued fractions. We find

RTM
0− =

A0−
B0−

=
e−i2k0zd0

RTM
0(−1)

+

[
1−

(
1/RTM

0(−1)

)2
]

e−i2(k0z+k−1z)d0

(
1/RTM

0(−1)

)
e−i2k−1zd0 + (A−1/B−1)

(5.7.39)

RTE
0− =

C0−
D0−

=
e−i2k0zd0

RTE
0(−1)

+

[
1−

(
1/RTE

0(−1)

)2
]

e−i2(k0z+k−1z)d0

(
1/RTE

0(−1)

)
e−i2k−1zd0 + (C−1/D−1)

(5.7.40)

where A−1/B−1 and C−1/D−1 are expressible in terms of A−2/B−2

and C−2/D−2 and so on until region −N , where A−N/B−N = 0 and
C−N/D−N = 0.

Once the wave amplitudes in region 0 are found, wave amplitudes
in other regions can be determined by the use of propagation matrices,
which are readily determined from (5.7.35) and (5.7.36) and from a set
of dual equations for TE waves. We now determine wave amplitudes
in region 0.
(1) VED: From (5.7.31), we find

RTM
0+ =

B0+

A0+
=

Bved

Aved + Eved
(5.7.41a)

RTM
0− =

A0−
B0−

=
Aved

Bved + Eved
(5.7.41b)



580 5. Radiation

Solving for Aved and Bved and substituting in (5.7.31), we obtain

A0+ =
1 + RTM

0−
1−RTM

0+ RTM
0−

Eved (5.7.42a)

B0+ =
RTM

0+ (1 + RTM
0− )

1−RTM
0+ RTM

0−
Eved (5.7.42b)

A0− =
RTM

0− (1 + RTM
0+ )

1−RTM
0+ RTM

0−
Eved (5.7.42c)

B0− =
1 + RTM

0+

1−RTM
0+ RTM

0−
Eved (5.7.42d)

(2) HED: By the same token, we find from (5.7.32)

A0+ =
1−RTM

0−
1−RTM

0+ RTM
0−

Ehed (5.7.43a)

B0+ =
RTM

0+ (1−RTM
0− )

1−RTM
0+ RTM

0−
Ehed (5.7.43b)

C0+ =
1 + RTE

0−
1−RTE

0+ RTE
0−

Hhed (5.7.43c)

D0+ =
RTE

0+ (1 + RTE
0− )

1−RTE
0+ RTE

0−
Hhed (5.7.43d)

A0− = −RTM
0− (1−RTM

0+ )
1−RTM

0+ RTM
0−

Ehed (5.7.44a)

B0− = − 1−RTM
0+

1−RTM
0+ RTM

0−
Ehed (5.7.44b)

C0− =
RTE

0− (1 + RTE
0+ )

1−RTE
0+ RTE

0−
Hhed (5.7.44c)

D0− =
1 + RTE

0+

1−RTE
0+ RTE

0−
Hhed (5.7.44d)
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(3) VMD: From (5.7.33), we find

C0+ =
1 + RTE

0−
1−RTE

0+ RTE
0−

Hvmd (5.7.45a)

D0+ =
RTE

0+ (1 + RTE
0− )

1−RTE
0+ RTE

0−
Hvmd (5.7.45b)

C0− =
RTE

0− (1 + RTE
0+ )

1−RTE
0+ RTE

0−
Hvmd (5.7.45c)

D0− =
1 + RTE

0+

1−RTE
0+ RTE

0−
Hvmd (5.7.45d)

(4) HMD: From (5.7.34), we find

A0+ =
1 + RTM

0−
1−RTM

0+ RTM
0−

Ehmd (5.7.46a)

B0+ =
RTM

0+ (1 + RTM
0− )

1−RTM
0+ RTM

0−
Ehmd (5.7.46b)

C0+ =
1−RTE

0−
1−RTE

0+ RTE
0−

Hhmd (5.7.46c)

D0+ =
RTE

0+ (1−RTE
0− )

1−RTE
0+ RTE

0−
Hhmd (5.7.46d)

A0− =
RTM

0− (1 + RTM
0+ )

1−RTM
0+ RTM

0−
Ehmd (5.7.47a)

B0− =
1 + RTM

0+

1−RTM
0+ RTM

0−
Ehmd (5.7.47b)

C0− = −RTE
0− (1−RTE

0+ )
1−RTE

0+ RTE
0−

Hhmd (5.7.47c)

D0− = − 1−RTE
0+

1−RTE
0+ RTE

0−
Hhmd (5.7.47d)

The solutions for the electromagnetic field components are obtained
by inserting the values for the wave amplitudes into (5.7.16)–(5.7.21).
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Example 5.7.1 Vertical magnetic dipole on two-layer media.
The geometrical configuration of the problem is shown in Figure E5.7.1.1.

The origin of the coordinate system is placed in the location of the dipole
which is a vertical magnetic dipole (VMD) above a two-layer medium with
boundaries at z = d0andd1 with d0 − d−1 = d.

z

ρ

Region −1

z = d0

z = d−1

dipole

antenna

Figure E5.7.1.1 Dipole in layered medium.

In the presence of the two-layer medium, the vertical magnetic dipole
(VMD) has, in Region 0,

Hz =
∫ ∞

−∞
dkρ

{
(Hvmd + A0)eikzz

A0eikzz + Hvmde−ikzz

}
H

(1)
0 (kρρ)

z ≥ 0
z ≤ 0

(E5.7.1.1)

Eφ =
∫ ∞

−∞
dkρ
−iωµ

kρ

{
(Hvmd + A0)eikzz

A0eikzz + Hvmde−ikzz

}
H

(1)
0 (kρρ)

z ≥ 0
z ≤ 0

(E5.7.1.2)

Hρ =
∫ ∞

−∞
dkρ

ikz
kρ

{
(Hvmd + A0)eikzz

A0eikzz −Hvmde−ikzz

}
H

(1)
0 (kρρ)

z ≥ 0
z ≤ 0

(E5.7.1.3)

Hvmd = −i
IA k3

ρ

8πkz
(E5.7.1.4)

where IA is the magnetic dipole moment. In Region 1,

H1z =
∫ ∞

−∞
dkρ

[
C1eik1zz + D1e−ik1zz

]
H

(1)
0 (kρρ) (E5.7.1.5)

E1φ =
∫ ∞

−∞
dkρ
−iωµ1

kρ

[
C1eik1zz + D1e−ik1zz

]
H

(1)
1 (kρρ) (E5.7.1.6)

H1ρ =
∫ ∞

−∞
dkρ

ik1z

kρ

[
C1eik1zz −D1e−ik1zz

]
H

(1)
1 (kρρ) (E5.7.1.7)
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At z = d−1, Eφ = 0 , we find C1 = −D1e−i2k1zd1 . At z = d0 which is less
than zero, Eφ and Hρ are continuous. We obtain

kz
(
A0eikzd0 −Hvmde

−ikzd0
)

= k1z

(
C1eik1zd0 −D1e−ik1zd0

)
(E5.7.1.8)

µ
(
A0eikzd0 + Hvmde

−ikzd0
)

= µ1

(
C1eik1zd0 + D1e−ik1zd0

)
(E5.7.1.9)

We find

A0eikzd0 =
1
2

(
µ1

µ
+

k1z

kz

)[
C1eik1zd0 + RTE

01 D1e−ik1zd0
]

(E5.7.1.10a)

Hvmde
−ikzd0 =

1
2

(
µ1

µ
+

k1z

kz

)[
RTE

01 C1eik1zd0 +D1e−ik1zd0
]

(E5.7.1.10b)

A0

Hvmd
= e−i2kzd0

C1eik1zd0 + RTE
01 D1e−ik1zd0

RTE
01 C1eik1zd0 +D1e−ik1zd0

= e−i2kzd0
RTE

01 − ei2k1zd

1−RTE
01 ei2k1zd

= RTE
0+ (E5.7.1.11)

where d = d0 − d1 , and

RTE
01 =

1− µk1z/µ1kz
1 + µk1z/µ1kz

In Region 0 for z ≥ 0 ,

Hz =
∫ ∞

−∞
dkρHvmd(1 + RTE

0+ )eikzzH(1)
0 (kρρ)

=
∫ ∞

−∞
dkρ
−iIA k3

ρ

8πkz
(1 + RTE

0+ )eikzzH(1)
0 (kρρ) (E5.7.1.12)

Eφ =
∫ ∞

−∞
dkρ
−iωµ

kρ
Hvmd(1 + RTE

0+ )eikzzH(1)
1 (kρρ)

=
∫ ∞

−∞
dkρ
−ωµIA k2

ρ

8πkz
(1 + RTE

0+ )eikzzH(1)
1 (kρρ) (E5.7.1.13)

Hρ =
∫ ∞

−∞
dkρ

ikz
kρ

Hvmd(1−RTE
0+ )eikzzH(1)

1 (kρρ)

=
∫ ∞

−∞
dkρ

IA k2
ρ

8π
(1−RTE

0+ )eikzzH(1)
1 (kρρ) (E5.7.1.14)

End of Example 5.7.1
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B. Contour Integration Methods

a. Cauchy’s Theorem
The most fundamental and useful theorem in functions of complex

variables is Cauchy’s theorem. Consider a complex function

f(α) = fR + ifI (5.7.48)

of a complex variable
α = αR + iαI (5.7.49)

where fR , fI , αR , and αI are all real. Assume that f(α) is analytic,
namely its derivative exists, over a domain D in the complex α plane
as shown in [Fig. 5.7.2]. The boundary line of D forms a closed contour
C . Cauchy’s theorem states that the line integration of f(α) along C is
zero, ∮

C
dα f(α) = 0 (5.7.50)

D

αR

αI C

Figure 5.7.2 Contour for Cauchy’s theorem.

The direction of integration is such that when one travels along this
direction, the domain D is always on his left hand side.

Augustin-Louis Cauchy (21 August 1789 – 23 May 1857)
Cauchy published 789 papers, his works on complex functions and num-

ber theory were each over 300 pages long. At the age of twenty-two he became
professor at the Ecole Polytechnique. In 1814 he published the memoir on def-
inite integrals that later became the basis of his theory of complex functions.
Cauchy also presented a mathematical treatment of optics, hypothesized that
ether had the mechanical properties of an elasticity medium.
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Example 5.7.2
As an example, consider the evaluation of the integral

I =
∫ ∞

0

dα
sin α

α

Writing sin α in terms of exponentials, we have

I =
1
2i

∫ ∞

0

dα

[
eiα

α
− e−iα

α

]
= lim

δ→0

{∫ ∞

δ

dα
eiα

2iα
+

∫ −δ

−∞
dα

eiα

2iα

}

αI

−δ

αR

CR

Cδ

δ−R

Figure E5.7.2.1 Contour for integration.

We choose a closed contour C composed of CR , the negative real axis,
Cδ , and the positive real axis as shown in Figure E5.7.2.1

I = lim
δ→0
R→∞

{∮
C

−
∫
Cδ

−
∫
CR

}
dα

eiα

2iα
(E5.7.2.1)

where α = αR + iαI . By Cauchy’s theorem, the first integral is zero because
eiα/α is analytic inside and on contour C . The third integral also vanishes
as R→∞ on account of Jordan’s Lemma [Prob. P4.7.4]. The second integral
is the only one that contributes. Writing α in polar coordinates, α = δeiφ ,
we therefore obtain

I = −1
2

lim
δ→0

∫ 0

π

dφ exp(iδeiφ)

= −1
2

∫ 0

π

dφ =
π

2
(E5.7.2.2)

End of Example 5.7.2
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Notice that Cauchy’s theorem is based on the assumption that
the function is analytic on the domain of integration. When there are
singularities inside the domain, they must be taken into account sep-
arately. Expanding the function f(α) around a singularity α0 , we
have

f(α) =
∞∑
n=0

an(α− α0)n +
∞∑
n=1

a−n

(α− α0)n
(5.7.51)

δ

C

α0

C0

Figure 5.7.3 Contour for proof of Residue theorem.

By Cauchy’s theorem no contribution comes from the first sum-
mation because it is analytical. To integrate the second summation,
we first change the original contour C0 to a new circular contour C
with radius δ surrounding α0 [Fig. 5.7.3] and let

α− α0 = δeiφ

By Cauchy’s theorem it is seen that

∮
C0

dα f(α)−
∮
C

dα f(α) = 0

as the contributions from the two opposite straight lines cancel each
other. Thus the integration over the original contour is equal to that
over C and we have

∮
C

dα f(α) = i
∞∑
n=1

a−n

δn−1

∫ 2π

0
dφ ei(1−n)φ
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Obviously, all terms other than n = 1 are zero. Therefore we obtain
the Residue theorem: ∮

C
dα f(α) = 2πia−1 (5.7.52)

Since the expansion coefficient a−1 is the only one left after the inte-
gration, a−1 is called the residue.

Example 5.7.3
If f(α) has a pole of order m , then all subsequent terms after a−m

vanish, namely a−n = 0 for n > m ,

f(α) =
∞∑
n=0

an(α− α0)n +
a−1

(α− α0)
+ . . . +

a−m
(α− α0)m

and we find

a−1 =
1

(m− 1)!
lim

α→α0

{
dm−1

dαm−1
(α− α0)mf(α)

}
(E5.7.3.1)

For essential singularities, the residue can be found from known series expan-
sions. For instance, the residue of exp(−1/α) is −1 .

End of Example 5.7.3

The residue of a function can be determined in many ways. If f(α)
has a single pole, then all a−n but a−1 vanish. We have

a−1 = lim
α→αo

{(α− α0)f(α)} (5.7.53)

If f(α) is analytic over a domain D bounded by contour C , then
by the Residue theorem, the function at a regular point α0 can be
represented by the integral

f(α0) =
1

2πi

∮
C

dα
f(α)

α− α0
(5.7.54)

which is Cauchy’s integral formula. Note that we also have

f (n)(α0) =
n!
2πi

∮
C

dα
f(α)

(α− α0)n+1
(5.7.55)

This follows from (5.7.54) by using Leibnitz’ rule of differentiation.
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Example 5.7.4
To illustrate the use of the Residue theorem, consider again the evalua-

tion of

I =
∫ ∞

0

dα
sin α

α

−R −δ

CR

Cδ

δ R

αR

αI

Figure E5.7.4.1 A closed contour including the pole at α = 0.

Instead of choosing the contour as shown in Figure E5.7.2.1, we choose to
indent around the pole at α = 0 from below [Fig. E5.7.4.1]. The contour
then encloses the pole which has a residue of eiα/2iα equal to 1/2i . Thus
we have

I = lim
δ→0
R→∞

{∮
C

−
∫
Cδ

−
∫
CR

}
dα

eiα

2iα

= 2πi
[ 1
2i

]
− lim

δ→0

∫
Cδ

dα
eiα

2iα

= π − 1
2

∫ 2π

π

dφ =
π

2
(E5.7.4.1)

End of Example 5.7.4

The residue of a multi-valued function is dependent on the partic-
ular Riemann sheet where the singularity lies. To illustrate the concept
of a multi-valued function and its associated Riemann sheets, consider
the simple function f(α) =

√
α . The function is double-valued since,

for example, as α = 1 = ei2mπ , f(α) = eimπ which is +1 or −1
depending on whether m is even or odd. We see that at α = 0 , it
is impossible to define a neighborhood in which the function is single-
valued. The point α = 0 is called a branch point which is another type
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αI

αR

−1

Figure 5.7.4 Contour with a branch cut.

of singularity in addition to the poles and essential singularities where
the derivative of the function does not exist.

To make the function single-valued, we define two Riemann sheets
such that on the top Riemann sheet 4mπ ≤ φ ≤ 2(2m + 1)π and
on the bottom Riemann sheet 2(2m + 1)π ≤ φ ≤ 4(m + 1)π where
m = 0, 1, 2, . . . To separate the two Riemann sheets we choose a branch
cut along the positive real αR axis which can be visualized as creating
a wedge-shaped cut [Fig. 5.7.4] such that for 0 < φ < 2π we are on the
top Riemann sheet; for 2π < φ < 4π , sliding to the bottom Riemann
sheet, and, for 4π < φ < 6π , we come up again to the top sheet.
It is noted that we could very well choose a different branch cut and
define the two Riemann sheets differently. For instance, we may choose
a branch cut along the negative αR axis so that on the top Riemann
sheet (4m− 1)π < φ < (4m + 1)π and on the bottom Riemann sheet
(4m + 1)π < φ < (4m + 3)π .

Bernhard Riemann (17 September 1826 – 20 July 1866)
In the spring of 1846 Riemann enrolled at the University of Göttingen.

From 1847 to 1849 he enrolled at the University of Berlin and worked out his
general theory of complex variables that formed the basis of some of his most
important work. Riemann defended his dissertation “Foundation of a general
function theory of one variable complex number” in December 1851, which
was highly commended by Gauss. In 1853 Riemann became the assistant of
W. Weber. Riemann in 1859 succeeded Lejeune Dirichlets to become a full
professor on the chair that Gauss had occupied only four years ago.
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b. Kramers-Krönig relations
By the principle of causality, the permittivity ε(ω) is seen to be

an analytical function of complex variable ω on the upper half plane
of ω . From the defining equation for ε(ω) , we see that

ε∗(ω) = ε(−ω)

Separating into real and imaginary parts, we have{
εR(ω) = εR(−ω)
εI(ω) = −εI(−ω)

Thus εR is an even function of ω and εI is an odd function of ω .
Extending to the whole complex ω = ωR + iωI plane, we see that
on the imaginary axis ωI , ε(iωI) = ε∗(iωI) . It follows that ε(ω) is
real on the imaginary ωI axis. On the upper half plane, the integrand
includes the exponentially decreasing factor e−ωIt . Thus ε(ω) is a
single-valued regular function over the upper half of the complex ω
plane. The fact that ε(ω) is an analytical function of complex variable
ω on the upper half plane of ω is a direct consequence of the principle
of causality.

By Cauchy’s theorem, we have∮
C

dα
ε(α)− ε∞

α− ω
= 0 (5.7.56)

αR

ω

αI

0

Figure 5.7.5 Contour for Kramers-Krönig’s relation.

when integrated over a closed contour consisting of a semicircle of
infinite radius with the straight side along the real axis but indented
around the point α = ω [Fig. 5.7.5]. The integral over the semicircle



5.7 Dipole Antennas in Layered Media 591

of infinite radius vanishes in view of Jordan’s Lemma. Defining the
principal value PV of the integral to be the result of the integration
along the real axis except at α = ω , we find

PV
∫ ∞

−∞
dα

ε(α)− ε∞
α− ω

− iπ[ε(ω)− ε∞] = 0

Separating the real and imaginary parts, we find the causality condition

εR(ω)− ε∞ =
1
π

PV
∫ ∞

−∞
dα

εI(α)
α− ω

(5.7.57a)

εI(ω) =− 1
π

PV
∫ ∞

−∞
dα

εR(α)− ε∞
α− ω

(5.7.57b)

These formulae were first derived by Hendrik Kramers (1894–1952)
and Ralph Krönig (1904–1995) in 1927 and are known as the Kramers-
Krönig relations. Equation (5.7.57a) is also known mathematically as
the Hilbert transform relation that relates the real part of ε(ω)−ε∞ to
its imaginary part. Equation (5.7.57b) is the inverse Hilbert transform
relation.

David Hilbert (23 January 1862 – 14 February 1943)
Hilbert was a member of staff at the University of Königsberg from 1886

to 1895, being a Privatdozent until 1892, then as Extraordinary Professor for
one year before being appointed a full professor in 1893. In 1895, Hilbert was
appointed to the chair of mathematics at the University of Göttingen, where
he continued to teach until he retired in 1930.

Example 5.7.5
From permittivity

ε(ω) = εo

[
1−

ω2
p

ω2 − ω2
e + iωγ

]
(E5.7.5.1)

we find ε∗(ω) = ε(−ω) . Show that ε(ω) is analytical on the upper half plane.
Proof:

The poles of the permittivity are found from

ω2 − ω2
e + iωγ = 0
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which gives

ω =
1
2

(
−iγ ±

√
4ω2

e − γ2

)
For 4ω2

e > γ2 , the two poles are on the lower half plane. For 4ω2
e < γ2 ,√

γ2 − 4ω2
e is smaller than γ and the poles are both on the imaginary axis

on the lower half plane. Thus the permittivity ε(ω) in (E5.7.5.1) is analytical
on the upper half plane.

End of Example 5.7.5

Example 5.7.6
Prove ∂ωε

∂ω > 0 for media with small loss by using the Kramers-Krönig
relations

εR(ω)− ε∞ =
1
π

PV
∫ ∞

−∞
dα

εI(α)
α− ω

(E5.7.6.1)

Proof:
Since εI(ω) is an odd function and with εI ≈ 0 , we have

εR(ω)− ε∞ =
1
π

PV
∫ ∞

−∞
dα

εI(α)
α− ω

=
2
π

PV
∫ ∞

0

dα
αεI(α)
α2 − ω2

≈ 2
π

∫ ∞

0

dα
αεI(α)
α2 − ω2

(E5.7.6.2)

Thus
∂εR(ω)

∂ω
=

4ω

π

∫ ∞

0

dα
αεI(α)

(α2 − ω2)2
> 0 (E5.7.6.3)

since the integrand is positive throughout the region of integration.
Another inequality can be derived from

∂[ω2(εR(ω)− ε∞)]
∂ω

=
∂

∂ω

2
π

∫ ∞

0

dα
αεI(α)(ω2 − α2 + α2)

α2 − ω2

=
4ω

π

∫ ∞

0

dα
α3εI(α)

(α2 − ω2)2
> 0

It follows that
∂εR(ω)

∂ω
>

2(ε∞ − εR)
ω

(E5.7.6.4)

which is a more stringent condition than (E5.7.6.3) when εR < ε∞ . Summing
over (E5.7.6.3) and (E5.7.6.4), we find

∂(ωεR)
∂ω

= ω
∂(εR)
∂ω

+ εR > ε∞ > 0 (E5.7.6.5)

End of Example 5.7.6
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Example 5.7.7
Prove the Kramers-Krönig relations

εR(ω)− ε∞ =
1
π

PV
∫ ∞

−∞
dα

εI(α)
α− ω

(E5.7.7.1a)

εI(ω) =− 1
π

PV
∫ ∞

−∞
dα

εR(α)− ε∞
α− ω

(E5.7.7.1b)

for the permittivity

ε(ω) = εo

[
1−

ω2
p

ω2 − ω2
e + iωγe

]
= εR + iεI (E5.7.7.2)

= εe

[
1−

(ω2 − ω2
e)ω

2
p

(ω2 − ω2
e)2 + (ωγe)2

+
iωγeω

2
p

(ω2 − ω2
e)2 + (ωγe)2

]
(E5.7.7.3)

Proof:
The poles of ε(ω) occur at (ω2 − ω2

e)
2 + (ωγe)2 = 0 which gives a1 =

1
2 (iγe +

√
∆), a2 = 1

2 (iγe −
√

∆), a3 = 1
2 (−iγe +

√
∆), a4 = 1

2 (−iγe −
√

∆),
where ∆ = −γ2

e + 4ω4 . Notice that the pole α = ω is on the real axis, and
the two poles α = α1 and α = α2 are included in the upper half-plane.
Applying residue theorem, and let ε∞ = εo , we find from (E5.7.7.1a)

εR(ω)− ε∞ =
1
π

PV
∫ ∞

−∞
dα

εI(α)
α− ω

=
1
π

PV
∫ ∞

−∞
dα

αγeω
2
p

(α− ω)(α− a1)(α− a2)(α− a3)(α− a4)

=
1
π

[
iπ

ωγeω
2
p

(ω − a1)(ω − a2)(ω − a3)(ω − a4)

+i2π
a1γeω

2
p

(a1 − ω)(a1 − a2)(a1 − a3)(a1 − a4)

+i2π
a2γeω

2
p

(a2 − ω)(a2 − a1)(a2 − a3)(a2 − a4)

]

=
iωγeω

2
p

(ω − a1)(ω − a2)(ω − a3)(ω − a4)

+
ω2
p

(a1 − ω)(a1 − a2)
+

ω2
p

(a2 − ω)(a2 − a1)

=
iωγeω

2
p − ω2

p(ω − a3)(ω − a4)
(ω − a1)(ω − a2)(ω − a3)(ω − a4)

= −
(ω2 − ω2

o)ω
2
p

(ω2 − ω2
e)2 + (ωγe)2

A similar proof applies to (E5.7.7.1b).
End of Example 5.7.7
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c. Asymptotic Series for Hankel Functions

The saddle point method is a useful tool in evaluating asymptotic
values for an integral when its integrand contains a very large param-
eter. In the following we illustrate the method by finding the asymp-
totic values for the Hankel functions. Using wave concepts we argue
first that a cylindrical wave can be represented by a superposition of
plane waves emerging from all angles, real and complex. Then we de-
fine Hankel functions in terms of a contour integration on a complex
plane.

The wave equation in cylindrical coordinates takes the form

[
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂φ2
+ k2

]
u (ρ, φ) = 0 (5.7.58)

The solution to this equation is

u(ρ, φ) = Hn(kρ)e±inφ

where Hn(kρ) is the Hankel function. The same wave equation in
rectangular coordinates takes the form

[
∂2

∂x2
+

∂2

∂y2
+ k2

]
ũ(x, y) = 0

The two wave equations are related by a coordinate transformation.
The familiar plane wave solution to the above equation is

ũ(x, y) = eikxx+ikyy

In cylindrical coordinates, the plane wave becomes

eikxx+ikyy = eikρ cos(ψ−φ)

where
k = x̂kx + ŷky = x̂k cos ψ + ŷk sin ψ

ρ = x̂x + ŷy = x̂ρ cos φ + ŷρ sin φ

The wave vector k indicates the plane wave propagation direction,
and the position vector ρ represents the observation point [Fig. 5.7.6].
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ρ
φ

ψ

k

x

phase front

observation point

y

x

Figure 5.7.6 Cylindrical wave as superposition of plane waves.

We can view a cylindrical wave as a superposition of plane waves,
uniform and nonuniform, emerging from all angles ψ, real and com-
plex. Denoting wave amplitudes by Cneinψ, we write

u(ρ, φ) =
∫

Γ
dψ Cn einψeikρ cos(ψ−φ) (5.7.59)

It is straightforward to show that this integral is indeed a solution
to the wave equation (5.7.58) in cylindrical coordinates. The path of
integration Γ and the amplitude constant Cn are still to be specified.

The path Γ on the complex ψ plane must be chosen to assure that
this integral converges properly. To put the solution into the desired
form, we set α = ψ − φ . Thus

u(ρ, φ) = einφ
∫

Γ
dα Cneikρ cosα+inα (5.7.60)

We now investigate the convergence of the integral in the neighborhood
of infinity. On the complex plane

α = αR + iαI

We let ξ = kρ , the term in the exponent takes the form

eiξ cosα+inα = eξ sinαR sinhαI−nαIei(ξ cosαR coshαI+nαR) (5.7.61)
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As αI → +∞, the real part is positive for sin αR > 0 .
As αI → −∞, the real part is positive for sin αR < 0 .
When the real part is positive, the integrand diverges exponentially
as αI → ±∞ , and we denote with shaded regions in Figure 5.7.7.

2π

αI

3π/2
−π π

2

−π
2 αR

Γ1

Γ1

Γ2

Γ2

π
0

Figure 5.7.7 Integration paths for Hankel functions.

The Hankel function of the first kind is defined as

H(1)
ν (ξ) =

1
π

∫
Γ1

dα ei(ξ cosα+να−νπ/2) (5.7.62)

where the integration path Γ1 is shown in Figure 5.7.7. We see that
the real part in (5.7.61) goes to −∞ for αR = −π/2 and αI → +∞ ,
and for αR = π/2 and αI → −∞ . Thus the integral converges.

The Hankel function of the second kind is defined by the same
integral but follows a different path Γ2,

H(2)
ν (ξ) =

1
π

∫
Γ2

dα ei(ξ cosα+να−νπ/2) (5.7.63)

The path of integration Γ2 is also shown in Figure 5.7.7.
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b. Asymptotic Form of Hankel Functions

We now determine asymptotic values of

H
(1)
0 (ξ) =

1
π

∫
Γ1

dα eiξ cosα =
1
π

∫
Γ1

dα eiξ cosαR coshαI+ξ sinαR sinhαI

(5.7.64)
as ξ → ∞ by using the saddle point method. The saddle points are
determined from

d

dα
[ξ cos α] = 0

which gives the saddle point at α = α0 = 0 .
We note that away from the saddle point the integrand ascends

into the shaded regions and descends into the unshaded regions. Since
integration may be viewed as finding the area under a curve, we can
search for a new integration path passing the saddle point in such a
way that most of the contribution to the integrand comes from a small
portion of the new path near the saddle point. By Cauchy’s theorem we
can deform the original path of integration Γ1 to the new integration
path.

SDP

αI

Γ1

−2π −π −π/2

π/2
π 2π

αR

Figure 5.7.8 Integration paths on α plane.

The second step in the saddle point method is to determine the
new integration path by requiring that on it the imaginary part of the
exponent equal to its value at the saddle point,

cos αR cosh αI = 1 (5.7.65)



598 5. Radiation

This choice eliminates the oscillatory behavior caused by the imaginary
part in the exponential term eiξ cosα . The real part of the exponential
term has its maximum value at the saddle point and decreases most
rapidly along this path. Thus the major contribution to the integral
comes from near the saddle point. The new integration path is called
the steepest descent path (SDP). We see from (5.7.65) that as αI →
±∞, αR → ∓π/2 so that the ends of SDP meet Γ1 as shown in
Figure 5.7.8. Near the saddle point, we expand (5.7.65) around α = 0
to obtain (

1− 1
2

α2
R + . . .

) (
1 +

1
2

α2
I + . . .

)
= 1

which gives αR ≈ ±αI . We choose the negative sign which gives αR =
−αI . Thus the steepest descent path passes through the saddle point
at −π/4 with respect to the αR axis [Fig. 5.7.8].

The third step is to deform the original path of integration to
the steepest descent path. For the Hankel function of the first kind
H

(1)
0 (ξ) , no singularity is crossed in the process of deformation. To

evaluate the saddle-point contributions of the integral, we let

−s2 = i cos α− i ≈ −iα2/2 + ..... (5.7.66)

which yields dα = ds
√

2/i where s is a real variable. The integral
becomes, near α ≈ α0 = 0 ,

H
(1)
0 (ξ) ≈ 1

π

√
2
i
ei ξ

∫ δ

−δ
ds e−ξ s2

where δ is a small number. Since away from α = 0, e−ξs2 decays very
rapidly, we may replace δ by ∞ and make use of the formula∫ ∞

−∞
ds e−ξs2 =

√
π

ξ

We thus determine the asymptotic value for H
(1)
0 (ξ) to be, as ξ →∞ ,

H
(1)
0 (ξ) ≈

√
2

iπξ
ei ξ (5.7.67)

This result is to the order of ξ−1/2 . The saddle-point method can
be further used to obtain an asymptotic series for H

(1)
0 (ξ) in inverse

powers of ξ .
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Example 5.7.8
We now determine asymptotic values of

H(1)
ν (ξ) =

1
π

∫
Γ1

dα ei(ξ cosα+να−νπ/2) (E5.7.8.1)

by using the saddle point method. The saddle points are determined from

d

dα
[ξ cos α + να] = 0

There are two saddle points within the interval −π/2 and 3π/2 . For ν < ξ ,
they are

α0 = sin−1 ν

ξ
and α0 = π − sin−1 ν

ξ
(E5.7.8.2)

with 0 ≤ sin−1(ν/ξ) ≤ π/2 . For ν > ξ , they are

α0 =
π

2
− i cosh−1 ν

ξ
and α0 =

π

2
+ i cosh−1 ν

ξ
(E5.7.8.3)

In accordance with the original path defined for H
(1)
ν (ξ) , the contributing

saddle points are α = sin−1(ν/ξ) for ν < ξ and α = π/2 − i cosh−1(ν/ξ)
for ν > ξ .

Since there are no other singularities on the complex α plane, we can
deform to the steepest descent path by requiring that on it the imaginary
part of the exponent equal to its value at the saddle point, we find,

cos αR cosh αI +
ν

ξ
αR = Re

(
cos α0 +

ν

ξ
α0

)
(E5.7.8.4)

This choice eliminates the oscillatory behavior caused by the imaginary part
in the exponential term eiξ cosα+iνα .

The third step is to deform the original path of integration to the steepest
descent path. For the Hankel function of the first kind H

(1)
ν (ξ) , no singular-

ity is crossed in the process of deformation. To evaluate the saddle-point
contributions of the integral, we let

−s2 = i cos α + i
ν

ξ
α − i cos α0 − i

ν

ξ
α0 (E5.7.8.5)

such that s = 0 at α = α0 = sin−1(ν/ξ) . Along SDP, the integral (E5.7.8.1)
becomes

H(1)
ν (ξ) =

1
π

ei(ξ cosα0+να0−νπ/2)
∫ ∞

−∞
ds

dα

ds
e−ξs

2
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We write (E5.7.8.5) as −s2 = f(α) . Since contributions to the integral come
from near the saddle point, we Taylor expand near the saddle point α0 to
obtain −s2 = f(α0) + f ′(α0)(α− α0) + 1

2f ′′(α0)(α− α0)2 + ..... . We find

−s2 ≈ −i
1
2
(α− α0)2 cos α0

which yields

dα = ds

√
2

i cos α0

where s is a real variable. The integral becomes, near α = α0 ,

H(1)
ν (ξ) ≈ 1

π

√
2

i cos α0
ei(ξ cosα0+να0−νπ/2)

∫ ∞

−∞
ds e−ξ s

2

≈
√

2
iπξ cos α0

ei(ξ cosα0+να0−νπ/2) (E5.7.8.6)

For ν < ξ , α0 = sin−1(ν/ξ) , α0 − π/2 = − cos−1(ν/ξ) ,

H(1)
ν (ξ) ≈

√
2

iπ(ξ2 − ν2)1/2
exp

[
i
√

ξ2 − ν2 − iν cos−1 ν

ξ

]
(E5.7.8.7)

As ξ →∞ , we find

H(1)
ν (ξ) ≈

√
2

iπξ
ei (ξ+νπ) (E5.7.8.8)

This result is to the order of ξ−1/2 . The saddle-point method can be further
used to obtain an asymptotic series for H

(1)
ν (ξ) in inverse powers of ξ .

For ν > ξ , α0 = π/2 − i cosh−1(ν/ξ) , sin α0 = (ν/ξ) , ξ cos α0 =
i
√

ν2 − ξ2 , we find from (E5.7.8.7)

H(1)
ν (ξ) ≈ −i

√
2

π(ν2 − ξ2)1/2
exp

[
−

√
ν2 − ξ2 + ν cosh−1 ν

ξ

]
(E5.7.8.9)

For the case ν ≈ ξ , the two contributing saddle points begin to merge into
one and we need to evaluate the contribution due to both saddle points.

End of Example 5.7.8
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d. Saddle-Point Method
The saddle-point method as outlined in the above section for the

computation of asymptotic values for H
(1)
ν (ξ) can be generalized to

find asymptotic series for integrals of the form

I(ξ) =
∫

Γ
dα F (α)eξf(α) (5.7.68)

where ξ is a large real parameter. Let the saddle point be at α = α0

which is determined from f ′(α) = 0 where we use a prime to denote
the derivative of the function. Let Γ be the steepest descent path
determined by fI(α) = fI(α0) . The contribution to the saddle point
is computed with the transformation

−s2 = f(α)− f(α0) (5.7.69)

On the s plane, the integral becomes

I(ξ) = eξf(α0)

∫ ∞

−∞
ds Φ(s)e−ξs2 (5.7.70)

where
Φ(s) =

dα

ds
F [α(s)] (5.7.71)

The idea is to expand Φ(s) near the saddle point α0 in a Taylor series,

Φ(s) =
∞∑

m=0

Amsm (5.7.72)

and make use of the formulas∫ ∞

−∞
ds s2m+1e−ξs2 = 0 (5.7.73a)∫ ∞

−∞
ds s2me−ξs2 = (−1)m

dm

dξm

√
π

ξ
=

(2m)!
m!22mξm

√
π

ξ
(5.7.73b)

to obtain the asymptotic series for I(ξ) in inverse powers of ξ−1/2 .
The result is, by virtue of (5.7.71) and (5.7.73),

I(ξ) = eξf(α0)
∞∑

m=0

A2m
(2m)!

m!22mξm

√
π

ξ
(5.7.74)
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The task is to determine the expansion coefficients A2m .
We first expand α and (5.7.69) near the saddle point α0 ,

α(s)− α0 =
∞∑
n=1

ansn (5.7.75)

From Taylor expansion around the saddle point

−s2 = f(α)− f(αo) =
1
2!

f ′′(α0)(α− α0)2 +
1
3!

f ′′ ′(α0)(α− α0)3

+
1
4!

f iv(α0)(α− α0)4 + · · ·

=
1
2

f ′′(α0)
[
a2

1s
2 + 2a1a2s

3 + (a2
2 + 2a1a3)s4 + · · ·

]
+

1
6

f ′′ ′(α0)
[
a3

1s
3 + 3a2

1a2s
4 + · · ·

]
+

1
24

f iv(α0)
[
a4

1s
4 + · · ·

]
+ · · ·

we determine an in (5.7.75) by comparing coefficients of sn

a1 =
√
−2
f ′′ (5.7.76a)

a2 = − f ′′ ′

6f ′′ a2
1 (5.7.76b)

a3 =
1
24

[
5
3

(
f ′′ ′

f ′′

)2

− f iv

f ′′

]
a3

1 (5.7.76c)

...

We now determine the coefficients An in (5.7.74) and illustrate the
solution to orders of ξ−3/2 . From (5.7.71) we have

Φ(s) =
dα

ds

∞∑
k=0

1
k!

F (k)(α0)(α− α0)k

=

[ ∞∑
m=1

mamsm−1

]
·

∞∑
k=0

1
k!

F (k)(α0)

[ ∞∑
n=1

ansn

]k

= F (α0)(a1 + 2a2s + 3a3s
2 + · · ·)

+ F ′(α0)( a1s + a2s
2 + · · · )( a1 + 2a2s + · · ·)

+
1
2

F ′′(α0)( a2
1s

2 + · · · )( a1 + · · · ) + · · ·
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Comparison of coefficients yields

A0 = a1F (α0) (5.7.77a)

A2 = 3a3F (α0) + 3a1a2F
′(α0) +

1
2

a3
1F

′′(α0) (5.7.77b)

...

We do not need to evaluate the coefficients A1, A3, . . . because by
virtue of (5.7.73a), they disappear in the final solutions.

Substituting values of an from (5.7.76) in (5.7.77) and making use
of the formulas (5.7.73), the integral in (5.7.70) gives

I(ξ) = F (α0)eξf(α0)

√
2π

−ξf ′′

{
1 +

1
2ξf ′′

[
f ′′ ′

f ′′
F ′

F

+
1
4

f iv

f ′′ −
5
12

(f ′′ ′)2

(f ′′)2
− F ′′

F

]
+ · · ·

}
(5.7.78)

Note that the procedure illustrated can be used to determine the co-
efficients an and An up to any order and that I(ξ) can be expanded
in higher inverse powers of ξ−1/2 . This series, which is asymptotic, di-
verges for any fixed ξ . In spite of its divergent behavior, an asymptotic
series is very useful. The sum of the first few terms of the series ap-
proaches the values of the function that the series represents, and then
diverges as more terms are added. The error introduced in represent-
ing the function by the first n terms is of the order of the (n + 1) th
term. When the first few terms of the asymptotic series converge to
the actual value of the function, the convergence is much faster than
a convergent series expansion of the function. The first term of the
asymptotic series may be considered as the leading behavior of the in-
tegral. The leading behavior of an integral can be evaluated readily by
the saddle-point method. When the integral is expressed along either
the real or the imaginary axis and can be evaluated without deform-
ing the path of integration, the methods of Laplace and of stationary
phase are also very convenient.

Brook Taylor (18 August 1685 – 29 December 1731)
Brook Taylor entered St John’s College, Cambridge in 1703. In 1712 he

was member of the committee to adjudicate the claim of who invented calculus
by Newton and Leibniz. Taylor’s expansion appeared in his book published
in 1715.
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As an example, we find the saddle-point contribution to the inte-
gral

I(ξ) =
∫

Γ
dα F (α)eiξ cos(α−α0) (5.7.79)

as ξ →∞ . We let
f(α) = i cos(α− α0)

and the saddle point occurs at α = α0 . Making use of (5.7.78), we
immediately obtain

I(ξ) = F (α0)eiξ
√

2π

iξ

{
1− i

2ξ

[
1
4

+
F ′′

F

]
+ · · ·

}
(5.7.80)

It is noted that, if the integration path Γ is not the steepest descent
path, then in deforming from Γ to the SDP which is determined from
Im[f(α)] = Im[f(α0)] , there may be singularities lying between the
new and the old paths of integration. Contributions attributed to such
singularities must be taken into account separately.

Arnold Johannes Wilhelm Sommerfeld (5 December 1868 – 26 April 1951)
Arnold Sommerfeld attended the Gymnasium in Königsberg and the Uni-

versity of Königsberg where he was awarded his doctorate in 1891. During his
emeritus Arnold Sommerfeld compiled his “Lectures into theoretical physics”
which were published in six volumes between 1943 and 1953.

Example 5.7.9
Prove the Sommerfeld identity

eik0r

r
=

i

2

∫ ∞

−∞
dkρ

kρ
kz

H
(1)
0 (kρ ρ)eikz|z|

where kz =
√

k0
2 − kρ

2 .

Solution:
Write the integral representation for eik0r

r in terms of its Fourier trans-
form as

eik0r

r
=

1
(2π)3

∫∫∫ ∞

−∞
dkxdkydkz g(kx, ky, kz)eikxx+ikyy+ikzz
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Recognizing that eik0r

4πr is a solution to the Helmholtz equation[
∂2

∂x2
+

∂2

∂x2
+

∂2

∂x2
+ k2

0

]
eik0r

4πr
= −δ(x)δ(y)δ(z)

and using the Fourier integral representation of the delta function, the above
equation becomes

1
(2π)3

∫∫∫ ∞

−∞
dkxdkydkz

k2
0 − k2

x − k2
y − k2

z

4π
g(kx, ky, kz)eikxx+ikyy+ikzz

=
−1

(2π)3

∫∫∫ ∞

−∞
dkxdkydkz eikxx+ikyy+ikzz

we thus find

g(kx, ky, kz) =
−4π

k2
0 − k2

x − k2
y − k2

z

We now continue with the Fourier transform to get

eik0r

r
=

1
2π2

∫∫∫ ∞

−∞
dkxdkydkz

−1
k2
0 − k2

x − k2
y − k2

z

eikxx+ikyy+ikzz

=
1

2π2

∫∫∫ ∞

−∞
dkxdkydkz

eikxx+ikyy+ikzz(
kz +

√
k2
0 + k2

x + k2
y

) (
kz −

√
k2
0 − k2

x − k2
y

)
=

i

2π

∫∫ ∞

−∞
dkxdky

1
kz

eikxx+ikyy+ikz|z|

Let

kx = kρ cos α ky = kρ sin α

x = ρ cos φ y = ρ sin φ

We find

eik0r

r
=

i

2π

∫ ∞

0

dkρ

∫ 2π

0

dα
kρ
kz

eikρ cos(α−φ)+ikz|z| = i

∫ ∞

0

dkρ
kρ
kz

J0(kρρ)eikz|z|

Use J0(kρρ) = 1
2 [H(1)

0 (kρρ) + H
(2)
0 (kρρ)] . For the integral

i

2

∫ ∞

0

dkρ
kρ
kz

H
(2)
0 (kρρ)eikz|z|,

we change variables kρ = e−iπk′
ρ to get

i

2

∫ 0

−∞
dk′

ρ

k′
ρ

kz
H

(1)
0 (k′

ρρ)eikz|z|
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which combines with
i

2

∫ ∞

0

dkρ
kρ
kz

H
(1)
0 (kρρ)eikz|z|

resulting in the Sommerfeld identity. We thus have proved

eik0r

r
=

i

2π

∫∫ ∞

−∞
dkxdky

1
kz

eikxx+ikyy+ikz|z|

=
i

2

∫ ∞

−∞
dkρ

kρ
kz

H
(1)
0 (kρρ)eikz|z|

where kz =
√

k2
0 − k2

x − k2
y . Note that the above results state that a spherical

wave can be expanded into superpositions of plane waves as well as cylindrical
waves.

End of Example 5.7.9

Example 5.7.10
We now determine the leading behavior of the Hankel function

H(1)
ν (ξ) =

1
π

∫
Γ1

dα ei(ξ cosα+να−νπ/2)

when both ξ and ν are large. In accordance with the original path defined
for H

(1)
ν (ξ) , the contributing saddle points are

α = sin−1(ν/ξ) for ν < ξ

α = π/2− i cosh−1(ν/ξ) for ν > ξ

We make use of (5.7.78) with the following identifications:

F (α) =
1
π

e−iνπ/2 (E5.7.10.1)

ξf(α) = iξ cos α + iνα (E5.7.10.2)

The leading terms in the asymptotic series are

H(1)
ν (ξ) ≈

√
2

iπ(ξ2 − ν2)1/2
exp

[
i

(√
ξ2 − ν2 − ν cos−1 ν

ξ

)]
(E5.7.10.3)

for ν < ξ and

H(1)
ν (ξ) ≈ −i

√
2

π(ν2 − ξ2)1/2
exp

[
−

√
ν2 − ξ2 + ν cosh−1 ν

ξ

]
(E5.7.10.4)

for ν > ξ . It is readily seen that (E5.7.8.7) reduces to (E5.7.8.7) for ν � ξ .
End of Example 5.7.10
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C. Dipole Antenna on a Two-Layer Medium

Consider a vertical magnetic dipole (VMD) placed on the surface of
a two-layered medium [Figure 5.7.9]. The electromagnetic field above
the surface is TE to ẑ and is determined by the Hz component from
(5.7.45a) by letting RTE

0+ = 0 .

Hz = −i
IA

8π

∫ +∞

−∞
dkρ

k3
ρ

kz
(1 + RTE)H(1)

0 (kρρ)eikzz (5.7.81)

When the bottom medium is a perfect conductor,

1 + RTE = 1 +
R01 − ei2k1zd

1−R01ei2k1zd
(5.7.82)

where

R01 =
1− k1z/kz
1 + k1z/kz

(5.7.83)

is the reflection coefficient at the surface boundary.
Singularities in the integrand in (5.7.81) contain poles from zeros

of the denominator 1 − R01e
i2k1zd and the branch point at kρ = k

arising from kz =
√

k2 − k2
ρ . We see that kρ = k1 is not a branch

point as k1z only appears in RTE and when k1z is replaced by −k1z ,
RTE(−k1z) = RTE(k1z) .

z

ρ

µ, ε
IA

d

θ
r

µ, ε1

Figure 5.7.9 VMD on two-layer medium.
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kρI

U1U2

U3 U4

k

kI

kR

L1

L4

L2

L3

kρR

z

ρ

Figure 5.7.10 The complex kρ-plane.

To examine the singularities on the complex kρ -plane, we first
choose a branch cut originated from the branch point kρ = k . Letting
kρ = kρR + ikρI where kρR and kρI are both real, we write

kz =
√

k2 − (kρR + ikρI)2 =
√

k2 − k2
ρR + k2

ρI − i2kρRkρI (5.7.84)

From (5.7.84), we find that for Im(kz) = kzI = 0 , kρRkρI = 0 and

k2−k2
ρR+k2

ρI ≥ 0 . For kρI = 0 , kz =
√

k2 − k2
ρR + k2

ρI . For kρR = 0 ,

kz =
√

k2 + k2
ρI . The Sommerfeld branch cut is defined as

{
kρI = 0, 0 ≤ kρ ≤ k

kρR = 0, kρI ≥ 0
(5.7.85)

In Figure 5.7.10 we illustrate the Sommerfeld branch cut which origi-
nates from k composed of part of the real kρ axis 0 ≤ kρ ≤ k and
the whole positive imaginary kρ -axis. On the top Riemann sheet we
require that kzI ≥ 0 , and on the bottom Riemann sheet kzI ≤ 0 . This
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choice of Riemann sheets guarantees that all singularities on the top
sheet will give rise to an exponentially decaying wave for z > 0 .

To examine the wave behavior associated with the singularities on
both the top and bottom Riemann sheets, we let

k = ρ̂kρ + ẑkz = kR + ikI (5.7.86)

where kR and kI are both real vectors while k is a complex vector
with magnitude k = ω(µε)

1
2 being real. We find k · k = k2

R − k2
I +

i2kR · kI = ω2µε , and consequently

kR · kI = 0 (5.7.87)

Thus the real and imaginary parts of the complex k vector are per-
pendicular to each other.

In Figure 5.7.10 we use solid arrows to denote kR and dashed
arrows to denote kI . We first decide the direction of kI and then
use (5.7.87) to determine kR . For instance, in the first quadrant of
the top Riemann sheet, kzI ≥ 0 and kρI > 0 , the dashed arrow
thus points to the upper right signifies the direction where the wave
exponentially decays. We also know that kρR > 0 in the first quadrant.
From the fact that kI · kR = 0 we determine that kR points to the
lower right direction where the wave propagates. For the wave behavior
associated with the singularities on the lower Riemann sheet, kzI ≤ 0 ,
we illustrate in the square box.

a. Direct Wave from Saddle Point Contribution
To evaluate the integral in (5.7.81), we first make the following

transformation

kρ = k sin α (5.7.88a)
kz = k cos α (5.7.88b)
ρ = r sin θ (5.7.89a)
z = r cos θ (5.7.89b)

where r = (ρ2 + z2)
1
2 is the distance from the dipole and θ is the

observation angle from the z -axis. The angle α is the angle of the k
vector with respect to the z -axis. The integral becomes

Hz =
∫

Γ
dαF̃ (α)eikr cos(α−θ) (5.7.90)
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where

F̃ (α) = −i
IA

8π

[
k3
ρ(1 + RTE)H(1)

0 (kρρ)e−ikρρ
]
kρ=k sinα

(5.7.91)

noticing that dkρ = k cos α dα = kzdα .
The integration path Γ as transformed from the real kρ -axis is

shown in Figure 5.7.11. The transformation is better illustrated by
noting that

kρ = kρR + ikρI = k sin α

= k sin αR cosh αI + ik cos αR sinh αI (5.7.92)

The original integration path Γ along the real kρ axis with kρI = 0
is mapped onto the α plane as shown in Figure 5.7.11.


αR = −π/2, 0 ≤ αI ≤ ∞
αR = π/2, −∞ ≤ αI ≤ 0
αI = 0, −π/2 ≤ αR ≤ π/2

(5.7.93)

It starts at αR = −π/2 and αI at ∞ corresponding to kρ → −∞ ,
passing through αR = αI = 0 , and ends at αR = π/2 and αI at −∞
corresponding to kρ →∞ .

−π
θ

θ

π

θ

ρ

z

αR
αp

k̄

Γ

αI

SDP

π/2− π/2

αR

U3 U2 L1 L4

U1U4L3L2

Figure 5.7.11 The complex α-plane.
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The saddle point method is applied to distant observation points
where kr 	 1 . The saddle point is determined from the exponential
factor in (5.7.90). We have

d

dα
cos(α− θ) = 0

which gives α = θ .
The saddle point contribution to the integral gives

Hz = eikr
√

2π

ikr
F̃ (θ)

= eikr
√

2π

ikr

[
−i

IA

8π
k3
ρ(1 + RTE)

√
2

iπkρρ

]
kρ=k sin θ

= − IA

4πr
eikr

[
k2
ρ(1 + RTE)

]
kρ=k sin θ

(5.7.94)

where we used the asymptotic form for H
(1)
0 (ξ) e−ikρρ ≈ (2/iπkρρ)

1
2 .

The result is seen to represent a direct wave originated from the dipole
propagating to the observation point.

The steepest descend path (SDP) is determined by requiring that
the imaginary part of the exponent to be a constant equal to that at
the saddle point, i.e.,

Im[i cos(α− θ)] = cos(αR − θ) cosh αI = 1 (5.7.95)

The SDP passes through αR = θ , αI = 0 and asymptotically as
αI →∞ , αR − θ = −π/2 and as αI → −∞ , αR − θ = π/2 .




αI → −∞, αR − θ = −π/2
αI = 0, αR = θ

αI →∞, αR − θ = π/2
(5.7.96)

It is seen from Figure 5.7.11 that all singularities between the orig-
inal path of integration Γ and the steepest descent path SDP will
contribute to the integral. On the kρ -plane, the SDP is illustrated in
Figure 5.7.10.
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b. Normal Mode Approach
The singularities of the integral are determined from

1 + RTE = 1 +
R01 − ei2k1zd

1−R01ei2k1zd
= (1 + R01)

1− ei2k1zd

1−R01ei2k1zd
(5.7.97)

Setting the denominator equal to zero, we find

R01e
i2k1zd = 1 = e2mπ (5.7.98)

At total reflection when k ≤ k1z , (5.7.98) yields the guidance condition
for the slab medium.

Remarkably, the transformation (5.7.88) has unfolded the two Rie-
mann sheets in the kρ -plane as kz = k cos α no longer displays a
branch point.

kz = kzR + ikzI = k cos α

= k cos αR cosh αI − ik sin αR sinh αI (5.7.99)

For the upper Riemann sheet on the kρ -plane kzI ≥ 0 , we have sin αR

sinh αI < 0 which corresponds to (i) αI > 0 and −π < αR < 0, and
(ii) αI < 0 and 0 < αR < π . For kzI ≤ 0 , we have (i) αI > 0
and 0 < αr < π, and (ii) αI < 0 and −π < αR < 0 . The upper
and lower Riemann sheets denoted by U and L are mapped onto the
single α -plane, which now contains no branch points.

In Figure 5.7.11 we use solid arrows to denote kR = ρ̂kρR + ẑkzR
which indicates the direction of wave propagation in the ρ-z plane
as shown in Figure 5.7.11. Dashed arrows are used to denote kI =
ρ̂kρI + ẑkzI which indicates the direction of attenuation of the wave.
From the transformations in (5.7.88), we find

kR = ρ̂kρR + ẑkzR = ρ̂k sin αR cosh αI + ẑk cos αR cosh αI (5.7.100a)
kI = ρ̂kρI + ẑkzI = ρ̂k cos αR sinh αI − ẑk sin αR sinh αI (5.7.100b)

The solid and dashed arrows in Figure 5.7.11 can be determined from
the above equations with kR · kI = 0 .

The singularities enclosed by the original path of integration Γ
and the steepest descent path (SDP) represent wave modes that are
excited by the dipole antenna. They all have the attenuation direction
pointing away from the surface except those in the regions 0 ≤ αR ≤
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π/2 and αI ≥ 0 , where the wave is growing exponentially away from
the surface. The singularities in this region represent waves that are
growing exponentially in the positive ẑ -direction. These are known as
leaky wave modes.

Consider a leaky wave mode at α = αp . The real and imaginary
parts of the complex k vector are shown in Figure 5.7.12 as kR and
kI . The leaky wave propagates in the kR direction and attenuates
along kI which points in the −ẑ and +ρ̂ directions. With the trans-
formation (5.7.88) and (5.7.89), we write

eikr cos(α−θ) = eikr cos(αR−θ) coshαIekr sin(αR−θ) sinhαI

Since αI ≥ 0 , the wave grows exponentially in the r̂ direction when
αR − θ ≥ 0 . However the leaky wave mode at αp can be excited
only when θ is larger than αR of αp . As seen from Figure 5.7.12,
even though the wave amplitude grows exponentially away from the
surface, it also attenuates exponentially in the ρ̂ -direction. Thus the
leaky wave amplitudes will never diverge in the r̂ direction.

θ

kI

leaky wave

r
kR

z

αR

ρ

kR

wave amplitude

Figure 5.7.12 Leaky wave mode.

The wave modes in the other regions bounded by the original path
of integration and the steepest descent path, which are evanescent in
the direction pointing away from the surface, are guided wave modes.
We call the above procedure in evaluating the integral the normal mode
approach as each pole corresponds to a normal wave mode.
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c. Geometrical Optics Approach
Another approach of solving the integral in (5.7.81) leads to a

geometrical optics interpretation. Since the magnitude R01 is less than
unity, we may expand the denominator of (1 + RTE) to obtain

1 + RTE = 1 +
R01 − ei2k1zd

1−R01ei2k1zd
= 1 + R01 − (1−R2

01)
ei2k1zd

1−R01ei2k1zd

= (1 + R01)− (1−R2
01)

∞∑
m=1

Rm−1
01 ei2mk1zd (5.7.101)

We substitute (5.7.101) in (5.7.81) and evaluate the first term and
the summation terms separately. The first term yields the half-space
solution and the summation terms account for contributions from the
subsurface layer. The first term yields the result in the upper half-
space for a VMD placed at the surface of a dielectric medium with
permittivity ε1 .

To evaluate the first two terms arising from substituting (5.7.101)
in (5.7.81), we find for the radiation field of a vertical magnetic dipole
(VMD) placed on the surface of a one-layer (or half-space) medium,

Hz = −i
IA

8π

∫ +∞

−∞
dkρ

k3
ρ

kz
(1 + R01)H

(1)
0 (kρρ)eikzz

≈ −i
IA

8π

∫
SIP

dkρ
k3
ρ

kz
(

2kz
kz + k1z

)

√
2

iπkρρ
eikρρ+ikzz (5.7.102)

The Sommerfeld integration path (SIP) is from −∞ to ∞ in such a
way that it is slightly above the negative real kρR axis for −∞< kρR ≤
0 and slightly below the positive real kρR axis for 0 < kρR <∞ .

Applying the saddle-point method and making use of the asymp-
totic form for the Hankel function we find that, for very large observa-
tion distance ρ and z with ρ = r sin θ and z = r cos θ , the saddle
point is at kρ = k sin θ and the leading term of the vertical magnetic
field component is

Hz = eikr
√

2π

ikr

[
−i

IA

8π
k3
ρ(

2kz
kz + k1z

)

√
2

iπkρρ

]
kρ=k sin θ

= −IAeikr

2πr

k2 sin2 θ cos θ

cos θ +
√

k2
1/k2 − sin2 θ

(5.7.103)
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Example 5.7.11 VMD on half-space medium.
When the observation point is along the surface where θ = π/2 the lead-

ing term of the saddle point contribution vanishes. Thus we have to evaluate
the integral to second order of (1/r)2 as given by (5.7.80).

I(ξ) =
∫

Γ

dα F (α)eiξ cos(α−α0)

= F (α0)eiξ
√

2π

iξ

{
1− i

2ξ

[
1
4

+
F ′′

F

]
+ · · ·

}
(E5.7.11.1)

where

F (α) = −i
IA

8π
k3
ρ(

2kz
kz + k1z

)

√
2

iπkρρ
(E5.7.11.2)

Evaluating the third term in (E5.7.11.1) at θ = π/2 , we obtain

Hz = i
IA

2π(k2
1 − k2)ρ2

k3eikρ

At the same time, the leading order contribution from the branch cut
originated from the branch point kρ = k1 becomes significant. By deforming
the integration contour and choosing the branch cuts as that illustrated in
Figure E5.7.11.1, the vertical magnetic field is found to be

Hz = i
IA

2π(k2
1 − k2)ρ2

{
k3eikρ − k3

1eik1ρ
}

kρR

kρI

k k1
SIP

SIP

Figure E5.7.11.1

End of Example 5.7.11



616 5. Radiation

To evaluate the summation terms arising from substitution of
(5.7.101) into (5.7.81), we consider the case when the observation point
is on the surface with z = 0 . For the mth term in the summation in
(5.7.101)

H(m)
z =

∫ ∞

−∞
dkρGm(kρ)eikρρ+ik1z(2md) (5.7.104)

Gm(kρ) =
iIA

8π

[
(1−R2

01)R
m−1
01

k3
ρ

kz

√
2

iπkρρ

]
kρ=k1 sinα

(5.7.105)

z

ρ
µ, ε

IA

d 1

µ, ε

Figure 5.7.9 VMD on two-layer medium.

We make the following transformations:

kρ = k1 sin α (5.7.106a)
k1z = k1 cos α (5.7.106b)

ρ = Rm sin αm (5.7.107a)
2md = Rm cos αm (5.7.107b)

where
Rm =

√
ρ2 + (2md)2 (5.7.107c)

Under the transformations (5.7.106) and (5.7.107), we write (5.7.104)
as follows:

H(m)
z =

∫
dα G̃m(α) eik1Rm cos(α−αm) = eik1Rm

√
2π

ik1Rm
G̃m(αm)

G̃m(αm) =
iIA

8π


(1−R2

01)R
m−1
01

k3
ρk1z√

k2 − k2
1 sin2 α

√
2

iπkρρ



α=αm

(5.7.108)
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after using the asymptotic form for the Hankel function H
(1)
0 (kρρ) .

The original path of integration runs from αI → ∞ to αI = 0 at
αR = −π/2 through αR = −π/2 to αR = π/2 on the αR -axis, then
at αR = π/2 from αI = 0 to end at αI → −∞ . A saddle point is
seen to occur at α = αm . For k1Rm 	 1 , we calculate the saddle-
point contribution by retaining only the first term, which is of the form
eik1Rm/Rm.

The steepest descent path (SDP) is Im[ik1 cos(α− αm)] = k1 or

cos(αR − αm) cosh αI = 1

Near α = αm , we have αI ≈ −(αR − αm) . The SDP makes −45
degree angles from αR axis. As αI → ±∞, αR − αm = ∓π/2 .

δ+
δ+α

−δ −δ

αRαR
αmαm

αb

αIαI

0 0
original

integration

path

original

integration

path

SDP

αm
αm

αm
m

αb

Figure 5.7.13 (a) The SDP is to the left of the branch point and the
saddle point αm occurs on the lower Riemann sheet where kzI < 0. (b)
The SDP is to the right of the branch point and the saddle point αm

occurs on the top Riemann sheet where kzI > 0.

It is important to observe that
√

k2 − k2
1 sin2 α = kz gives rise to

branch points at
sin αb = ±k/k1

which make Gm(α) double valued.
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We now assume that k1 has a small imaginary part, k1 = k1R +
ik1I = k1R(1 + i tan δ) with δ � 1 . The transformation (5.7.106a) is
illustrated in Figure 5.7.13.

kρ = k1R(1 + i tan δ)(sin αR cosh αI + i cos αR sinh αI)
= k1R(sin αR cosh αI − tan δ cos αR sinh αI)

+ ik1R(cos αR sinh αI + tan δ sin αR cosh αI)

connects the complex kρ -plane with the complex α -plane.
For the real kρ -axis, kρI = 0 gives
cos αR sinh αI + tan δ sin αR cosh αI = 0
As αI → +∞, tan δ tan αR = −1→ αR = δ− π

2 and kρR → −∞ .
As αI → −∞, tan δ tan αR = 1→ αR = −δ+ π

2 and kρR → +∞ .
The transformed kρR axis is labeled the original integration path.

For the Sommerfeld branch cut, kρRkρI = 0 and k2 ≥ k2
ρR −

k2
ρI is mapped onto the α -plane. As kρR = 0 , we have tan αR =

tan δ tanh αI which gives αR = δ as αI → +∞ , and kρI → +∞ .
From origin to αb , kρI = 0 , the branch cut follows the real axis of
kρR as shown in Figure 5.7.13.

For the steepest descent path (SDP) Im[ik1 cos(α− αm)] = k1R

cos(αR − αm) cosh αI + tan δ sin(αR − αm) sinh αI = 1
As αI → ±∞, αR − αm = ±(δ − π

2 ) . Near α = αm , we have
1− (αR−αm)2/2 + α2

I/2 + tan δ(αR−αm)αI ≈ 1 , thus αI ≈ −(k1I ±
|k1|)(αR − αm)/k1R . The plus sign must be chosen so that it reduces
to the case in which k1I = 0 . Thus the path leans more toward the
vertical axis. The SDP is also shown in Figure 5.7.13.

In deforming the original integration path to the SDP, the branch
cut originated from the branch point kρ = k is crossed. The branch
cut is crossed twice when the SDP passing through the saddle point
αm is to the left of the branch point αb where k = k1 sin αb or
αb = sin−1(k/k1) . In this case, the saddle point is on the lower sheet,
corresponding to kzI < 0 and giving rise to a leaky wave. When the
SDP is to the right of αb , we have to cross the branch cut in such a
manner that both ends of the SDP will be on the top Riemann sheet
of kzI > 0 . The branch-cut contribution needs to be considered and
can be shown to be of the order 1/R2

m .
Physically, each term in the summation after evaluation by the

saddle point method corresponds to a radiation field caused by a dipole
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observation
pointDipole source lateral wave

αb

2d

d

d

leaky
wave

guided
wave

Figure 5.7.14 Total field at the observation point is equal to the half-
space solution plus the image contributions shown above.

source at a distance Rm = [ρ2 + (2md)2]
1
2 . The dipole source can

be viewed as an image of the original dipole, situated at a distance
2md below the surface. It may also be viewed as being due to the
original dipole field having been reflected at the second boundary m
times [Fig. 5.7.14]. The critical angle occurs at αb = sin−1(k/k1) ,
which is the branch point on the α -plane. When the saddle point
αm = sin−1(ρ/Rm) is at the left of αb , the angle of reflection is smaller
than the critical angle and we find leaky wave behavior. When the
saddle point is at the right of αb , the angle of reflection is larger than
αb and the wave is essentially guided. The wave decays away from the
surface because kzI > 0. In addition to the saddle point contribution,
the branch cut contribution gives rise to a lateral wave. In Figure
5.7.14 we illustrate the various wave components by letting z = 0. In
this geometrical optics approach the summation series converges faster
when the layer is thicker and the medium lossier. As the layer thickness
decreases, more terms are needed and it will be more efficient with the
normal mode approach by evaluating the residue series.

Example 5.7.12 Exact solution of VMD on half-space.
Using the Sommerfeld identity, show that the exact solution for Hz on
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the surface due to a VMD on a half-space is

Hz = − IA

2π(k2
t − k2)

{
1
ρ

∂

∂ρ

(
k2
t

ρ
eiktρ − k2

ρ
eikρ

)

+
3
ρ

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ

)(
1
ρ2

eiktρ − 1
ρ2

eikρ
)}

This result is due to Van der Pol [Baños, 1966].

Solution:

Hz = −i
IA

4π

∫ ∞

−∞
dkρk

3
ρ

kz − ktz
(kz + ktz)(kz − ktz)

H
(1)
0 (kρρ)eikzz.

Since k2
z − k2

tz = k2 − k2
t , therefore, at z = 0 ,

Hz =
iIA

4π(k2
t − k2)

∫ ∞

−∞
dkρk

3
ρ(kz − ktz)H

(1)
0 (kρρ).

Using the Sommerfeld identity and the recurrence formula for Bessel func-
tions, we find that,{

∂4

∂z2∂ρ2

(
eikr

r

)}
z=0

=
i

2

∫ ∞

−∞
H

(1)
0 (kρρ)k3

ρkzdkρ

− i

2

∫ ∞

−∞

1
ρ

H
(1)
1 (kρρ)k2

ρkzdkρ

and {
∂3

∂z2∂ρ

(
eikr

r

)}
z=0

=
i

2

∫ ∞

−∞
dkρk

2
ρkzH

(1)
1 (kρρ)

We conclude that

Hz =
IA

2π(k2
t − k2)

{(
∂2

∂ρ2
+

1
ρ

∂

∂ρ

)
∂2

∂z2

(
eikr

r
− eiktr

r

)}
z=0

carrying the differentiation and setting z = 0 , we find that

Hz =
iIA

2π(k2
t − k2)

{
eiktρ

ρ2

(
k3
t +

4ikt
ρ
− 9kt

ρ2
− 9i

ρ3

)

− eikρ

ρ2

(
k3 +

4ik2

ρ
− 9k

ρ2
− 9i

ρ3

)}

= i
IA

2π(k2
1 − k2)ρ2

{
k3eikρ − k3

1eik1ρ
}

End of Example 5.7.12
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Example 5.7.13 Modified saddle point method.
The modified saddle-point method deals with poles near the saddle point.

Assume that after transforming to the s plane, the integral

I =
∫ ∞

−∞
ds F (s)e− s2

has a pair of poles at s = ±sp . Let

F (s) = Fs(s) +
2spC

s2 − s2
p

with

C = lim
s→sp

[
s2 − s2

p

2sp
F (s)

]

Since Fs(s) is free of the nearby pole, the integral
∫ ∞
−∞ ds Fs(s) e−s

2
can be

evaluated with the regular saddle-point method.
Show that

Ip =
∫ ∞

−∞
ds

2spC

s2 − s2
p

e−s
2

= i2πCe−s
2
p [1− erf(−isp)]

where the error function

erf(z) =
2√
π

∫ z

0

ds e−s
2

Solution:
The integral Ip cannot be simply evaluated by closing the contour at

infinity and applying the Residue theorem because the integrand does not
vanish as s→ i∞ .

We first define a function

I(λ) = 2spC

∫ ∞

−∞
ds

e−λs
2

s2 − s2
p

Our integral is Ip = I(1) . The function I(λ) satisfies the differential equation

dI(λ)
dλ

+ s2
pI(λ) = −2spC

√
π

λ
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Assume a particular solution of the form

I(λ) = g(λ)e−λs
2
p

Substituting into the differential equation yields

g′(λ) = −2spC

√
π

λ
eλs

2
p

By integrating from λ = 0 to λ = 1 , we obtain

g(1) = g(0)− 2spC
√

π

∫ 1

0

dλ
1√
λ

eλs
2
p

Letting x = −isp
√

λ , we have dx = −ispdλ/2
√

λ and

g(1) = g(0)− i4C
√

π

∫ −isp

0

dx e−x
2

= g(0)− i2πCerf(−isp)

Notice that when sp is on the upper half of the s plane and possesses a
positive imaginary part, we find

g(0) = I(0) = 2spC

∫ ∞

−∞
ds

1
s2 − s2

p

= i2πC

Since

Ip = I(1) = g(1)e−s
2
p

we thus find

Ip =
∫ ∞

−∞
ds

2spC

s2 − s2
p

e−s
2

= P [1− erf (−isp)]

where

P = i2πCe−s
2
p

Notably P is precisely the residue of the integrand of Ip at s = sp .
End of Example 5.7.13



5.7 Dipole Antennas in Layered Media 623

Example 5.7.14 VED on half-space medium.
Consider the field near the interface for a vertical electric dipole (VED)

placed on the surface of a half-space medium with permittivity ε1 and per-
meability µ . In region 0, the permittivity is ε and the permeability is µ.
The vertical electric field component Ez is

Ez = − Il

8πωε

∫
dkρ

k3
ρ

kz

(
1 + RTM

01

)
H

(1)
0 (kρρ)eikzz

where

1 + RTM
01 =

2ε1kz
ε1kz + εk1z

=
2ε1

√
k2 − k2

ρ

ε1
√

k2 − k2
ρ + ε

√
k2
1 − k2

ρ

k2 = ω2µε and k2
1 = ω2µε1. Contrary to the case of a vertical magnetic

dipole on the half-space medium where no poles exist in the integrand, we
now have poles for the VED case.

(a) Setting the denominator of the integrand equal to zero yields

k4
1(k

2 − k2
ρ) = k4(k2

1 − k2
ρ)

Thus two simple poles occur at

kp = ± kk1√
k2 + k2

1

These are known as the Sommerfeld poles. When k and k1 both have
non-negative real and imaginary parts, the pole with the plus sign is in
the first quadrant of the kρ plane and the one with the minus sign is in
the third quadrant.

(b) Inspection of the denominator of the integrand reveals that the poles
appear on the Riemann sheet for which kz and k1z are opposite in sign
at kρ = kp. At the pole location we find

kz = ±
√

k2 − k2
p = ±kpk

k1

k1z = ±
√

k2
1 − k2

p = ±kpk1

k

To determine whether a pole exists on a particular Riemann sheet, we
must find the arguments of kz and k1z to see if the plus sign or the
minus sign is needed on that Riemann sheet.
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(c) Consider the Sommerfeld pole in the first quadrant. Let both k and k1

have positive imaginary parts, such that

k = |k| eiδ

k1 = |k1| eiδ1

and both δ and δ1 are positive corresponding to lossy media. We de-
termine the magnitude and phase for kp to be

kp =
|k| eiδ[

1 + A2ei2(δ−δ1)
]1/2

= |kp| exp
{

iδ − i

2
tan−1 A2 sin 2(δ − δ1)

1 + A2 cos 2(δ − δ1)

}

where A = |k|/|k1| and |kp| = |k| [1 + 2A2 cos 2(δ − δ1) + A4]−1/4. The
arguments of kz and k1z are now determined to be

kz(kp) =± |kp| |k||k1|
exp

{
i2δ−iδ1−

i

2
tan−1 A2 sin 2(δ − δ1)

1 + A2 cos 2(δ − δ1)

}

k1z(kp) =± |kp| |k1|
|k| exp

{
iδ − i

2
tan−1 A2 sin 2(δ − δ1)

1 + A2 cos 2(δ − δ1)

}

(d) When region 0 is free space and medium 1 is slightly lossy, we let δ = 0,
δ1 � 1, and A2 � 1 to obtain

kz(kp) = ±|kp| |k||k1|
exp

{
−i

δ1

1 + A2

}

k1z(kp) = ±|kp| |k1|
|k| exp

{
iδ1

1 + 2A2

1 + A2

}

(e) When region 0 is free space and medium 1 has a large conductivity such
that k1 ≈ (iωµσ)1/2, we let δ = 0, δ1 = π/4, and A2 � 1 to obtain

kz(kp) = ±|kp| |k||k1|
exp

{
−i

π

4
+

i

2
tan−1 A2

}
k1z(kp) = ±|kp| |k1|

|k| exp
{

i
π

4
+

i

2
tan−1 A2

}

To determine kz(kp) and k1z(kp) we have to know their allowed phase
values on the particular Riemann sheet which is in turn dependent on
how the branch cuts are chosen.
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δ

δ

δ

κ = π/2
kρR

kzR = 0

κ = 0

k

kzI = 0

kρI

Figure E5.7.14.1

kρI

k

k1

−π/4 3π/4

π/2

κ1 = π/2

κ = π/2κ = 0
kρR

δ1

π0

0

π0

δ1

2
− π

4
δ1

2
+

3π

4

Figure E5.7.14.2

(f) To study the various choices of branch cuts originating from k and k1,
we let k be complex such that

k = kR + ikI = |k| eiδ
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π

π

κ = 0
k κ = π/2

kρR

kρI

κ1 = π/2
δ

0
k1

Figure E5.7.14.3

κ = π/2

kρI

π

π/2

δ1

κ = 0
kρR

−π/2

kρ

0

k1

k

Figure E5.7.14.4

where kI ≥ 0 for conductive media. Write

kz =
√

k2 − k2
ρ = |kz| eiκ

=
√

(k2
R − k2

ρR)− (k2
I − k2

ρI) + i2(kRkI − kρRkρI)

Setting the imaginary part inside the square root equal to zero, we find
a curve for which kz is either purely real or purely imaginary. The curve
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is a hyperbola determined by

kρRkρI = kRkI

The slope of the tangent to the hyperbola at kρ = k1 is

dkρI
dkρR

= − kI
kR

= − tan δ

For the part of the hyperbola to the left of k, the curve corresponds
to kzI = 0. For the part of the hyperbola to the right of k, the curve
corresponds to kzR = 0 [Fig. E5.7.14.1].

(g) Around the branch point k , let η be a very small number and

kρ = k + ηeiβ

Neglecting the η2 term to obtain

kz = |kz| eiκ ≈
√

2η |k| ei[δ+β+(2n+1)π]

Thus for n = 0 the value of κ increases from 0 to π when β increases
from −π − δ to π − δ in the counter-clockwise direction.
Consider the branch cuts originating from the branch points k and k1

by assuming k real and k1 complex. Let both branch cuts be vertical as
shown in Figure E5.7.14.2. The variation of the phase values for kz and
k1z, denoted by κ and κ1, on the topmost Riemann sheet, is indicated
around the two circles centered at k and k1. Both kz(kp) and k1z(kp)
take the positive sign in order for their phases κ and κ1 to be less than
π/2 and larger than −π/4. Thus the pole is absent.

(h) Let both branch cuts follow the constant phase paths as shown in Figure
E5.7.14.3. Then kz(kp) takes the minus sign in order for π/2 < κ < π
and k1z(kp) takes the plus sign in order for 0 < κ1 < π/2. Thus the
pole is present.

(i) Let the branch cut originating from kρ = k follows the kzI = 0 path
and the branch cut originating from kρ = k1 follows the k1zR = 0 path
as shown in Figure E5.7.14.4. Then kz(kp) takes the minus sign and
k1z(kp) takes the plus sign. Thus the pole is present.

End of Example 5.7.14

Problems

P5.7.1
(a) Show that if f(α) is analytic in a domain D, then both fR and fI

satisfy the Cauchy-Riemann equations

∂fR
∂αR

=
∂fI
∂αI

,
∂fR
∂αI

= − ∂fI
∂αR
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The converse is true only when these partial derivatives are continuous
in D .

(b) Find a differential equation satisfied by both fR and fI .

P5.7.2
A function f(α) is analytic in a domain D if its derivative f ′(α) exists

in D . Prove that f(α) = α3 is analytic everywhere while f(α) = α∗, where
α∗ means complex conjugate of α , is non-analytic. Make use of the definition
for derivative

f ′(α) = lim
∆α→0

(α + ∆α)∗ − α∗

∆α
= lim

∆R→0
∆αI→0

∆αR − i∆αI

∆αR + i∆αI

The derivative f ′(α) does not exist if the limit depends on how ∆α → 0 .
Find the limit for f ′(α) by approaching α = 0 from the real axis and from
the imaginary axis. Does f ′(α) exist? Does the function satisfy the Cauchy-
Riemann condition for analyticity?

P5.7.3
Making use of the Cauchy-Riemann equations and Green’s theorem∮

C

dl ·A =
∫∫

D

dS · (∇×A)

prove Cauchy’s theorem, which states that if f(α) is analytic in a domain
D and on the contour C bounding the domain D, then∮

C

dα f(α) = 0

P5.7.4
As an example, we find the residues for

f(α) =
√

α

α + 1

Notice that there is a pole at α = −1 and a branch point at α = 0 . We
choose the branch point as shown in Figure 5.7.4 except now there is a pole
at α = −1.

On the bottom Riemann sheet Res. = limα→−1
√

α = ei(4m+3)π/2 = −i .

P5.7.5
Prove Jordan’s Lemma which states that
(a) limR→∞

∫
CR

dα f(α) = 0 if limR→∞ R f(Reiφ) = 0
(b) limR→∞

∫
CR

dα f(α)eiaα = 0 if limR→∞ f(Reiφ) = 0
for a > 0 , where CR is a semicircle of radius R in the upper half of
the α plane.



5.7 Dipole Antennas in Layered Media 629

P5.7.6
Show

∫ ∞
0

sin α2 dα =
∫ ∞
0

cos α2 dα =
√

π/8 by writing∫ ∞
0

cos α2 dα + i
∫ ∞
0

sin α2 dα =
∫ ∞
0

eiα
2

dα and choosing a contour C

as illustrated in Figure P5.7.6.1. Let θ0 = π/4 and α = r eiπ/4 to complete
the proof.

αI

0

θ0

R
αR

CR

Figure P5.7.6.1

P5.7.7
Show that, by choosing the contour as shown in Figure P5.7.7.1

I =
1

2πi

∫ a+i∞

a−i∞
dα

eαt√
α + 1

=

√
1
πt

e−t

θ0

θ0
αR−1

a

CR

αI

δ φ

α + 1 = ueiπ

α + 1 = ue−iπ

Figure P5.7.7.1

P5.7.8
For a linear, temporally dispersive medium with conductivity σ , we have

ε(ω) = ε0

[
1 +

iσ

ωε0
+

∫ ∞

0

dτ ξe(τ)eiωτ
]

(a) Show that ε∗(ω) = ε(−ω) .
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(b) Integrate
∮
C

dα [ε(α) − ε∞]/(α − ω) over a semicircle of infinite radius
with the straight side along the real axis but indented around the points
α = ω and α = 0 . Show that the Kramers-Krönig relation is

εR(ω)− ε∞ =
1
π

PV
∫ ∞

−∞
dα

εI(α)
α− ω

εI(ω) =− 1
π

PV
∫ ∞

−∞
aα

εR(α)− ε∞
α− ω

+
σ

ω

(c) Show that the result in (b) is independent of whether the indentation is
made above or below the singularities at α = ω and α = 0 .

P5.7.9
From the definition of the second kind Hankel function

H(2)
ν (ξ) =

1
π

∫
Γ2

dα ei(ξ cosα+να−νπ/2)

determine its asymptotic value by using the saddle point method as ξ →∞ .

P5.7.10
Derive Stirling’s formula

n! ≈ (2π)1/2 nn+1/2 e−n

for large n from the defining integral

n! =
∫ ∞

0

dx xne−x

by using the Laplace method.

P5.7.11
The Laplace method is useful in evaluating asymptotic values for an

integration along the real axis. Evaluate the integral

I(α) =
∫ ∞

0

dy
yαe−y

1 + y
as α→∞

P5.7.12
Use the saddle point method to find the asymptotic form of the integral

I(ξ) =
∫ ∞

−∞
dα eiξα−α

2

for ξ → ∞ . Show that the leading term in the asymptotic series is also the
exact solution to the integral and higher order terms are error terms for the
asymptotic series.
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P5.7.13
In dealing with Sommerfeld-type integrals, it is often convenient to use

an angular variable α such that kρ = k sin α . Let k be real and positive,
and

x = kρR/k = sin αR cosh αI

y = kρI/k = cos αR sinh αI

(a) Show that the vertical lines (αR = constant) in the complex α plane
are mapped to a family of confocal hyperbolas in the complex kρ plane
with the foci at x = ±1 and y = 0.

(b) Show that the horizontal lines (αI = const) in the α plane are mapped
to a family of confocal ellipses in the kρ plane with the foci at x = ±1
and y = 0.

(c) Show that the ellipses and the hyperbolas intersect each other perpen-
dicularly and that the image of the set {−π/2 ≤ αR ≤ π/2, −∞ ≤ αI ≤
∞} is the entire kρ plane.

(d) With elliptic coordinates defined as

x = h cosh ξ cos η

y = h sinh ξ cos η

Find the relations between (ξ, η) and (αR, αI).

P5.7.14
In the limit when r → ∞ , consider the asymptotic behavior of the

integral

I(r) =
∫ ∞

−∞
dkρ A(kρ)

kρ
kz

H
(1)
0 (kρ ρ)eikzz

Noting that k2 = kρ
2 + kz

2 and r2 = ρ2 + z2 , the following transformations
are useful:

kρ = k sin θ, ρ = r sin θ0

kz = k cos θ, z = r cos θ0

(a) Show that when calculated to the second order in 1/r, with the saddle-
point method, the asymptotic form for I(r) reads

I(r) =
2
i

eikr

r

{
A(θ0)−

i

2kr
[A′′(θ0) + A′(θ0) cot θ0]

}
(b) In the case when A(θ) is a constant, deduce the Sommerfeld identity,

eikr

r
=

i

2

∫ ∞

−∞
dkρ

kρ
kz

H
(1)
0 (kρ ρ)eikzz
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(c) Alternatively, consider solving the two differential equations governing
the two- and three-dimensional Green’s functions by Fourier transform-
ing with respect to z . Show that

eikr

r
=

i

2

∫ ∞

−∞
dkz H

(1)
0 (kρ ρ)eikzz

and

H
(1)
0 (kρ) =

1
iπ

∫ ∞

−∞
dz

eikr

r

By deforming the contour in the kz plane, and then changing the inte-
gration variable to kρ for the first integral, recover the identity in (b).
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Answers

P5.1.1

(a)
d2N

dl dλ
=

d2N

dl dω
· dω

dλ
=

d2Sρ
dl dω

· 1
Ephoton

· dω

dλ

=
µq2

4πh̄

(
1− 1

n2β2

)
· 2πc

λ2
=

q2cµ

2λ2h̄
(1− 1

n2β2
)

dN

dl
= dλ · q2cµ

2λ2h̄
(1− 1

n2β2
) ∝ dλ

λ2
(1− cos2 θ) =

dλ

λ2
sin2 θ

(b) θ = cos−1 1
nβ = cos−1 1

1.002×1 = 0.0632 = 3.62◦

(c) Integrate both sides of the equation in part(a) over λ from 350 nm to
550 nm, we have dN

dl = 190→ N = 190l
When N = 100 , l = 100/190 = 0.526 m

P5.2.1

The solution g(x, x′) = Ceik|x−x
′| satisfies the homogeneous equation

[ d
2

dx2 + k2]g(x, x′) = 0 . Integrating over x = x′ of the differential equation

[
d2

dx2
+ k2]g(x, x′) = −δ(x− x′)

yields C = i/2k as limx→x′ [ikCeik(x−x
′)]− limx→x′ [−ikCe−ik(x−x

′)] = −1 .

P5.2.2

g(x, y) = 1
2π

∫ ∞
−∞ dkxeikxxg̃(kx, y)

make use of the Fourier integral representation of the delta function,
1
2π

∫ ∞
−∞ dkxeikxx[ d

2

dy2
+ k2

y ]g(kx, y) = − 1
2π

∫ ∞
−∞ dkxeikxxδ(y)

where k2
y = k2 − k2

x , [ d
2

dy2
+ k2

y ]g(kx, y) = −δ(y)⇒ g(kx, y) = ieiky|y|

2ky
,

and g(ρ) = i
4H1

o (kρ) = i
4π

∫ ∞
−∞ dkx

eikxx+iky|y |

ky
.

P5.2.3

eik0r

r = 1
(2π)3

∫∫∫ ∞
−∞ dkxdkydkz g(kx, ky, kz)eikxx+ikyy+ikzz

Making use of the Fourier integral representation of the delta function[
∂2

∂x2 + ∂2

∂x2 + ∂2

∂x2 + k2
0

]
eik0r

4πr
= −δ(x)δ(y)δ(z) , we find

g(kx, ky, kz) =
−4π

k2
0 − k2

x − k2
y − k2

z
, Thus

g(r) =
eik0r

4πr
=

1
(2π)3

∫∫∫ ∞

−∞
dkxdkydkz

−1
k2
0 − k2

x − k2
y − k2

z

eikxx+ikyy+ikzz
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=
1

(2π)3

∫∫∫ ∞

−∞
dkxdkydkz

eikxx+ikyy+ikzz(
kz +

√
k2
0 + k2

x + k2
y

) (
kz −

√
k2
0 − k2

x − k2
y

)
=

i

8π2

∫∫ ∞

−∞
dkxdky

1
kz

eikxx+ikyy+ikz|z|

P5.3.1

E(r, t) =
ωµIl

4πr

{
r̂2 cos θ

[ 1
kr

cos(kr − ωt)− 1
k2r2

sin(kr − wt)
]

+θ̂ sin θ
[(

1− 1
k2r2

)
sin(kr − ωt) +

1
kr

cos(kr − ωt)
]}

H(r, t) = φ̂
kIl

4πr
sin θ

[
sin(kr − ωt) +

1
kr

cos(kr − ωt)
]

Let Il = −iωql , the instantaneous electric and magnetic field vectors become

E(r, t) =
k2ql

4πε0r

{
r̂2 cos θ

[ 1
kr

sin(kr − ωt) +
1

k2r2
cos(kr − wt)

]
+θ̂ sin θ

[(
−1 +

1
k2r2

)
cos(kr − ωt) +

1
kr

sin(kr − ωt)
]}

H(r, t) = φ̂
ωkql

4πr
sin θ[− cos(kr − ωt) +

1
kr

sin(kr − ωt)]

which were obtained in Chapter 1.

P5.3.2

(a) f = I06
[
ŷ + x̂ei

3π
2 cos θ

]
(b) E = η0

ik

4πr
eikr

[
θ̂fθ + ϕ̂fϕ

]
⇒

E =η0
ikI01
4πr eikr

{
φ̂
[
cosφ−sinφei

3π
2 cos θ

]
+θ̂ cosθ

[
sin φ+cos φei

3π
2 cos θ

]}
(c) In +ẑ direction, E ∼

[
ŷ + x̂ei

3π
2

]
eikz = [ŷ − ix̂] eikz RHCP

In −ẑ direction, E ∼
[
ŷ + x̂e−i

3π
2

]
e−ikz = [ŷ + ix̂] e−ikz RHCP

θ = 0, π . Waves are RHCP
(d) No directions in which wave is LHCP
(e) Linearly polarized as 3π

2 cos θ = nπ (φ̂ & θ̂ components in phase)
cos θ = 2n

3 (n = −1, 0, 1)→ θ = cos−1
(

2
3

)
, θ = π

2 , θ = cos−1
(
− 2

3

)
P5.3.3

(a) In spherical coordinates

x̂+iŷ = r̂ sin θ(cos φ+i sin φ)+φ̂ (i cos φ− sin φ)+ θ̂(cos φ + i sin φ) cos θ

= r̂eiφ sin θ+θ̂eiφ cos θ + φ̂ieiφ
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The electric field E is

E(r) = iωµIl

{
r̂

[
eiφ sin θ + eiφ sin θ

1
k2

(
−k2 − 2ik

r
+

2
r2

)]

+θ̂
[
1 +

i

kr
− 1

k2r2

]
eiφ cos θ + iφ̂

[
1 +

ik

kr
− 1

k2r2

]}
eikr

4πr

= −η
ikIleikr

4πr
eiφ

{
r̂

[
i

kr
+

(
i

kr

)2
]

2 sin θ

−θ̂

[
1 +

i

kr
+

(
i

kr

)2
]

cos θ − φ̂i

[
1 +

i

kr
+

(
i

kr

)2
]}

(b) In the far field on the x-y plane (θ = π/2) ,

E(r) = η
ikIleikr

4πr
eiφ(φ̂i) = −φ̂ηkIl

eikr

4πr
eiφ

On the x-y plane k = kρρ̂ (radial direction) and r = ρ

E(r, t) = Re
{
−φ̂

ηkρIl

4πρ
eikρρeiφe−iωt

}
= −φ̂

ηkρIl

4πρ
cos(ωt− φ− kρρ)

Thus E is linearly polarized.

(c) In the far field on the x-y plane, θ = π/2 , < S >ρ= η
2

(
kIl
4πr

)2
. Thus,

the radiation pattern in x-y plane is a circle.

(d) For θ = 0◦ and in the far field, E = η iklIeikr

4πr eiφ
{

θ̂ + iφ̂
}

. Thus, the
electric field E is right hand circularly polarized.

(e) < S >z= ẑ2η2
(
kIl
4πr

)2
. Thus, the radiated power density in ẑ is twice

that in x̂ direction.

P5.3.4

(a) M = Mo(−x̂ + ŷi), dMdt = ωM0(x̂i + ŷ) = γM ×B0 . Thus B0 = ẑω/γ .
(b) The magnetic field due to the precessing M is determined from (5.3.26)

H(r) =
k2eikr

4πr

{
M(1 +

i

kr
− 1

k2r2
)− r̂(r̂ ·M)

[
1 +

3i

kr
− 3

k2r2

]}
=

k2eikr

4πr

{
M(1 +

i

kr
− 1

k2r2
)
}

(c) The surface normal of the loop is in the x̂- direction. The induced voltage
is therefore

V =− ∂

∂t

∫
s

ds ·B(z = d, t) =
iωk2µM0Aeikr

4πr
(1 +

i

kr
− 1

k2r2
)
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Since ω = γB0 , the induced voltage is directly proportional to the ap-
plied dc voltage.

P5.3.5

(a) Keeping terms of the order 1
r3

, H(r) = 1
4πr3

{
−M + 3r̂(r̂ ·M)

}
(b) Assume a circular loop with radius R . The magnetic field linking the

loop with ρ < R in the x̂ -direction is

Hx(r, t) =
M0

4πr3

{
− cos ωt +

3
r2

x(x cos ωt + y sin ωt)
}

=
M0

4π(d2 + ρ2)3/2

{
− cos ωt +

3
(d2 + ρ2)

d(d cos ωt + ρ sin φ sin ωt)
}

V = − ∂

∂t

∫
A

daBx(r, t) = − ∂

∂t

∫ R

0

ρdρ

∫ 2π

0

dφBx(r, t)

= − ∂

∂t

∫ R

0

ρdρ
µM0

2(d2 + ρ2)3/2

{
− cos ωt +

3
(d2 + ρ2)

d2 cos ωt

}

= ω sin ωt

∫ R

0

ρdρ
µM0

2(d2 + ρ2)3/2

{
2d2 − ρ2

(d2 + ρ2)

}

= ω sin ωt

∫ R2+d2

d2
du

µM0(3d2 − u)
4u5/2

= −ωµM0 sin ωt

4
(2d2(d2 + R2)−3/2 − 2(d2 + R2)−1/2 − 2d−1 + 2d−1)

=
ωµM0R2

2(d2 + R2)3/2
sin ωt

Thus U(ω) = ωµM0R2/2(d2 + R2)3/2 . Since the Larmor frequency ω =
γB0 , we need a large B0 to get large induced voltage V .

(c) ∆B0 = ∆ω/γ

(d) Since ∆B0 = b1δ , we find δ = ∆ω/b1γ
(e) ∆ω = b1δγ = 1.0×0.5×10−3×2.7×108 = 1.35×105(rad/s) = 21.5kHz

P5.3.6

(a) In the rotating coordinate, we can write

B = B0ẑ′ + B1x̂′

M = x̂′M ′
x+ŷ′M ′

y+ẑ′M ′
z , M×B = x̂′B0M ′

y+ŷ′(B1M ′
z−B0M ′

x)−ẑB1M ′
y

dM(t)
dt

= (
dM ′

x

dt
+ ω1M ′

y)x̂
′ + (

dM ′
y

dt
− ω1M ′

x)ŷ
′ +

dM ′
z

dt
ẑ′

= x̂′ω0M ′
y + ŷ′(ω1M ′

z − ω0M ′
x)−ẑω1M ′

y
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With ∆ω0 =ω0−ω1 and the classical equation of motion for M , we find

dM ′
x/dt = (∆ω0)M ′

y

dM ′
y/dt = −(∆ω0)M ′

x + γB1M ′
z

dM ′
z/dt = −γB1M ′

y

Solve this equation system, we will obtain:

M ′
y = M0 sin(

√
(∆ω0)2 + (γB1)2t)

M ′
x = M0

−∆ω0√
(∆ω0)2 + (γB1)2

cos (
√

(∆ω0)2 + (γB1)2t)

M ′
z = M0

γB1√
(∆ω0)2 + (γB1)2

cos (
√

(∆ω0)2 + (γB1)2t)

If we rotate the x′, z′ axis by an angle θ = tan−1(∆ω0
γB1

) (from z′ to new
z′′ ) while keeping y′ axis unchanged, in the new coordinate (x′′, y′′, z′′) the
magnetic moments can be written as:

M ′′
x = 0

M ′′
y = sin(γ

√
(∆B0)2 + (B1)2t)M0

M ′′
z = cos(γ

√
(∆B0)2 + (B1)2t)M0

It is clear that M is precessing about x̂′′ axis,
where x̂′′ = 1√

(∆B0)2+(B1)2
(∆B0ẑ′ + B1x̂′) and ∆B0 = (ω0 − ω1)/γ .

(b) When the coil excitation frequency ω1 = γB0 which is also called
the Larmor frequency, we can obtain the solution as,

M ′
x = 0

M ′
y = M0 sin(ω0t)

M ′
z = M0 cos(ω0t)

which is a rotation around x′ axis at the Larmor frequency.

P5.3.7

(a) E = h̄ω0 = h̄γB0

γ = E
h̄B0

= 4.2346×10−26

6.63/2π×10−34×1.5
= 42.58× 2π = 267.538 rad MHz/T

(b) From ω = γ(B0 + xGx) , we have
x = (ω/γ −B0)/Gx

When f = 63.8717 MHz, x = 4 mm
When f = 63.8666 MHz, x = −8 mm
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P5.3.8

(a) From Biot-Savart’s law, the magnetic field produced by the upper coil is

Bu(z) = µ0I
4π

∫ 2π

0
ẑa2dφ′

[(z−d
2 )2+a2]

3
2

= ẑ µ0Ia
2

2[(z−d
2 )2+a2]

3
2

.

The magnetic field produced by the lower coil is

Bl(z) = ẑ µ0Ia
2

2[(z+d
2 )2+a2]

3
2

. The total magnetic is

Bz = µ0Ia
2

2[(d/2−z)2+a2]
3
2

+ µ0Ia
2

2[(d/2+z)2+a2]
3
2

.

(b) dBz
dz = 3µ0Ia

2

2

{
d/2−z

[(d/2−z)2+a2]5/2
− d/2+z

[(d/2+z)2+a2]5/2

}
.

d2Bz
dz2

= 3µ0Ia
2

2

{
4(d/2−z)2−a2

[(d/2−z)2+a2]7/2
+ 4(d/2+z)2−a2

[(d/2+z)2+a2]7/2

}
.

When d = a , both of dBz
dz and d2Bz

dz2
will vanish at z = 0 .

(c)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
3.4

3.45

3.5

3.55

3.6

3.65
x 10

-5

z (cm)

B
z(T

)

Figure P5.3.8.1

P5.4.1

(a) F (φ) = 2 cos
(
kd
2 sin φ− ψ

2

)
|F (φ)| =

∣∣∣∣2 cos
(

kd

2
sin φ− ψ

2

)∣∣∣∣
(b)

(i) max φ = 90◦ =
π

2
⇒ kd

2
− ψ

2
= mπ
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(ii) nulls φ = 225◦, 315◦ ⇒ −kd

2
1√
2
−ψ

2
=

(2n+1
2

)
π,

5π

4
,

7π

4

d =
λ

2
1(

1 +
1√
2

) � 0.293 λ ψ = π


 1

1+
1√
2

− 2


�−1.41π

Choose m = 1, n = 0 or
π

1 +
1√
2

= 0.59π

(Could also do this by visible window, answers come out the same)

P5.4.2

Broadside, α = 0 , 20 dB sidelobe level, R = 10 .
b = cosh( 1

6cosh−110), excitation coefficients are:
a3 = b6/2 , a2 = 3b4(b2 − 1) , a1 = (3/2)b2(5b2 − 3)(b2 − 1) .
The zero of T6(x) is x1 = cos(π/12) = 0.966 .
The first-null beamwidth is BW = 40.2◦ and the directivity D = 6.66 .
For d = λ/4 , BW = 87◦ and D = 3.3871 .

P5.4.3

(a) |F̃ (0)| =
∣∣∣cot π

2(N−1)

∣∣∣ ∼ 2
π (N − 1), as N →∞ .

(b)

Sidelobe location (u) Sidelobe level (dB)
N exact asymp. exact asymp.
6 2.449 2.374 −18.46 −23.00
10 1.330 1.319 −21.70 −23.00
15 0.851 0.848 −22.47 −23.00
50 0.242 0.242 −22.96 −23.00

(c) D = 3.789 for any α.

P5.4.4

(a)

P (ξ) = |F̃ (u)|2

= |0.4929990 + 0.448914e−iu + 0.138187e−i2u − 0.0630965e−i3u|2

= | − 0.0630965 + 0.138187e−iu + 0.448914e−i2u + 0.4929990e−i3u|2

= | − 0.1152046 + 0.361175e−iu + 0.501022e−i2u + 0.270011e−i3u|2

= |0.270011 + 0.501022e−iu + 0.361175e−i2u − 0.1152046e−i3u|2

(b) εmax ≤ 1
4! · 4!

1.3.5.7 · 12 = 0.1143 .
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εmax = 0.04189 occurs at the boundary of the visible region (x = −1) .
The actual maximum error is ε(0) = |L(0)−G(0)| ≈ 0.0203 .

P5.4.5

P (ξ) = |F̃ (u)|2

= |0.436065 + 0.502108e−iu + 0.1316027e−i2u − 0.0697753e−i3u|2

= | − 0.0697753 + 0.1316027e−iu + 0.502108e−i2u + 0.436065e−i3u|2

= | − 0.1077699 + 0.285339e−iu + 0.540102e−i2u + 0.282329e−i3u|2

= |0.282329 + 0.540102e−iu + 0.285339e−i2u − 0.1077699e−i3u|2

P5.4.6

G(u) � D(ξ0 − ξ)(ξ + ξ1)(ξ + ξ2)
∆= P (ξ)

D = 0.00679401
ξ0 = 8.483269
ξ1 = 3.431809
ξ2 = 2.179603

P5.5.1

(a) E(r) ≈ I0kρ
4ωε

√
2

πkρρ
[ρ̂kz − ẑkρ]ei(kρρ+kzz−π

4 )

H(r) ≈ φ̂
I0kρ

4

√
2

πkρρ
ei(kρρ+kzz−π

4 )

(b) S ≈ E ×H
∗

= I20 |kρ|
2

16ωε

(
2

πkρρ

)
(ẑkz + ρ̂kρ)

k2
ρ = k2 − k2

z , it becomes imaginary when kz > k . No radial power flows.

(c) Equation of constant phase front when kz < k is

kρρ + kzz = const

When kz > k , the equation of constant phase becomes kzz = const or
z = const. It is a plane perpendicular to the current.

P5.5.2

E = −θ̂
iωµ2I0eikr

4πkr sin θ
[cos(kl cos θ)− cos(kl)] .

E = 0 at θ = 0, π is obtained by L’Hopital’s Rule.
For kl = 3π/2 , nulls occur at cos θ = ±1/3 .
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P5.5.3

(a) Rr = 73 Ω .
(b) As kl→ 0 , Rr ≈ 5(kl)2 .

P5.5.4

Rr ≈ 60
{

γ + ln 2 + γ
2 cos(2kl)− π

4 sin(2kl) +
[
1 + 1

2 cos(2kl)
]
ln(kl)

}
.

P5.6.1

u ∼ mπ
π

2
− θ0

− 1
2

as θ0 →
π

2
.

P5.6.2

C = q
V = 2πε

ln

(
cot(θ0/2)

cot
π−θ1

2

) ; L = µ0
2π ln

(
cot(θ0/2)

cot
(
π−θ1

2

))
.

P5.7.1

(a) f ′(α) = lim∆αR→0
∆αI→0

∆fR+i∆fI
∆αR+i∆αI

Letting ∆αR → 0 then ∆αI → 0 , and equating the real and imaginary
parts, we obtain the Cauchy-Riemann equations.

(b) Both fR and fI satisfy the Laplace equation{
∂2

∂α2
R

+
∂2

∂α2
I

}[
fR(αR, αI)
fI(αR, αI)

]
= 0

P5.7.2

If ∆α approaches 0 from the real axis, then ∆αI = 0 , and f ′(α) = 1 .
If ∆α approaches 0 from the imaginary axis, then ∆αR = 0 , and

f ′(α) = −1 .
These two results are different, therefore f ′(α) does not exist. The
Cauchy-Riemann Condition for analytic functions is not satisfied.

P5.7.3

Writing in terms of real variables, and on account of Cauchy-Riemann
conditions∮

C

dα f(α) =
∮
C

(dαRfR − dαIfI) + i

∮
C

(dαRfI + dαIfR)

=
∮
C

(dαR, dαI) · (fR,−fI) + i

∮
C

(dαR, dαI) · (fI , fR)

=
∫∫

D

dαRdαI

{(
−∂fR

∂αI
− ∂fI

∂αR

)
+ i

(
∂fR
∂αR

− ∂fI
∂αI

)}
= 0
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P5.7.5

(a) Let α = Reiφ and dα = iReiφdφ , we have

IR = lim
R→∞

∫
CR

dα f(α) =
∫ π

0

dφ iReiφf(Reiφ)

|IR| ≤
∫ π

0
dφ |Rf(Reiφ)| .

Since limR→∞ Rf(Reiφ) = 0 , we choose |Rf(Reiφ)| ≤ δ .
Thus |IR| ≤ δ

∫ π

0
dφ = πδ ⇒ 0

(b) IR = limR→∞
∫
CR

dα f(α)eiaα =
∫ π

0
dφ iReiφf(Reiφ)eiaR cosφ−aR sinφ

|IR| ≤ R
∫ π

0
dφ |f(Reiφ)|e−aR sinφ = 2R

∫ π/2

0
dφ |f(Reiφ)|e−aR sinφ

Since limR→∞ f(Reiφ) = 0 , we choose |f(Reiφ)| ≤ δ .
Also for 0 ≤ φ ≤ π/2 , we choose 2φ/π ≤ sin φ . We thus have
|IR| ≤ 2Rδ

∫ π/2

0
dφ e−2aRφ/π = 2δR 1−e−aR

2aR/π = δ πa (1− e−aR)⇒ 0

P5.7.6∫ ∞
0

eiα
2

dα =
∫ ∞
0

e−r
2

eiπ/4dr = π
2 eiπ/4 =

√
π/8(1 + i) .

P5.7.7

Using the contour in Figure P5.7.7.1 where α = −1 is a branch point,

I =
1

2πi
lim
δ→0
R→∞

{∮
C

−
∫
CR

−
∫
Cδ

−
∫

Γ+

−
∫

Γ−

}
dα

eαt√
α + 1

The first integral vanishes since no poles is inside C . By Jordan’s Lemma,
the second integral vanishes as R→∞ .

lim
δ→0

∫
Cδ

dα
eαt√
α + 1

= e−t lim
δ→0

∫ −π

π

eδe
iφt

√
δeiφ

δeiφidφ = 0

On Γ+ , let α + 1 = ueiπ , then 1√
α+1

= 1√
u
e−i

π
2 = −i 1√

u

∫
Γ+

dα
eαt√
α + 1

= e−t
∫ 0

∞
−i

1√
u

e−utdu = ie−t
∫ ∞

0

1√
u

e−utdu

On Γ− , let α + 1 = ue−iπ , then 1√
α+1

= 1√
u

ei
π
2 = i 1√

u∫
Γ−

dα
eαt√
α + 1

= e−t
∫ ∞

0

i
1√
u

e−utdu = ie−t
∫ ∞

0

1√
u

e−utdu
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Therefore

I =
1
π

e−t
∫ ∞

0

1√
u

e−utdu = 2
1
π

e−t
∫ ∞

0

e−y
2tdy =

√
1
πt

e−t

P5.7.4

On the top Riemann sheet, Res. = limα→−1
√

α = ei(4m+1)π/2 = i .
On the bottom Riemann sheet Res. = limα→−1

√
α = ei(4m+3)π/2 = −i .

P5.7.8

(a) ε∗(ω) = ε(−ω) .
(b) εR(ω)−ε∞ = 1

πPV
∫ ∞
−∞ dα εI(α)

α−ω εI(ω) = − 1
πPV

∫ ∞
−∞ dα εR(α)−ε∞

α−ω + σ
ω

(c) Choose the integration path along the real α axis to be indented below
α = 0 and above α = ω . The residues are calculated in the same way
as in part (b). However, the residue at α = 0 should be multiplied by πi
instead of −πi . In addition, there will be 2πi times the residue at α = 0
because the contour now encloses the pole α = 0 . After cancellation, we
get the same results. Similarly, if the contour is indented below α = ω
and above α = 0 or indented below both α = 0 and α = ω , we still
get the same results.

P5.7.9

The saddle point is at α = π . We let −s2 = i(cos α+1) such that s = 0
at α = π. Along the SDP, −s2 = sin αR sinh αI is positive real.

H(2)
ν (ξ) =

1
π

e−i(ξ+νπ/2)

∫ ∞

−∞
ds

dα

ds
eiναe−ξs

2

Since contributions to the integral come from near the saddle point α = π
and dα

ds =
√

2 eiπ/4 , where s is a real variable. The integral becomes, near
α ≈ 0 ,

H(2)
ν (ξ) ≈

√
2

π
e−i(ξ−νπ/2)

∫ δ

−δ
ds eiπ/4e−ξs

2 ≈
√

2
πξ

e−i(ξ−νπ/2−π/4)

P5.7.10

Let y = x/n and yn = en lny ,

n! =
∫ ∞

0

dynnnen(lny−y)

lny − y ≈ −1 + −1/2(y − 1)2 . Let s =
√

n/2(y − 1) , we find n! =
nn+1/2e−n

√
2π .
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P5.7.11

We set y = αx , and find

I(α) =
∫ ∞

0

αα+1xαe−αx

1 + αx
dx = αα+1

∫ ∞

0

1
1 + αx

eα(−x+ln x) dx

Obviously, in the interval of integration, the integrand is well behaved; it has
value 1 at x = 0 and decays to zero at x→∞. The maximum value of the
integrand as α→∞ occurs at x = 1 where the exponential function assumes
maximum value. The Laplace method claims that most of the contribution
to the integral comes from near this point x = 1. Expanding the function in
the exponential around x = 1, we find

I(α) ≈ αα+1e−α

1 + α

∫ ∞

−∞
e−αy

2/2 dy =
√

2πα
αα

1 + α
e−α

P5.7.12

Let F (α) = 1 and f(α) = iα−α2/ξ . The saddle point is at αo = iξ/2

I(ξ) = F (αo)eξf(αo)

√
2π

−ξf”
=
√

πe−ξ
2/4

The exact solution can be obtained by changing integration variable to u =
α− iξ/2 .

P5.7.13

(a) When αR is a constant, we find

k2
ρR

(ksinαR)2
−

k2
ρI

(kcosαR)2
= 1

This is a confocal hyperbola with sin2αR + cos2αR = 1 .
(b) When αI is a constant, we find

k2
ρR

(kcoshαI)2
+

k2
ρI

(ksinhαI)2
= 1

This is a confocal ellipse with cosh2αR − sinh2αR = 1 .
(c) From the tangential equations at any point (x0, y0) for the ellipse and

the hyperbola, we can easily prove that they are perpendicular, because
the set on the α plane can map the entire range of −∞ < kρR < ∞ ,
and −∞ < kρI <∞ . Hence, it is the image of the entire kρ plane.
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P5.7.14

(a)

I(r) ∼
[

A(θ0)

√
2k

iπr

{
1− i

8kr sin2 θ0

}
+ O(r−5/2)

]
eikr

√
2π

ikr

·
{

1− i

2kr

[
A′′(θ0)
A(θ0)

+
A′(θ0)
A(θ0)

cot θ0 −
1

4 sin2 θ0

+ O(r−1)
]}

∼
√

2
i

eikr

r

{
A(θ0)−

i

2kr
[A′′(θ0) + A′(θ0) cot θ0]

}
+ O(r−3)

(b) Let A(θ) ≡ 1 then all the higher-order terms vanish. We have

eikr

r
=

i

2

∫ ∞

−∞
dkρ

kρ
kz

H
(1)
0 (kρρ)eikzz

(c) eikr

r = i
2

∫ ∞
−∞ dkz H

(1)
0 (kρρ)eikzz . On the other hand

g̃(kz, ρ) =
i

4
H

(1)
0 (kρρ) =

1
4π

∫ ∞

−∞
dz

eikr

r
e−ikzz

By letting kz = 0, kρ → k , we have

H
(1)
0 (kρ) =

1
πi

∫ ∞

−∞
dz

eikr

r

To recover the Sommerfeld’s identity in part (b), let’s deform the in-
tegration along the real kz path of the integral for g(r) around the
Sommerfeld’s branch cut of Im(kρ) = 0 in the kz plane. Sommerfeld’s
branch cut of Im(kρ) = 0 ⇒ kzRkzI = 0 and k2 − k2

zR + k2
zI > 0 .

Make the change of variable kρ =
√

k2 − k2
z ⇒ dkρ = −kz

kρ
dkz . We

have k2
ρ = (k2 − k2

zR + k2
zI) − 2ikzRkzI . Thus, on the upper Riemann

sheet of the kz plane, the Sommerfeld branch cut corresponds to the
real kρ axis running from kρ → −∞ to kρ → −∞
• Path L corresponds to the real axis in kρ plane
• Point A corresponds to kρ → +∞
• Point B corresponds to kρ → −∞

eikr

r
=

i

2

∫ ∞

−∞
dkz H

(1)
0 (kρρ)eikzz

=
i

2

{∫
R1

+
∫
R2

+
∫
L

}
dkz H

(1)
0 (kρρ)eikzz
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Note that the above deformation is for z > 0 due to the convergence
condition. By Jordan’s lemma{∫

R1

+
∫
R2

}
dkz H

(1)
0 (kρρ)eikzz = 0

Now, to take care of the integration along path L , let’s make the change
of variable kρ =

√
k2 − k2

z ⇒ dkρ = −kz
kρ

dkz . We have

k2
ρ = (k2 − k2

zR + k2
zI)− 2ikzRkzI

Using the above change of variables, we obtain

eikr

r
=

i

2

∫
L

dzH
(1)
0 (kρρ)eikzz =

i

2

∫ −∞

∞
−kρ

kz
dkρH

(1)
0 (kρρ)eikzz)

=
i

2

∫ ∞

−∞
dkρ

kρ
kz

H
(1)
0 (kρρ)eikzz

For z < 0 , use similar procedure with appropriate convergence condition
to prove the identity.
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6.1 Equivalence Principle 649

6.1 Equivalence Principle

When we are interested in a limited region of space, we can replace all
uninteresting regions outside this space by using equivalent sources.
We can place equivalent sources in the uninteresting regions, or we
can place equivalent current sheets on the boundaries of the region of
interest. The equivalent sources are by no means unique, and there
are many different ways of constructing them. We need to make sure
that all boundary conditions are satisfied and that the original fields
and sources in the region of interest are preserved. When two different
specifications of sources give the same solution in the region of inter-
est (they certainly will give different solutions outside the region of
interest), the two problems are called equivalent.

With the various choices of equivalent sources outside and on the
boundaries of interested regions, it must be appreciated that magnetic
sources are useful concepts, although in reality they may not exist. We
add an equivalent magnetic source M to Faraday’s law:

∇×H = −iωD + J (6.1.1)
∇× E = iωB −M (6.1.2)

The added magnetic source is denoted as M. Similar to the boundary
condition for tangential magnetic fields of n̂×δH = Js, the boundary
condition for tangential electric fields becomes −n̂× δE = M s.

A. Electric and Magnetic Dipole Sources

A small current loop [Fig. 6.1.1a] can be viewed as a magnetic dipole
[Fig. 6.1.1b] if the loop is enclosed by a small volume and we are not
interested in the interior of the volume. A current loop and a mag-
netic dipole yield identical results outside the small volume containing
the loop and the dipole; only when one penetrates the interior of the
sources can one distinguish a current loop from a magnetic dipole. In
the interior the magnetic fields of a loop and a magnetic dipole point
in opposite directions. Just as electric dipoles constitute the build-
ing blocks of electric current sources, the magnetic dipoles constitute
the building blocks of magnetic current sources. We denote a magnetic
dipole with a double arrow [Fig. 6.1.1c] as opposed to an electric dipole
which is denoted with a single arrow [Fig. 6.1.1d].
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H H

a. b.

H E

c. d.

m

m

Figure 6.1.1 The equivalence of a. A small current loop, and b. A mag-
netic dipole. c. A magnetic dipole denoted with a double arrow. d. An
electric dipole denoted with a single arrow.

B. Image Sources

Consider the elementary dipole sources placed in front of a perfect
conductor as shown in Figure 6.1.2a. To find solutions in the region
of interest, which is the half-space in front of the conductor, we may
replace the plane conductor with the images of the dipoles. The image
sources thus obtained must satisfy the boundary condition of a zero
tangential electric field at the conducting surface. To obtain the image
for an electric dipole, we note that the single arrow starts at a negative
charge and stops at a positive charge, and that the image of a positive
charge is a negative charge and vice versa. To obtain the image for
a magnetic dipole, which is representable by a current loop, we note
that the image of a moving positive charge is a moving negative charge.
The images of the four dipoles shown in Figure 6.1.2a are illustrated
in Figure 6.1.2b. Notice that with the aid of the image sources, the
solution is valid only in the region of interest and does not hold in the
image region where the solution should be zero, because it is occupied
by the perfect conductor.

As a dual situation we may define a magnetic conductor on the
surface of which the tangential magnetic field vanishes. We use wiggly
lines to denote a magnetic conductor [Fig. 6.1.3a]. The images of the
elementary dipole sources are shown in Figure 6.1.3b.
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a. b.

Figure 6.1.2 a. Dipole sources in front of an electric conductor. b. Image
sources.

a. b.

magnetic
conductor

Figure 6.1.3 a. Dipole sources in front of a magnetic conductor. b. Image
sources.

As a final example of the image method, consider an electric dipole
placed between a pair of parallel conducting plates as shown in Figure
6.1.4a. In order to satisfy the boundary conditions at the surfaces of the
two plates, we must have multiple image sources as shown in Figure
6.1.4b. The solutions thus obtained are valid only inside the region
between the two plates.
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a.

b.

Figure 6.1.4 a. Dipole between two electric conductors. b. Image sources.

C. Electric and Magnetic Current Sheets

When surface boundaries are replaced by equivalent sources, both elec-
tric and magnetic current sheets are required. The electric current
sheets Js are produced by discontinuities in tangential magnetic field
components across the boundary

Js = n̂× δH

where n̂ is the surface normal and δH is the difference between mag-
netic field components across the boundary. The magnetic surface cur-
rent sheets are produced by discontinuities in tangential electric field
components across the boundary

M s = −n̂× δE

Note that, from the definition for M s , the circulation of electric fields
around M s follows the left-hand rule while the circulation of magnetic
fields around Js follows the right-hand rule.

Consider a surface electric current sheet with surface current den-
sity Js = −x̂Js at z = 0 [Fig. 6.1.5a]. This current sheet generates
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z
z

y y

a. b.

xx

Js = −x̂Js M s = −ŷMs

Figure 6.1.5 a. Electric surface currents. b. Magnetic surface currents.

plane waves in both the positive and negative ẑ directions

E = x̂
η

2
Jse

ikz, H = ŷ
1
2

Jse
ikz z > 0

E = x̂
η

2
Jse

−ikz, H = −ŷ
1
2

Jse
−ikz z < 0

We see that the tangential electric fields are continuous at z = 0, and
that the discontinuity in tangential magnetic fields on both sides equals
the strength of the current sheet, n̂×δH = Js. Thus, all the boundary
conditions are satisfied.

As a dual situation, consider a magnetic surface current sheet
M s = −ŷMs at z = 0 [Fig. 6.1.5b]. The boundary condition requires
that the tangential magnetic fields be continuous across the bound-
ary and that the discontinuity in tangential electric fields be equal to
the strength of the current sheet, −n̂ × δE = M s. The solution is as
follows:

E = x̂
Ms

2
eikz, H = ŷ

Ms

2η
eikz z > 0

E = −x̂
Ms

2
e−ikz, H = ŷ

Ms

2η
e−ikz z < 0

Plane waves are radiated in both positive and negative ẑ directions.
Note that, by properly choosing the phase of the current sheets, we can
generate plane waves in any direction. For instance, let Js = x̂Jse

ikyy;
then plane waves with k vectors k = ŷky + ẑkz and k = ŷky − ẑkz
are generated. If ky is larger than k, the waves are evanescent in the
ẑ directions. Similar arguments apply to magnetic current sheets.
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D. Induced and Impressed Current Sheets

It is important to distinguish between the concepts of induced and
impressed current sheets. On the surface of a material body an induced
current sheet is physically carried by charged particles attached to the
surface of the body, whereas an impressed current sheet is carried by
external agents. When a layer of charge or current is impressed along
the surface of a body, induced surface charge and current sheets are
generated at the surface of the body so that the boundary conditions
are satisfied.

Example 6.1.1
Consider a plane wave normally incident upon the surface of a perfectly

conducting half-space [Fig. E6.1.1.1a]. Let the electric field be E = x̂E0eikz.

An electric current sheet with Js = x̂2E0/η is then induced on the surface
of the conductor, and the conductor is replaced by the induced current sheet
[Fig. E6.1.1.1b], which radiates into both the z > 0 and z < 0 half-space.
This induced current generates a reflected wave with E = −x̂E0e−ikz, so that
at the boundary surface the total electric field is zero. This induced current
sheet also generates a plane wave E = −x̂E0eikz in the region z > 0, which
combines with the incident wave to produce zero field inside the conductor.

incident wave incident
wave

z z

x x

a. b.

E = −x̂E0e
ikz

Js = x̂
2
η

E0

E = x̂E0e
ikz

E = −x̂E0e
−ikz

E = x̂E0e
ikz

Figure E6.1.1.1 a. Plane wave incident upon a perfect electric conductor.
b. Equivalent electric current sheet placed at z = 0.

End of Example 6.1.1
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Example 6.1.2 With the use of equivalent current sheet concepts, we now
illustrate several equivalent situations for a plane wave propagating in the ẑ
direction. Let the electric field be x̂ directed:

E = x̂E0eikz, H = ŷ
1
η

E0eikz

and let the region of interest be z > 0.

Equivalent Problem 1:
Put an electric current sheet with Js = −x̂E0/η and a magnetic current
sheet with Ms = −ŷE0; then the same field is preserved for z > 0. In
the region z < 0, there is no field.

Equivalent Problem 2:
Put an electric current sheet with Js = −x̂2E0/η; then the same field is
preserved for z > 0. In the negative ẑ direction, a plane wave propagates
with E = x̂E0e−ikz.

Equivalent Problem 3:
Put a magnetic current sheet with Ms = −ŷ2E0; then the same field is
preserved for z > 0. In the negative ẑ direction, a plane wave propagates
with H = ŷ(E0/η)e−ikz.

Equivalent Problem 4:
Replace the region z < 0 with a perfect conductor. Place in front of the
conductor an electric current sheet with Js = −x̂E0/η and a magnetic
current sheet with Ms = −ŷE0 . The electric current sheet does not
generate any field, because an equal and opposite electric current sheet
is induced on the surface of the electric conductor and this sheet cancels
the impressed Js. The magnetic current sheet generates the same field
for z > 0.

Equivalent Problem 5:
For a dual situation, we place the same electric and magnetic current
sheets as in Equivalent Problem 4 in front of a magnetic conductor.
According to a similar argument, the magnetic current sheet does not
generate a field in the positive ẑ direction. The electric current sheet
generates the same field for z > 0.

End of Example 6.1.2

From the above discussions on the equivalence principle, we make
the following comments: (i) Solutions to the equivalent problems are
not applicable in the regions of no interest; examples are the H field
within the small volumes containing a current loop and a magnetic
dipole as shown in Figure 6.1.1. (ii) In the case of the image method
we turn an unsolved problem of dipoles radiating in the presence of
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conductors into another unsolved problem of dipole arrays. In the case
of placing current sheets on the boundaries of the regions of interest,
the current sheet values −n̂× δE and n̂× δH are unknown until the
original problem is completely solved. So what is the usefulness of the
equivalence principle? The equivalence principle is useful in at least two
aspects. First, it enables us to reformulate a problem as in the case of
the image method. Second, and more importantly, it provides us with
the means of obtaining approximate solutions by approximating source
distributions on the surfaces of regions of interest. However, we must
note that equivalent source specifications are by no means unique. For
instance, we may use the image sources as shown in Figures 6.1.2–
6.1.4, or we may place equivalent currents sheets on the surfaces of the
conductors. In the following section we discuss the uniqueness theorem
which guarantees, at least in the regions of interest, that the solution
is unique.

Example 6.1.3 Extinction theorem.
Consider a plane wave normally incident from region 0 with permittivity

εo and permeability µo upon a half-space medium with permittivity ε and
permeability µ . The boundary surface is at z = 0 and the incident fields are

Ey = E0e−ikz

Hx =
1
η

E0e−ikz

(a) Find the total electric and magnetic fields in both Regions 0 and 1. De-
termine the values of the induced currents sheets corresponding to the fields
at z = 0+ and z = 0− .
(b) Place the obtained surface current sheets at z = 0+ . Find the total
electric fields in Regions 0. In Region 1, show that the field generated by the
surface current sheets together with the incident field added up to zero.
(c) Place the obtained surface current sheets at z = 0− . Find the total electric
fields in Regions 0 and 1. Show that the surface current sheet generated field
in region 0 is zero.

The extinction of fields in Region 0 due to the current sheets at z = 0+

and the fields in Region 1 due to the current sheets at z = 0− is a consequence
of the extinction theorem resulted from the current sheets obtained from the
so-called extended boundary conditions.

Solution:
(a) The fields in Region 0 are

Ey = E0(e−ikz + Reikz) Hx =
E0

η
(e−ikz −Reikz)
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incident
wave

z

x

a. b.

E = ŷ

c.

E0e
−ikz

Region 

Region t

z

x

E = ŷE0e
−ikz

Region 
z

x

Region t
Zero Field

Zero Field

M sx

Jsy

Jsy

M sx

Figure E6.1.1.1 Extinction Theorem a. Plane wave incident upon a
boundary surface. b. Incident wave and equivalent electric and magnetic
current sheets placed in Region 0. c. Equivalent electric and magnetic
current sheets placed in Region t.

The fields in Region 1 are

Ey = E0(1 + R)e−iktz Hx =
E0

ηt
(1 + R)e−iktz

where R = (ηt − η)/(ηt + η) , η =
√

(µ/ε) , and ηt =
√

(µt/εt) . The
induced surface current sheets at z = 0+ are obtained from the fields in
Region 0:

Jsy =
E0

η
(1−R) Msx = E0(1 + R)

The induced surface current sheets at z = 0− are obtained from the
fields in Region 1:

Jsy = −E0

ηt
(1 + R) Msx = −E0(1 + R)

(b) In Region 0

Ey = E0e−ikz + E0[
1
2
(1 + R)− 1

2
(1−R)]eikz

= E0e−ikz + RE0eikz

Hx =
E0

η
e−ikz +

E0

η
[−1

2
(1 + R) +

1
2
(1−R)E0]eikz

=
1
η

E0e−ikz − 1
η

RE0eikz

In Region 1

Ex = E0e−ikz + E0[−
1
2
(1 + R)− 1

2
(1−R)]e−ikz = 0

Hy =
1
η

E0e−ikz +
E0

η
[−1

2
(1 + R)− 1

2
(1−R)]e−ikz = 0
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(c) In Region 0

Ey = E0[
1
2
(1 + R)− 1

2
(1 + R)]eikz = 0

Hx =
E0

η
[−1

2
(1 + R) +

1
2
(1 + R)E0]eikz = 0

In Region 1

Ex = E0[
1
2
(1 + R) +

1
2
(1 + R)]e−iktz = E0(1 + R)e−iktz

Hy =
E0

ηt
[
1
2
(1 + R) +

1
2
(1 + R)]e−iktz =

E0

ηt
(1 + R)e−iktz

End of Example 6.1.3

Example 6.1.4 Hällén’s integral equation.
In the following, we obtain Hällén’s integral equation for a thin linear

dipole antenna, and show that the current on the antenna is approximately
sinusoidal. First set up an equivalent problem in which E = 0 and H = 0
inside the surface S, which is identical to the surface of the conductors of the
antenna and E and H are the same as in the original problem outside S.
There are no conducting bodies in the equivalent problem. To accommodate
the discontinuity of Ht across S , we must impress the surface current Js

on the imaginary surface S. This surface current is identical to the induced
surface current in the original problem. The electric field along the z axis
approaches

E → ẑ V0δ(z) for |a| < l/2

as the gap becomes very small. The electric field on the z axis is given by

Ez(z)|ρ=0 = V0δ(z)

= iωµẑ ·
(

I +
∇∇
k2

)∫ l/2

−l/2
dz′ ·

∫ 2π

0

a dφ′ eik
√

(z−z′)2+a2

4π
√

(z − z′)2 + a2
Js(z′)

for |z| < l/2 . The contribution of the current at the caps of the cylinder is
ignored to obtain this last result, which is a good approximation if a � λ
and a � l . Furthermore, it is reasonable to assume Js(r′) is along the z

axis and Js has no φ variation. It follows that I(z′) = 2πaJs(z′).
With these simplifications, we find

Ez = V0 δ(z) =
iωµ

k2

(
k2 +

d2

dz2

)∫ l/2

−l/2
dz′

eik
√

(z−z′)2+a2

4π
√

(z − z′)2 + a2
I(z′)
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z z
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+
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−
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−l/2 2a
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Original problem Equivalent problem

−l/2
S

Figure E6.1.4.1

Let

Az(z) =
∫ �/2

−�/2
dz′

eik
√

(z−z′)2+a2

[(z − z′)2 + a2]1/2
I(z′)

We obtain an ordinary differential equation of the following form:(
k2V0

iωµ

)
δ(z) =

(
k2 +

d2

dz2

)
Az(z)

Solve this differential equation, we find

iωµ

k2

∫ l/2

−l/2
dz′

eik
√

(z−z′)2+a2

4π
√

(z − z′)2 + a2
I(z′) = V0[g(z)+C1 cos kz+C2 sin kz]
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where

g(z) =
1

2ik
eik|z|

is the scalar Green’s function of the one-dimensional Helmholtz equation,(
d2

dz2
+ k2

)
g(z) = δ(z)

For the case of symmetric excitation, I(z) = I(−z) , and C2 = 0 . We
now obtain the Hällén’s integral equation [Hällén, 1938].

∫ l/2

−l/2
dz′ K(z, z′)I(z′) =

4πk2

iωµ
V0

(
eik|z|

2ik
+ C1 cos kz

)

where

K(z, z′) =
eik
√

(z−z′)2+a2√
(z − z′)2 + a2

The kernel K(z − z′) is sharply peaked at z = z′ (if a � + ). The major
contribution to the integral comes from the vicinity of the point z on the z′

axis. Thus the value of the integral is roughly proportional to I(z) .

4πk2

iωµ
V0

(
eik|z|

2ik
+ C1 cos kz

)
= I(z)

∫ �/2

−�/2
dz′ K(z,−z′)

+
∫ �/2

−�/2
dz′ K(z − z′)[I(z′)− I(z)]

The second integral on the right hand side can be ignored. So

I(z)f(z) ∼= 4πk2

iωµ
V0

(
eik|z|

2ik
+ C1 cos kz

)

where

f(z) ≡
∫ �/2

−�/2
dz′ K(z − z′) =

∫ �/2

−�/2
dz′

eik
√

(z − z′)2 + a2

[(z − z′)2 + a2]1/2

Observe that |K(z, z′)| is highly peaked at z = z′ if a � l . The function
f(z) does not rapidly change, the area under the curves for different z are
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close to each other because most of the area is under the peak. As a conse-
quence, f(z1) � f(z2) � f(0) , a very flat function of z , except at the ends.
It is a good approximation to assume that f(z) is constant

f(z)I(z) ∼= f(0)I(z)

Observe that limz→±l/2 f(z) 
= 0, but f(z)I(z) → 0 as z → ±+/2 . To
evaluate C1, we impose the condition that I(±l/2) = 0.

I

(
± +

2

)
= 0⇒ C1 = − eik�/2

2ik cos
(

k+

2

)

We can now rearrange I(z) into the following form:

I(z) � 2kV0

iωµ

sin(k |z| − kl/2)
f(0) cos(kl/2)

This is the zero order approximation to the solution of Hällén’s integral equa-
tion. For more accurate solutions, please refer to [King, 1956].

End of Example 6.1.4

Topic 6.1A Uniqueness Theorem

A given physical situation always leads to one and only one physi-
cal solution. However, when formulated in mathematical terms, if not
properly done, the problem may lead to many acceptable solutions with
underprescribed boundary conditions, or it may permit no solutions at
all with overprescribed boundary conditions. The uniqueness theorem
indicates how a problem should be properly formulated mathematically
so that there is one and only one solution. For electromagnetic field
problems, it states that when the sources and the tangential electric
or magnetic fields are prescribed over the whole boundary surface of
a given region, the solution within this region is unique. The unique-
ness theorem is thus a most powerful theorem that enables one to
find the solution via any expedient means. It is the foundation for the
equivalence principle, the Huygens’ principle, the image theorem, the
induction theorem, Babinet’s principle, and almost all frequently used
methods in electromagnetism.

To prove the uniqueness theorem, we assume that there are two
different solutions for a given set of sources. Let the two solutions be
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denoted by E1 and H1, and E2 and H2. Let the differences be δE
and δH,

δE = E1 − E2

δH = H1 −H2

Since both field solutions satisfy the Maxwell equations with the same
sources, their differences satisfy the source-free Maxwell equations

∇× δE = iωµ δH (6.1A.1a)
∇× δH = −iωε δE (6.1A.1b)

The proof of the theorem hinges on the assumption that the permittiv-
ity ε and the permeability µ of the medium have a small imaginary
part. Assume the medium is slightly lossy, namely µ and ε have a
small positive imaginary part,

ε = εR + iεI

µ = µR + iµI

where εR , εI , µR and µI are real. The proof also holds when the
imaginary parts are both negative.

Dot-multiply (6.1A.1a) with δH
∗ and (6.1A.1b)∗ with δE. Sub-

tracting, we obtain

∇ · (δE × δH
∗) = iωµ

∣∣δH
∣∣2 − iωε∗

∣∣δE
∣∣2 (6.1A.2)

The complex conjugate of (6.1A.2) gives

∇ · (δE
∗ × δH) = −iωµ∗ ∣∣δH

∣∣2 + iωε
∣∣δE

∣∣2 (6.1A.3)

Adding (6.1A.2) and (6.1A.3) and integrating over the volume V en-
closed by the surface S , we find

©
∫∫

S
dS · (δE × δH

∗ + δE
∗ × δH)

= −2ω

∫∫∫
V

dV
(

µI

∣∣δH
∣∣2 + εI

∣∣δE
∣∣2) (6.1A.4)

The right-hand side of (6.1A.4) is a negative number. It will be zero if
and only if δH and δE are identically zero in the region V.
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The solution will be unique and E1 = E2 and H1 = H2 when
the left-hand side of (6.1A.4) is zero, which gives

©
∫∫

S
dS · (δE × δH

∗ + δE
∗ × δH) = 0

We conclude that the solution will be unique if either δE or δH is
zero on the enclosed surface S. Thus the boundary conditions can be
specified in the following manner: (i) tangential electric field over the
whole surface of S, or (ii) tangential magnetic field over the whole
surface of S, or (iii) tangential electric field over part of the surface
S and tangential magnetic field over the rest of S. If both tangential
electric and magnetic fields are specified over any part of S, they must
be compatible with each other.

Topic 6.1B Duality and Complementarity

Corresponding to the electric current J in Amp̀ere’s law, a magnetic
current −M can be added to Faraday’s law. The Maxwell equations
with both the electric and magnetic current terms read:

∇×H = −iωεE + J (6.1B.1)
∇× E = iωµH −M (6.1B.2)

The justification of the magnetic current M has been carried out with
the use of the equivalence principle and is reiterated as follows. First,
(6.1B.1) and (6.1B.2) govern macroscopic electromagnetic fields under
time-harmonic excitations. From the macroscopic point of view, a small
current loop acts like a magnetic dipole. As long as one is restricted
from penetrating the loop, the fields outside the volume bounding the
loop are exactly the dual of those due to a small electric dipole. The
fields can be solved in exactly the same manner as in the electric case
by neglecting J and retaining M. Second, when (6.1B.1) and (6.1B.2)
are applied to a limited region in space, the bounding surfaces of the
regions can be viewed as supporting surface electric currents due to dis-
continuities in tangential magnetic field and surface magnetic currents
due to discontinuities in tangential electric field. In fact, in the above
discussion of dipole sources, we are limited to the space outside the
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volume occupied by the dipoles. If (6.1B.1) and (6.1B.2) are assumed
to be valid in all space, then the existence of magnetic monopoles is
implied.

Equations (6.1B.1) and (6.1B.2) are now duals of each other. If we
make the following replacements:

E → H

H → −E

µ→ ε

ε→ µ

J →M

M → −J

then (6.1B.1) becomes (6.1B.2) and (6.1B.2) becomes (6.1B.1). The
symbolic replacements can further be quantified by equating numeri-
cally the left-hand side and the right-hand side of the arrows. When
such equalities are established, however, the dual of free space will be-
come a medium with permittivity 4π×10−7 f/m and with permeability
8.854 × 10−12 h/m, an undesirable situation for the study of antenna
problems.

The duality principle that is suitable for antenna and radiation
problems in free space is established by the following equalities:

E = ηH (6.1B.3)
H = −E/η (6.1B.4)
J = M/η (6.1B.5)

M = −ηJ (6.1B.6)

where η = (µ/ε)1/2. Clearly under such substitutions, (6.1B.1) be-
comes (6.1B.2) and (6.1B.2) becomes (6.1B.1). There is no need to
replace free space with a different medium. Note that this duality for-
malism is not applicable to complicated material such as anisotropic
and bianisotropic media.

As an example of the application of the duality principle, we shall
find a relationship between impedances of complementary metal and
aperture antennas. We consider a plane conductor that is cut to make
a metal antenna and an aperture antenna complementary to each other
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b

c d

a. b.
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Figure 6.1B.1 a. Metal antenna, and b. Aperture antenna, which are
complementary structures.

as shown in Figure 6.1B.1. The input impedance of the metal antenna
in Figure 6.1B.1a is

Zm =
−

∫ a
b dl · Em∮

cd dl ·Hm

=
−

∫ a
b dl · Em

2
∫ d
c dl ·Hm

(6.1B.7)

where we have assumed that Em is pointing from a to b and Hm

from c to d. The second equality follows from the fact that tangential
magnetic fields are equal and opposite on both sides of the path c d .

Similarly, the input impedance of the aperture antenna is

Za =
−

∫ d
c dl · Ea∮

ab dl ·Ha

=

∫ d
c dl · Ea

2
∫ a
b dl ·Ha

(6.1B.8)

where we assume the dual situation with Ha pointing from a to b
and Ea from d to c.

The two impedances are related by duality properties of the Max-
well equations. The boundary-value problem for the metal antenna is
to solve (

∇2 + ω2µε
)

Em = 0 (6.1B.9)

with boundary conditions

n̂× Em = 0 on Sa

n̂×Hm = 0 on Sm

(6.1B.10)
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where
Hm =

1
iωµ
∇× Em (6.1B.11)

and n̂ is the normal to the plane conductor. Note that the second
boundary condition in (6.1B.10) can be understood by imagining that
the surface currents on the metal are composed of elementary current
sources with magnetic field having only components perpendicular to
Sm.

Figure 6.1B.2 Broadband structures.

For the aperture antenna problem, we have to solve(
∇2 + ω2µε

)
Ha = 0 (6.1B.12)

with boundary conditions

n̂×Ha = 0 on Sa

n̂× Ea = 0 on Sm

(6.1B.13)

where
Ea = − 1

iωε
∇×Ha (6.1B.14)

The two problems are mathematically dual with the following replace-
ments:

Em = ηHa (6.1B.15)

Hm = −1
η

Ea (6.1B.16)

We find from (6.1B.7) and (6.1B.8)

ZmZa =

(
−

∫ a
b ηHa · dl

−2
∫ d
c

1
ηEa · dl

) ( ∫ d
c Ea · dl

2
∫ a
b Ha · dl

)
=

η2

4
(6.1B.17)
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ρ3
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π
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Figure 6.1B.3 Planar equiangular spiral antenna.

Thus, the product of the input impedances of two planar comple-
mentary antennas is one-quarter of the square of the characteristic
impedance of the free space.

As an example, consider the structures shown in Figures 6.1B.2,
where the structure and its complement are identical. It follows that
such antennas have input impedance η/2 = 188.5 ohms. Because the
input impedance is independent of frequency, such antennas are ideal
broadband antennas. Another self-complementary antenna is shown
in Figure 6.1B.3. The four edges of the metal are described by the
equations ρ1 = ρ0e

aφ, ρ2 = ρ0e
a(φ−π/2), ρ3 = ρ0e

a(φ−π) and ρ4 =
ρ0e

a(φ−3π/2) , where a is the rate of expansion of the spiral. The struc-
ture is known as a planar equiangular spiral antenna.

Example 6.1.5 Babinet’s principle.
Babinet’s principle is another example of duality and complementarity

that relates the problem of diffraction by planar apertures to the problem of
scattering by its complementary structure. Consider an infinite plane conduc-
tor with an aperture as shown in Figure E6.1.5.1a and the complementary
structure consisting of the removed plane metal in the formation of the aper-
ture as shown in Figure E6.1.5.1b. Let there be dual sources on the left-hand
sides of Figures E6.1.5.1a and E6.1.5.1b. In the absence of the screens, they
produce incident fields such that

E
i

2 = ηH
i

1 (E6.1.5.1a)
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Figure E6.1.5.1a
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Figure E6.1.5.1b
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Figure E6.1.5.1c Complementarity and duality for Babinet’s principle.
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H
i

2 = −E
i

1/η (E6.1.5.1b)

Note that in the presence of the screens the sources are located on the left-
hand side.

Now we formulate the problems for the fields on the right-hand sides of
the screens. For the problem in Figure E6.1.5.1a, the fields satisfy the Maxwell
equations

∇× E1 = iωµH1 (E6.1.5.2a)

∇×H1 = −iωεE1 (E6.1.5.2b)

subject to the boundary conditions

n̂× E1 = 0 on Sm (E6.1.5.3a)

n̂×H1 = n̂×H
i

1 on Sa (E6.1.5.3b)

where n̂ is the normal to the plane surface. The first boundary condition
warrants that tangential electric field vanishes on the conducting surface. The
second condition is due to the fact that induced surface currents on the metal
surface produce no tangential magnetic field component at the aperture space.
The field to the right-hand side of the screen is produced by the equivalent
current sheet source on Sa.

For the problem in Figure E6.1.5.1b, the fields on the right-hand side
satisfy the Maxwell equations

∇× E2 = iωµH2 (E6.1.5.4a)

∇×H2 = −iωεE2 (E6.1.5.4b)

subject to the boundary conditions

n̂×H2 = n̂×H
i

2 on Sm (E6.1.5.5a)

n̂× E2 = 0 on Sa (E6.1.5.5b)

The total fields E2 and H2 are superpositions of two field solutions:

1. The incident fields E
i

2 and H
i

2 in the absence of the screens. They
satisfy the source-free Maxwell equations to the right half-space.

2. The scattered fields produced by induced currents on the screens. We
denote them by E

s

2 and H
s

2.

In terms of the scattered field E
s

2 = E2 −E
i

2 and H
s

2 = H2 −H
i

2 they
satisfy

∇× E
s

2 = iωµH
s

2 (E6.1.5.6a)

∇×H
s

2 = −iωεE
s

2 (E6.1.5.6b)
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subject to the boundary conditions

n̂×H
s

2 = 0 on Sm (E6.1.5.7a)

n̂× E
s

2 = −n̂× E
i

2 = −n̂× ηH
i

1 on Sa (E6.1.5.7b)

Comparing (E6.1.5.6) with (E6.1.5.2) and (E6.1.5.7) with (E6.1.5.3), we see
that the two problems are mathematically dual with the following substitu-
tions

H
s

2 = E1/η (E6.1.5.8a)

E
s

2 = −ηH1 (E6.1.5.8b)

In terms of total fields, we find

E2 = E
s

2 + E
i

2 = η(−H1 + H
i

1) (E6.1.5.9a)

H2 = H
s

2 + H
i

2 =
1
η
(E1 − E

i

1) (E6.1.5.9b)

This is referred to as Babinet’s principle. Note that in the special case of
no metallic screens for Figure E6.1.5.1a, E1 = E

i

1 and H1 = H
i

1 . The
complementary case is a complete metallic screen and the result is E2 = H2 =
0. Consider the other extreme when Figure E6.1.5.1a is completely metallic
with no apertures, E1 = H1 = 0. Then the result for Figure E6.1.5.1b
becomes E2 = ηH

i

1 and H2 = −E
i

1/η, which are just the fields generated
by the dual sources.

To examine further the implications of Babinet’s principle, consider the
dual problem of Figure E6.1.5.1b as illustrated in Figure E6.1.5.1c. The metal-
lic aperture Sa is now replaced by a magnetic conductor and the sources
are the dual of Figure E6.1.5.1c and therefore identical to those of Figure
E6.1.5.1a. The boundary-value problem for the right-hand side of the mag-
netic conductor becomes

∇× Ed = iωµHd (E6.1.5.10a)

∇×Hd = −iωεEd (E6.1.5.10b)

subject to the boundary conditions

n̂× Ed = n̂× E
i

1 on Sm (E6.1.5.11a)

n̂×Hd = 0 on Sa (E6.1.5.11b)

where Ed and Hd denote fields of Figure E6.1.5.1c. From (E6.1.5.2) –
(E6.1.5.3) and (E6.1.5.10)–(E6.1.5.11) we see that the sums of the fields
E = E1 + Ed and H = H1 + Hd satisfy the following boundary-value
problem

∇× (E1 + Ed) = iωµ(H1 + Hd) (E6.1.5.12a)

∇× (H1 + Hd) = −iωε(E1 + Ed) (E6.1.5.12b)
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with the boundary conditions

n̂× (E1 + Ed) = n̂× E
i

1 on Sm (E6.1.5.13a)

n̂× (H1 + Hd) = n̂×H
i

1 on Sa (E6.1.5.13b)

Thus the tangential fields on Sm and Sa are identical to those of E
i

1 and
H

i

1 and by the uniqueness theorem, we conclude that

E1 + Ed = E
i

1 (E6.1.5.14a)

H1 + Hd = H
i

1 (E6.1.5.14b)

This also follows from Babinet’s principle as expressed in (E6.1.5.9) with the
substitution of E2 = ηHd and H2 = −Ed/η as required by the duality
principle.

End of Example 6.1.5

Topic 6.1C Mathematical Formulations of Huygens’ Principle

Huygens’ principle states that the field solution in a region V ′ is com-
pletely determined by the tangential fields specified over the surface S′

enclosing V ′ [Fig. 6.1C.1]. Formulated in mathematical terms, Huy-
gens’ principle expresses fields at an observation point in terms of fields
at the boundary surface. Consider a surface S′ enclosing a radiating
source. The electric and magnetic fields outside the surface will be
shown to be of the following forms:

E(r) =©
∫∫

S′
dS′

{
iωµ G(r, r′) · [n̂×H(r′)]

+ ∇×G(r, r′) · [n̂× E(r′)]
} (6.1C.1)

H(r) =©
∫∫

S′
dS′

{
−iωε G(r, r′) · [n̂× E(r′)]

+ ∇×G(r, r′) · [n̂×H(r′)]
} (6.1C.2)

where n̂ is the outward normal to the surface S′ . The dyadic Green’s
function G(r, r′) is given by

G(r, r′) =
[
I +

1
k2
∇∇

]
g(r, r′) (6.1C.3)



672 6. Theorems of Waves and Media

r′

n̂

r

|r − r′|

S′

V ′

ŝ

Figure 6.1C.1 Volume V ′ containing radiation sources.

The scalar Green’s function g(r, r′) satisfies the Helmholtz equation

(∇2 + k2)g(r, r′) = −δ(r − r′) (6.1C.4)

For three-dimensional problems, the scalar Green’s function g(r, r′)
for isotropic media written in spherical coordinates is of the form

g(r, r′) =
eik|r−r′|

4π |r − r′| (6.1C.5)

For two-dimensional problems, the scalar Green’s function for isotropic
media written in cylindrical coordinates is of the form

g(ρ, ρ′) =
i

4
H

(1)
0 (k

∣∣ρ− ρ′
∣∣) (6.1C.6)

where H
(1)
0 is the zeroth-order Hankel function of the first kind.

Christiaan Huygens (14 April 1629 – 8 July 1695)
Christiaan Huygens studied law and mathematics at the University of

Leiden from 1645–1647. Huygens devised ways of grinding and polishing lenses
for telescopes and in 1655 detected the first moon Titan of Saturn. His Traité
de la lumiere appeared in 1678, in which Huygens described his wave theory
of light, Huygens’ principle.
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Example 6.1.6 Derivation.
From the Maxwell equations, the governing equation for the electric field

E(r) with a given current source J(r) is given by

∇×∇× E(r)− k2E(r) = iωµJ(r) (E6.1.6.1)

The solution of E(r) in terms of J(r) can be conveniently expressed in terms
of the dyadic Green’s function G(r, r′) ,

E(r) = iωµ

∫∫∫
d3r′ G(r, r′) · J(r′) (E6.1.6.2)

Notice that by means of the three-dimensional delta function δ(r − r′), we
can write

J(r) =
∫∫∫

d3r′ δ(r − r′)I · J(r′) (E6.1.6.3)

where I is the unit dyad. Substitution of (E6.1.6.2) and (E6.1.6.3) in
(E6.1.6.1) gives the following equation governing the dyadic Green’s func-
tion G(r, r′),

∇×∇×G(r, r′)− k2G(r, r′) = I δ(r − r′) (E6.1.6.4)

The derivation of the dyadic form of Huygens’ principle calls for the vector
identity

E · [∇×∇× (G · a)]− [∇×∇× E] · (G · a)

= −∇ ·
{

E ×∇×
(

G · a
)

+
(
∇× E

)
×

(
G · a

)}
where a is an arbitrary constant vector. Integrating over a volume V
bounded by the closed surface S′ and the surface at infinity, we obtain∫∫∫

V

d3r
{

E(r) · [∇×∇×G(r, r′) · a]

− [∇×∇× E(r)] ·G(r, r′) · a
}

= −©
∫∫

S

dS
{

ŝ · [∇× E(r)]×G(r, r′) · a

+ ŝ · E(r)×∇×G(r, r′) · a
}
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Making use of (E6.1.6.1) and (E6.1.6.4) in the left-hand side of the above
equation and assuming that J(r) = 0 in volume V, we find

E(r′) · a = −©
∫∫

S

dS
{

ŝ× [∇× E(r)] ·G(r, r′) · a

+ [ŝ× E(r)] · ∇ ×G(r, r′) · a
}

(E6.1.6.5)

Notice that in the integration of the left-hand side, the points r and r′ are
both inside the volume V . We now use ∇×E(r) = iωµH(r) and interchange
the primed and unprimed variables. Since a is an arbitrary constant vector,
we can delete it from both sides of the equation. Thus

E(r) = −©
∫∫

S′
dS′

{
iωµ G(r, r′) · [ŝ×H(r′)]

+ ∇×G(r, r′) · [ŝ× E(r′)]
} (E6.1.6.6)

On the right-hand side, the integration of r′ is over the surface S′ . In arriving
at (E6.1.6.6) we also make use of the symmetry relations of the dyadic Green’s
function:

G(r, r′) =
[
G(r′, r)

]T

(E6.1.6.7)

and

∇×G(r, r′) =
[
∇′ ×G(r′, r)

]T

(E6.1.6.8)

where superscript T denotes transpose. In view of (6.1C.3) and (6.1C.5) or
(6.1C.6), the relation (E6.1.6.7) is evidently true. The relation (E6.1.6.8) is
also seen to be true by noting that

[∇×G(r, r′)]il = εijk ∂j

(
δkl +

1
k2

∂k∂l

)
g(r − r′)

= −εijl ∂
′
j g(r − r′)

= εljk ∂′
j δki g(r − r′)

= [∇′ ×G(r, r′)]li (E6.1.6.9)

where we use the relations εijk∂j∂k = 0 and ∂jg = −∂′
jg. It can also be

shown that for general dyadic Green’s functions satisfying prescribed bound-
ary conditions, the symmetry relations (E6.1.6.7) and (E6.1.6.8) also hold.

The Huygens’ principle is formulated with the identification of the closed
surface S comprising a sphere of infinite radius and a surface S′ enclosing all
sources of radiation [Fig. 6.1C.1]. The surface at infinity gives no contribution
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to the surface integral. This follows from the radiation conditions for the
electromagnetic fields and the dyadic Green’s functions:

lim
r→∞

r[H − r̂ × E/η] = 0 (E6.1.6.10a)

lim
r→∞

r · E = 0 (E6.1.6.10b)

lim
r→∞

r[∇×G− ikr̂ ×G] = 0 (E6.1.6.10c)

Note that r̂ = ŝ in (E6.1.6.6). The term ŝ × H(r′) in (E6.1.6.6) becomes
r̂× (r̂×E/η) and the integrand becomes [−ikr̂×G +∇×G] · [r̂×E] which
vanishes on the surface at infinity. The contribution to E(r) comes solely
from the surface S′ [Fig. 6.1C.1]. Thus, noticing that ŝ = −n̂, we obtain
(6.1C.1) and (6.1C.2) which are expressed in terms of the tangential electric
and magnetic field components at the boundary surface S′ .

End of Example 6.1.6

Example 6.1.7 Stratton-Chu formula.
Many different vector forms can be obtained for the Huygens’ principle.

Making use of (6.1C.3), we obtain from (6.1C.1) and (6.1C.2)

E(r) =©
∫∫

S′
dS′ {iωµg(r, r′)[n̂×H(r′)] +

iωµ

k2
∇∇g(r, r′) · [n̂×H(r′)]

+ ∇g(r, r′)× [n̂× E(r′)]
}

(E6.1.7.1)

H(r) =©
∫∫

S′
dS′ {−iωεg(r, r′)[n̂× E(r′)] − iωε

k2
∇∇g(r, r′) · [n̂× E(r′)]

+ ∇g(r, r′)× [n̂×H(r′)]
}

(E6.1.7.2)

The above formulas are in terms of the tangential field components on S1

and the scalar Green’s function g(r, r′).
The Stratton-Chu formula can be derived from (E6.1.6.5) by noting that

the first term inside the surface integral is

ŝ× (∇× E) ·G · a = ŝ×(∇× E) · [ga +
1
k2
∇∇ · ga] (E6.1.7.3a)

= ŝ× (∇× E) · ga +
1
k2

ŝ · (∇× E)×∇∇ · ga (E6.1.7.3b)

= ŝ× (∇× E) · ga +
1
k2

ŝ ·
{
(∇×∇× E)∇ · ga

− ∇× [(∇ · ga)(∇× E)]
}

(E6.1.7.3c)
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In the above derivations, (E6.1.7.3) is obtained by substitution of (6.1C.3). A
vector identity (∇×E)×∇φ = φ(∇×∇×E)−∇× (φ∇×E) is used to con-
vert the second term in (E6.1.7.3b) to the second term in (E6.1.7.3c). Sub-
stituting (E6.1.7.3c) in (E6.1.6.5) we note that the last term in (E6.1.7.3c)
vanishes under the surface integration because by Gauss’ theorem it is equiv-
alent to the volume integral of the divergence of a curl. Also note that
∇× E = iωµH and that for J(r) = 0, ∇×∇× E(r) = k2E(r). Thus

E(r′) = −©
∫∫

dS′ {iωµ[ŝ×H(r)]g(r, r′) + [ŝ · E(r)]∇g(r, r′)

+ [ŝ× E(r)]×∇g(r, r′)
}

(E6.1.7.4)

Interchanging primed and unprimed quantities, making use of the symmetry
properties of g(r, r′), and applying to the surface S′ as shown in Fig. 6.1C.1,
we obtain the Stratton-Chu formula

E(r) =©
∫∫

S′
dS′ {iωµ[n̂×H(r′)]g(r, r′) + [n̂ · E(r′)]∇′g(r, r′)

+ [n̂× E(r′)]×∇′g(r, r′)
}

(E6.1.7.5)

H(r) =©
∫∫

S′
dS′ {−iωε[n̂× E(r′)]g(r, r′) + [n̂ ·H(r′)]∇′g(r, r′)

+ [n̂×H(r′)]×∇′g(r, r′)
}

(E6.1.7.6)

Notice that in the Stratton-Chu formula (Julius Adam Stratton, 1901 – 1994;
Lan Jen Chu, 1913 – 1973),normal components of E and H are required on
the surface of S′.

End of Example 6.1.7

Example 6.1.8 Franz formula.
The Franz formula can be derived from (E6.1.7.5) and (E6.1.7.6) to ex-

press E(r) and H(r) in terms of their tangential components on the surface
S′. Taking curl of (E6.1.7.6) yields, noting that ∇g(r, r′) = −∇′g(r, r′) ,

∇×H(r) =− iωε∇×©
∫∫

S′
dS′ [n̂× E(r′)]g(r, r′)

−∇×©
∫∫

S′
dS′ [n̂ ·H(r′)]∇g(r, r′)

+∇×©
∫∫

S′
dS′∇× [n̂×H(r′)]g(r, r′) (E6.1.8.1)
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The second term on the right-hand side of (E6.1.8.1) vanishes and the curl
operator inside the integral of the third term can be taken out of the integrand.
Making use of the Maxwell equation ∇×H = −iωεE, we obtain

E(r) = ∇×©
∫∫

S′
dS′ [n̂× E(r′)]g(r, r′)

+
i

ωε
∇×∇×©

∫∫
S′

dS′ [n̂×H(r′)]g(r, r′) (E6.1.8.2)

By duality

H(r) = ∇×©
∫∫

S′
dS′ [n̂×H(r′)]g(r, r′)

− i

ωµ
∇×∇×©

∫∫
S′

dS′ [n̂× E(r′)]g(r, r′) (E6.1.8.3)

The formulas are now dependent only on tangential components of the electric
and magnetic fields on the surface S′.

End of Example 6.1.8

Example 6.1.9 Kirchhoff scalar formula for diffraction.
The Kirchhoff scalar formula for diffraction can be conveniently ob-

tained from the Stratton-Chu formula (E6.1.7.5). In view of the fact that
iωµH(r′) = ∇′×E(r′) and (n̂×E)×∇′g = En̂ · ∇′g− n̂E · ∇′g, (E6.1.7.5)
becomes

E(r) =©
∫∫

S′
dS′ {[n̂× (∇′ × E)]g + [n̂ · E]∇′g + En̂ · ∇′g − n̂E · ∇′g

}
=©
∫∫

S′
dS′ {En̂ · ∇′g − g(n̂ · ∇′)E

}
+©
∫∫

S′
dS′ {∇′(n̂ · gE)− n̂∇′ · (gE)

}
(E6.1.9.1)

In arriving at the last term we use ∇′ · E(r′) = 0. The last surface integral
in the above equation is zero owing to the fact that the i th component of
the two surface integrals can be written as[

©
∫∫

S′
dS′∇′(n̂ · gE)

]
i

= ©
∫∫

S′
dS′ ∂′

injgEj =
∫∫∫

V ′
dV ′∂′

i ∂′
jgEj

(E6.1.9.2)
and [

©
∫∫

S′
dS′ n̂∇′ · (gE)

]
i

= ©
∫∫

S′
dS′ ni∂jgEj =

∫∫∫
V ′

dV ′ ∂′
i∂

′
jgEj

(E6.1.9.3)
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The last equality in (E6.1.9.2) and (E6.1.9.3) is the result of the generalized
Gauss’ theorem in tensor calculus. Thus

E(r) =©
∫∫

S′
dS′

{
E(r′)

∂g(r, r′)
∂n

− g(r, r′)
∂E(r′)

∂n

}
(E6.1.9.4)

where ∂/∂n = n̂ · ∇′. This is the vector form of the Kirchhoff formula for
diffraction.

The scalar form of the Kirchhoff formula for diffraction is obtained by
assuming that the electric field has only one cartesian component, say E(r) =
ŷU(r). It follows that

U(r) =©
∫∫

S′
dS′

{
U(r′)

∂g(r, r′)
∂n

− g(r, r′)
∂U(r′)

∂n

}
(E6.1.9.5)

This is the most popular formula for diffraction used in physical optics.
Clearly, when other components of the electric field become important, the
formula breaks down. Thus in the case of diffraction of a linearly polarized
plane wave by an aperture, for instance, the formula is valid only along the
paraxial direction of observation i.e., near the axis perpendicular to the aper-
ture. Away from the paraxial directions, the diffracted field components will
no longer be in the same direction as the linearly polarized aperture field.

Derivation from scalar wave equation

We have seen the limitations of the scalar theory from the point of view
of the dyadic and the vector theories. However, the scalar diffraction theory
is complete and consistent by itself. Equation (E6.1.9.5) can be derived from
the scalar equation

(∇2 + k2)U(r) = 0 (E6.1.9.6)

by using Green’s theorem

U∇2g − g∇2U = ∇ · [U∇g − g∇U ] (E6.1.9.7)

Integrating (E6.1.9.7) over the volume V enclosed by the surface S′ and the
surface at infinity and making use of (6.1C.4) we obtain the Kirchhoff formula
(E6.1.9.5). Note that n̂ is normal to surface S′ and points into the region
V and that the surface integral at infinity vanishes owing to the Sommerfeld
radiation condition.

The normal derivative of the scalar Green’s function in (E6.1.9.5) can be
written as

∂g

∂n
= n̂ · ∇′g = −

(
ik − 1

R

)
eikR

4πR
(n̂ · R̂)
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n̂ = ẑ

S′
x

R

U = A exp(iksxx + ikszz)

Figure E6.1.9.1 Diffraction by an aperture.

where R̂ represents the unit vector in the direction of R = r − r′. Substi-
tuting in (E6.1.9.5) we find

U(r) = −©
∫∫

S′
dS′

{(
ik − 1

R

)
U(r′)(n̂ · R̂) +

∂U(r′)
∂n

}
eikR

4πR
(E6.1.9.8)

The scalar wave amplitude U(r) at r is thus expressed as a superposition of
contributions from the elements of surface dS′ with source strength expressed
by the term within braces in (E6.1.9.8).

We now consider the problem of diffraction by an aperture on an infinite
plane surface [Fig. E6.1.9.1]. In order to apply (E6.1.9.8), the so-called Kirch-
hoff approximation (KA) is made: (i) the values of U(r′) and ∂U(r′)/∂n
vanish everywhere on S′ except at the aperture and (ii) the values of U(r′)
and ∂U(r′)/∂n at the aperture are equal to those of the incident wave in the
absence of S′. Suppose that the aperture is illuminated by a plane wave

U(r′) = A exp[iksxx′ + ikszz
′] (E6.1.9.9)

We have

∂U

∂n
= n̂ · ∇′U(r′) = i(n̂ · ks)U(r′) (E6.1.9.10)

where ks = x̂ksx+ ẑksz. Furthermore assume that the frequency is high such
that the 1/R term in (E6.1.9.8) is negligible in comparison with ik. In view
of (E6.1.9.10), we obtain from (E6.1.9.8)

U(r) = −ik©
∫∫

aperture

dS′ {(n̂ · R̂) + (n̂ · k̂s)
}

U(r′)
eikR

4πR
(E6.1.9.11)
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where k̂s = ks/k. The term {(n̂ · R̂) + (n̂ · k̂s)}/2 is known as the obliquity
factor which is always positive and less than unity. When the incident wave
is normal to the aperture, the obliquity factor simply becomes (1 + cos θ)/2.
If we view the integral as a superposition of contributions from the secondary
sources, then the obliquity factor effectively imposes an anisotropic directivity
pattern on each element source point. Historically in the construction of the
diffraction patterns with Huygens’ wavelet concept, Fresnel found that the
amplitude factor ik(n̂ · R̂ + n̂ · k̂s) had to be postulated in order to get
accurate results. It was Kirchhoff who showed that the amplitude factor is in
fact a direct consequence of the scalar wave theory.

In the Kirchhoff approximation (KA) both U(r′) and its normal deriva-
tive ∂U(r′)/∂n are prescribed over the surface S′. Rigorously the unique-
ness theorem requires only U(r′) or ∂U(r′)/∂n at every point on S′ and
not both. Sommerfeld circumvented the difficulty by choosing different scalar
Green’s functions g(r · r′) such that on the plane surface S′, where g(r, r′)
or ∂g(r, r′)/∂n vanishes and we have to specify only ∂U(r′)/∂n or U(r′).

End of Example 6.1.9

Example 6.1.10 Extinction theorem and extended boundary conditions.
Consider normal incidence of a plan wave unto a flat half-space medium.

Use the vector form of the Kirchhoff formula for diffraction (E6.1.9.4)

E(r) =©
∫∫

S′
dS′

{
E(r′)

∂g(r, r′)
∂n

− g(r, r′)
∂E(r′)

∂n

}
(E6.1.10.1)

where ∂/∂n = n̂ · ∇′. The total electric field is

Ey = Eyi +
∫ ∞

−∞
dx′

∫ ∞

−∞
dy′

[
Ey(x′, y′, 0)

∂g

∂z′
− g

∂Ey(x′, y′, z′)
∂z′

]
z′=0

= Eyi +
[
Ey(0)

∂g

∂z′
− g

∂Ey(z′)
∂z′

]
z′=0

= Eyi +
[
Ey(0)

∂g

∂z′
− g(−iωµHx(0))

]
z′=0

where the Green’s function g(z, z′) = ieik|z−z
′|/2k .

(a) If Region 1 is identical to Region 0, we have Ey(0) = E0 and Hx(0) =
E0/η . Then in Region 0

Ey = Eyi +
{

E0
∂g

∂z′
− g(−ikE0)

}
= E0e−ikz

and in Region 1,

Ey = Eyi +
{

E0
∂g

∂z′
− g(−ikE0)

}
= E0e−ikz − E0e−ikz = 0
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(b) If Region 1 is a perfect conductor, then in Region 0, we have Ey(0) = 0
and Hx(0) = 2E0/η .

Ey = Eyi +
{

E0
∂g

∂z′
− g(−i2kE0)

}
= E0e−ikz + E0eikz

and in Region 1,

Ey = Eyi +
{

E0
∂g

∂z′
− g(−i2kE0)

}
= 0

(c) If Region 1 is a dielectric medium, we have Ey(z = 0) = (1 + R)E0 and
Hx(z = 0) = (1−R)E0/η . Then in Region 0

Ey = Eyi +
{

E0
∂g

∂z′
− g(−ikE0)

}
= E0e−ikz + RE0eikz

and in Region 1,

Ey = Eyi +
{

E0
∂g

∂z′
− g(−ikE0)

}
= 0

The field produced by the current sheet extinguishes the incident field in
Region 0.

End of Example 6.1.10

Topic 6.1D Fresnel and Fraunhofer Diffraction

As an example of the application of Huygens’ principle, we consider
the diffraction of a plane wave by a two-dimensional aperture. Let
the plane wave be linearly polarized in the ŷ direction and normally
incident upon the aperture in the x-y plane from the region z < 0.
In the half-space z > 0, the wave is diffracted [Fig. 6.1D.1]. To solve
for the diffracted field, we use the results derived from the Huygens’
principle,

E(r) =©
∫∫

S′
dS′

{
iωµ G(r, r′) · Js(r′)

−∇×G(r, r′) ·M s(r′)
}

(6.1D.1a)

H(r) =©
∫∫

S′
dS′

{
iωε G(r, r′) ·M s(r′)

+∇×G(r, r′) · Js(r′)
}

(6.1D.1b)
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Ey

Fraunhofer Zone

Fresnel Zone

Near Zone

2l

2(2l)2

λ

k

x

x

z

H = −x̂
1
η

E0e
ikz

E = ŷE0e
ikz

Figure 6.1D.1 Diffraction field in the Fraunhofer zone.

We assume that at the aperture there is an electric current sheet Js =
2n̂×H and no magnetic current sheet:

Js = 2ẑ ×H(r′) = −ŷ
2
η

E(x′) (6.1D.2)

where E(x′) describes the aperture field distribution.
With the assumed surface current in (6.1D.2),

E(r) = −2
η
©
∫∫

S′
dS′ iωµ G(r, r′) · ŷE(x′)

The problem is two-dimensional, independent of the y coordinate,
where ∂/∂y = 0. We use the two-dimensional dyadic Green’s function

G(r, r′) =
(

I +
1
k2
∇∇

)
g(ρ, ρ′)
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where

g(ρ, ρ′) =
i

4
H

(1)
0

(
k
√

(x− x′)2 + z2

)

is the two-dimensional scalar Green’s function. We find, recognizing
that ∇∇ · ŷ = 0 as ∂/∂y = 0,

E(x, z) = ŷ
k

2

∫ ∞

−∞
dx′ E(x′)H(1)

0

(
k
√

(x− x′)2 + z2

)
(6.1D.3)

In the far-field zone, we use the asymptotic form for the Hankel function
H

(1)
0 (ξ) ≈ (2/iπξ)1/2eiξ. We also assume z � |x− x′| and expand

k
√

(x− x′)2 + z2 ≈ kz

[
1 +

1
2

(
x− x′

z

)2

+ · · ·
]

(6.1D.4)

Equation (6.1D.3) becomes

E(x, z) = ŷ
k

2

√
2

iπkz
eikz

∫ ∞

−∞
dx′ E(x′)eik(x−x′)2/2z (6.1D.5)

where we use the first two terms of expansion (6.1D.4) in the exponent
and only the first term in the denominator of the Hankel function
expansion.

The expansion (6.1D.4) which gives rise to (6.1D.5) is referred to as
the Fresnel approximation. Equation (6.1D.5) is conveniently evaluated
in terms of tabulated functions known as Fresnel integrals defined by

F (w) =
∫ w

0
dt eiπt

2/2 = C(w) + iS(w) (6.1D.6)

We notice the symmetry relation

C(w) =
∫ w

0
dt cos

(
πt2

2

)
= −C(−w) (6.1D.7)

S(w) =
∫ w

0
dt sin

(
πt2

2

)
= −S(−w) (6.1D.8)

For small values of w, the integral can be expanded in power series of
w to carry out the integration. As w → 0, we have

F (w) ≈ w
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For large values of w, the integral can be expanded in series of inverse
powers of w. As w →∞, we have

F (∞) =
∫ ∞

0
dt eiπt

2/2 =
√

2/πeiπ/4
∫ ∞

0
dx e−x2

=
1
2

+ i
1
2

The values are shown in Figure 6.1D.2. When they are plotted on
the two-dimensional space formed by C(w) and S(w), the trajectory
of C(w) + iS(w) forms the Cornu spiral as shown in Figure 6.1D.3.

Note that
dC(w)

dw
= cos

(π

2
w2

)
dS(w)

dw
= sin

(π

2
w2

)
The slope of the Cornu spiral is seen to be

tan θ =
dS/dw

dC/dw
= tan

(π

2
w2

)
(6.1D.9)

The angle θ increases monotonically with w2. The tangent to the
curve is vertical when w2 is an odd integer and horizontal when w2

is an even integer.
The incremental length along the curve is

(dC)2 + (dS)2 =

[(
dC

dw

)2

+
(

dS

dw

)2
]

dw2 = dw2 (6.1D.10)

Thus w is the length of the curve from the origin.
To illustrate the use of the Cornu spiral, we first consider the

diffraction by a half-space aperture. With the integration limit from 0
to ∞, the electric field in (6.1D.6) takes the form

E(x, z) = ŷ
E0√
2i

eikzD(x)

where

D(x) =

√
k

πz

∞∫
0

dx′ eik(x′−x)2/2z =

∞∫
0

dt eiπt
2/2 −

−
√

k
πz

x∫
0

dt eiπt
2/2

= F (∞)− F (−
√

k/πz x)

=
1
2
− C(−

√
k/πz x) + i

[
1
2
− S(−

√
k/πz x)

]
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C(w)

S(w)

w
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Figure 6.1D.2 Fresnel integrals C(w) and S(w).
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Figure 6.1D.3 Cornu spiral.

The magnitude of E is proportional to the magnitude of D(x). We
note the following special values for D(x) :
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D(−∞) = 0

D(0) =
1
2

+ i
1
2

D(∞) = 1 + i

On the Cornu spiral [Fig. 6.1D.2], we may use the center of the lower
left spiral as the reference point for D(−∞). Then the distance from
D(−∞) to x = 0 is the magnitude for D(0). The corresponding point
for D(∞) is at the center of the upper right spiral. The distance from
D(−∞) is the magnitude for D(∞). When we move from deep in the
shadow zone for x < 0 towards the illuminated zone for x > 0, the
magnitude of D(x) is the distance from the reference point D(−∞) to
a point corresponding to the value of x on the spiral. Thus |D(x)| first
increases its value monotonically until x = 0 and becomes oscillatory
and approaches the final value of

√
2. If we normalize the value by

√
2

then the final value is 1 and the value at x = 0 is 1/2 [Fig. 6.1D.4].

shadow zone

illuminated zone

|E/E0|

x

x

z

Figure 6.1D.4 Diffraction by a half-plane aperture.
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Example 6.1D.1 Diffraction by slit.
We now consider the aperture with width 2l in the x̂ direction

[Fig. 6.1D.1] and infinite in the ŷ direction. The aperture surface current
is, according to (6.1D.2),

Js = −ŷ
2E0

η
U(l − |x′|)

where E0 is the amplitude of the incident wave, U(l − |x′|) is a unit step
function that is unity for |x′| ≤ l and zero for |x′| ≥ l . This assumption is
justifiable, for instance, in the case of optical diffraction by an opaque screen.
In the case of perfectly conducting screens, however, the boundary condition
of zero tangential electric field at x = ±l is not enforced.

At a distance z in the x-z plane, we have

E(x, z) = ŷ
E0√
2i

eikzD(x)

with

D(x) = F
[
(l − x)

√
k/πz

]
− F

[
−(l + x)

√
k/πz

]
= F

[
(l − x)

√
k/πz

]
+ F

[
(l + x)

√
k/πz

]
The second equality follows from the symmetry relation for F (w) in (6.1D.8).
Clearly |D(x)| is symmetrical with respect to x = 0. As seen from (6.1D.10),
it corresponds to the distance between the two end points of an arc of constant
length proportional to 2l. At x = 0, the magnitude |D(0)| is the greatest.
As x increases, |D(x)| first decreases and then becomes oscillatory. For very
large z, we move into the Fraunhofer zone where further simplifications can
be made.

End of Example 6.1D.1

Fraunhofer Approximation

When the observation point is very far from the finite aperture, the
Fresnel approximation for the two-dimensional slit diffraction problem
can be further simplified. We have

k
√

(x− x′)2 + z2 ≈ kz

[
1 +

1
2

(
x− x′

z

)2
]

≈ kz +
kx2

2z
− kxx′

z

(6.1D.11)
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This is known as the Fraunhofer approximation. The electric field in
the Fraunhofer zone due to a plane wave normally incident on a slit
with width 2l becomes

E(x, z) = ŷ
k

2

√
2

iπkz
eikz+ikx2/2z

∫ ∞

−∞
dx′ E0 U(l −

∣∣x′∣∣)e−i(kx/z)x′

(6.1D.12)
The integral is a Fourier transform of the step function, and

E(x, z) = ŷklE0

√
2

iπkz

sin(kxl/z)
kxl/z

eikz+ikx2/2z (6.1D.13)

Note that in (6.1D.12) the source function E0U [l−|x′|] can be replaced
by any general aperture field distribution. A general conclusion is that
in the Fraunhofer zone, characterized by approximation (6.1D.11), the
observed field at a constant z is proportional to the Fourier transform
of the aperture field as seen from (6.1D.12). The quadrature phase
term eikx

2/2z in (6.1D.12) accounts for the curvature of the curved
phase front. In the Fresnel approximation the inclusion of the quadra-
ture phase correction term eikx

′2/2z at the aperture leads to the use
of Fresnel integrals. In the radiation field approximation, which is not
restricted to paraxial directions, the quadrature phase term in Fraun-
hofer formula is further neglected.

According to the distance from the aperture, the diffracted field
can be divided into the near zone, the Fresnel zone, and the Fraunhofer
zone [Fig. 6.1D.1]. The separation between the Fresnel zone and the
Fraunhofer zone may be taken at zF = 2(2l)2/λ . For an aperture of
dimension 1 cm and wavelength 0.63 µm , the Fraunhofer zone begins
at zF ≈ 320 m , a rather stringent constraint for Fourier optics ex-
periments. The use of a convergent lens may eliminate this problem.
Under paraxial approximation, the effect of a lens amounts to giving
a wave transmitting through the lens a phase factor proportional to
e−ikx′2/2f , where f is the focal length. If a lens is placed immediately
in front of the aperture, we find that at z = f the Fresnel diffraction
formula reduces to the Fraunhofer formula under the Fresnel approx-
imation. Thus when a screen is placed a focal length away from the
lens, the Fourier transform of the aperture field is observed.

In general, when the observation point is very far from the aper-
ture, the diffracted field is equivalent to the radiation field due to an
aperture antenna with a surface current distribution. The radiation
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field approximation takes the form∣∣r − r′
∣∣ ≈ r − r̂ · r′

where r is the magnitude of r and r̂ is a unit vector along r, with
r = r̂r. The radiated field is also in the direction of r, i.e., k = r̂k. For
three-dimensional problems in free space, the dyadic Green’s function
is approximated by

G(r, r′) =
[
I +

1
k2
∇∇

]
eik|r−r′|

4π |r − r′| ≈
eikr

4πr

[
I − r̂r̂

]
e−ik·r′

where the del operator ∇ is replaced by ik. Huygens’ principle can
be written in the following form:

E(r) ≈ iωµeikr

4πr
©
∫∫

S′
dS′ e−ik·r′

·
{[

I − r̂r̂
]
· Js(r′)−

1
η

r̂ ×M s(r′)
}

(6.1D.14a)

H(r) ≈ ik eikr

4πr
©
∫∫

S′
dS′ e−ik·r′

·
{

r̂ × Js(r′) +
1
η

[
I − r̂r̂

]
·M s(r′)

}
(6.1D.14b)

The two equations are seen to be duals of each other with the replace-
ments E = ηH, H = −E/η, Js = M s/η and M s = −ηJs. Observe
that the first term in (6.1D.14a) is identical to the radiation field cal-
culated previously except that instead of volume current densities we
are integrating surface current densities over the surface enclosing the
source.

As the first example, consider the radiation due to a rectangular
aperture antenna with a constant surface current sheet

Js = x̂Js

Consider the approximation∣∣r − r′
∣∣ = ( z2 + x2 + y2 − 2xx′ − 2yy′ + x′2 + y′2)1/2

= (x2 + y2 + z2)1/2 − xx′

r
− yy′

r
+ δ
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The error term may be approximated by the quadrature phase

δ ≈ (Dx/2)2

2r
+

(Dy/2)2

2r

where Dx and Dy are the dimensions of the aperture. Let us apply
an arbitrary criterion restricting the phase error due to each dimension
to be less than π/8. Letting D denote either Dx or Dy ,

π

8
>

k(D/2)2

2r
=

2πD2

8λr

Thus

r >
2D2

λ

Beyond this distance, we are in the Fraunhofer zone. Making use of
the formula in the radiation field, the electric field vector is found to
be

Ex =
iωµJse

ikr

4πr

∫ Dx/2

−Dx/2
dx′ e−ikx′ sin θ cosφ

∫ Dy/2

−Dy/2
dy′ e−iky′ sin θ sinφ

=
iωµJse

ikr

4πr
DxDy

sin
(

kDx

2
sin θ cos φ

)
kDx

2
sin θ cos φ

sin
(

kDy

2
sin θ sin φ

)
kDy

2
sin θ sin φ

A plot of (sin u)/u is shown in Figure 6.1D.5. The value at u =
±0.44π is approximately 1/

√
2. The half-power beamwidth (HPBW)

is the angle at which the radiated power is half of its value at u = 0.
The maximum radiation intensity is

r2Re{S} =
1
2η

[
ωµ

Js
4π

DxDy

]2

The total radiated power can be calculated by integrating the field over
the aperture. As E = −x̂ηJs/2 and H = −ŷJs/2, we find

Pt =
η

8
J2
sDxDy

and the directivity

D =
4πr2Re{S}

Pt
=

k2

π
DxDy
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Figure 6.1D.5 Plot of sin u/u.

It is important to note that the radiation characteristics are valid in
the far-field zone commonly defined by r > 2D2/λ.

As another example, consider the diffraction of a plane wave nor-
mally incident on a circular aperture. We shall not restrict observation
points to be near the z axis. At the aperture we follow Equivalent
Problem 3 for a plane wave by using magnetic current sheets. We as-
sume a magnetic current sheet with M s = −2n̂ × E and no electric
current sheet. We find from Huygens’ principle

E(r) = 2©
∫∫

S′
dS′∇×G(r, r′) · [n̂× E(r′)]

= 2∇×©
∫∫

S′
dS′ n̂× E(r′)

eik|r−r′|

4π |r − r′|

(6.1D.15)

where S′ denotes the area of the circular aperture.
In the far-field zone, the observation point is so remote from the

aperture that all wave vectors originating from the aperture are es-
sentially parallel and we have k |r − r′| ≈ kr − k · r′. The integral in
(6.1D.15) becomes

E(r) ≈ ieikr

2πr
k ×©

∫∫
S′

dS′ n̂× E(r′)e−ik·r′
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Let the incident plane wave be polarized in the x̂ direction, k =
x̂k sin θ cos φ + ŷk sin θ sin φ + ẑk cos θ . We have

E(r) =
iE0e

ikr

2πr
(k × ŷ)

∫ R

0
dρ′

∫ 2π

0
ρ′dφ′ e−ikρ′ sin θ cos(φ−φ′)

= (ẑ sin θ cos φ− x̂ cos θ)
ikE0e

ikr

r

∫ R

0
ρ′dρ′J0(kρ′ sin θ)

= (ẑ sin θ cos φ− x̂ cos θ)
ikR2E0e

ikr

r

J1(kR sin θ)
kR sin θ

where E0 is the amplitude of the incident wave and R is the radius
of the aperture.

In the previous examples, we assume the aperture to be a hole on
an opaque screen and the equivalent source is equal to the part of the
surface current sheet due to the original plane wave. We now consider a
rectangular waveguide carrying a TE10 mode opening into free space.
By the equivalence principle, we may approximate the aperture field
at the waveguide opening by a current sheet with

Js(r′) = −ŷ
2E0

η
cos

πx′

a

for −a/2 < x′ < a/2 and −b/2 < y′ < b/2 . The far field is the
Fourier transform of the aperture source

E =
iωµeikr

4πr
©
∫∫

S′
dS′e−ik·r′ [I − r̂r̂] · Js (r′)

=
−iωµeikr

4πr

2E0

η
[I − r̂r̂] · (r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cos φ)

∫ b/2

−b/2
dy′

∫ a/2

−a/2
dx′ cos

πx′

a
e−ikxx′−ikyy′

=− (θ̂ cos θ sin φ + φ̂ cos φ) iωµ
4E0

η

eikr

4πr

(sin ky
b

2
ky

)



sin
[(

kx +
π

a

) a

2

]
kx +

π

a

+
sin

[(
kx −

π

a

) a

2

]
kx −

π

a




where kx = k sin θ cos φ and ky = k sin θ sin φ.
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Problems

P6.1.1
Let the tangential E field and tangential H field on an enclosed surface

S be related by an impedance matrix Z(r) such that

n̂× E = Z(r) · (n̂×H)

where n̂ is inward normal to the surface S bounding the region of interest
V

Zij(r) = ŝiZ (r)ŝj

and ŝi and ŝj with i, j = 1, 2 are unit vectors tangential to the surface S
such that ŝ1, ŝ2, and n̂ form an orthogonal coordinate system. Show that

E1 = −Z21H2 + Z22H1

E2 = Z11H2 − Z12H1

Let δE = E1ŝ1 + E2ŝ2 + Enn̂ and δH = H1ŝ1 + H2ŝ2 + Hnn̂ , then

n̂ · δE × δH
∗

= (−Z21H2H∗
2 + Z22H1H∗

2 − Z11H2H∗
1 + Z12H1H∗

1 )

n̂ · δE
∗ × δH = (−Z∗

21H∗
2 H2 + Z∗

22H∗
1 H2 − Z∗

11H∗
2 H1 + Z∗

12H∗
1 H1)

Determine the conditions for Zij such that the uniqueness theorem holds.

P6.1.2
By the image theorem, a vertical monopole antenna on a conducting

plane is equivalent to a dipole with the conductor removed. In radio broad-
casting stations, the Earth is used as the conducting plane. Calculate the
power and the gain for a monopole on a conducting plane.

P6.1.3
Determine the magnetic field H for the diffraction pattern in the far

field produced by a plane wave with electric field E = ŷE0eikz normally
incident on a rectangular slit.

P6.1.4
Using the equivalence principle, calculate the field H radiated from the

open end of a coaxial line. Assume that the field inside the waveguide has
only TEM modes with equivalent magnetic surface current

Ms = −φ̂′ 2E0a

ρ′ =
2E0a

ρ′ (x̂ sin φ′ − ŷ cos φ′) for a < ρ′ < b

where a and b are the inner radius and the outer radius of the coaxial cable
respectively.
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P6.1.5
Consider a plane wave Ei = ŷE0e−ikz , and Hi = x̂E0

η e−ikz incident on
a sphere of radius a. The radius of the sphere is much larger than a wave-
length. Assume that the following approximate values hold for the scattered
fields Es and Hs on the surface of the sphere:

(1) in the shadow region Es ≈ −Ei and Hs ≈ −Hi , and
(2) in the illuminated region r̂ × Es ≈ −r̂ × Ei and r̂ ×Hs ≈ r̂ ×Hi ,

where Ei and Hi are the fields of the incident wave. This assumed source
distribution is a result of the physical optics approximation. Solve for the
scattered radiation fields and calculate the echo area, defined by

Ae = lim
r→∞

(4πr2 Ps

Pi
)

where Ps is the backscattered power density, and Pi is the incident power
density of the plane wave.

P6.1.6
A slot antenna consists of a slot opening in a metallic plane and has

an infinitesimally small width w and length 2l in the ẑ direction. Let the
voltage across the slot at z = 0 be V and the electric field distribution in the
slot region be (V/w) sin k(l−|z|). Let l = λ/4, show that the complementary
structure is a wire antenna of length λ/2. Find the input impedance of the
slot antenna.

P6.1.7
Calculate the radiated field from an open parallel-plate waveguide. As-

sume that the field inside is the TE1 mode with Ey = E0 sin π
d

(
x− d

2

)
eikzz .

P6.1.8
For diffraction by a slit of width w = 2+ , the Fraunhofer field is found

under the assumptions dw � 1 and w/z � 1 with the diffraction pattern
proportional to sin(kx+/z)/(kx+/z) which peaks at x = 0 . Let x/z ≈ θ be
the angular spread. Show that for the main beam angular spread, θ1 ≈ λ/2+
where θ1 is defined to be the first zero of the diffraction pattern. Show also
that the maximum number of side lobes N ≤ w/λ .

P6.1.9
The operation of a Synthetic Aperture Radar (SAR) relies on the ability

of simulating a large antenna of aperture size L from a moving small antenna
with aperture size + by digital signal processing techniques. The synthesized
large antenna is based on the precise knowledge of the actual antenna at
their spatial positions at different times. The beam width of an actual small
antenna is λ/+ . Show that the ground resolution of SAR is + , which is a
remarkable result as it suggests that the smaller the radiating antenna the
finer is the ground resolution. What limits the size of the radiating antenna?
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6.2 Reaction and Reciprocity

A. Reaction

Consider a time-harmonic source a, denoted by Ja and Ma , in a
field Eb and Hb produced by source b, denoted by Jb and M b. The
interaction of source a with field b can be characterized by < a, b >,
defined as

< a, b > ≡
∫∫∫

V
dV

(
Ja · Eb −Ma ·Hb

)
(6.2.1)

Note that in the representation < a, b > the first entry, a, is associ-
ated with the source and the second entry, b, with the field; whenever
the source is zero, the reaction is zero. The integration extends over
the region containing source a, which is composed of volume current
densities, as well as surface current densities. In the case of surface
current densities, the volume integrals become surface integrals.

The reaction is a complex number and has the dimension of power.
It is different from complex power in two respects; first, in the defini-
tion of power the current density is complex-conjugated; second, the
reaction is defined for a source with respect to the field produced by
another source. When the source is reacting to the field produced by
itself, we have the self-reaction < a, a > .

Example 6.2.1
To understand what reaction means physically, consider the case in which

source a is a dipole,

Ja = Il δ(r − r0)

Then the reaction

< a, b > = Il · Eb(r0) (E6.2.1.1)

is proportional to the electric field in the direction of I as measured by the
dipole. It is equal to the field strength produced by source b at the dipole
when the dipole moment Il is unity. For instance, source b can be an antenna
located at the origin.

End of Example 6.2.1
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Example 6.2.2

As another example, consider the reactions of a current source and a
voltage source in circuits [Fig. E6.2.2.1]. Let Vb and Ib be caused by an
unspecified source b. For the current source [Fig. E6.2.2.1a], we have

Ja

a. b.

Vb Ma Vb

Ib Ib

Figure E6.2.2.1 a. Reaction of a current source. b. Reaction of a voltage
source.

< a, b > =
∫∫∫

V

dV Ja · Eb

= Ia

∫
dl · Eb = −IaVb

(E6.2.2.1a)

For the voltage source [Fig. E6.2.2.1b], we have

< a, b > = −
∫∫∫

V

dV Ma ·Hb

= −Va

∫
dl ·Hb = −VaIb

(E6.2.2.1b)

Thus, if we use a unit current source, the reaction < a, b > is equal to the
voltage Vb at source a due to source b. If we use a unit voltage source, the
reaction < a, b > is equal to the current Ib at source a due to source b.

End of Example 6.2.2
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B. Reciprocity

We define a system as reciprocal if, with respect to two sets of sources
a and b ,

< a, b > = < b, a > (6.2.2)

Let the system be an isotropic medium; we shall show that isotropic
media are reciprocal. We write the Maxwell equations with source a
as

∇×Ha = −iωεEa + Ja (6.2.3a)
−∇× Ea = −iωµHa + Ma (6.2.3b)

and the Maxwell equations with source b as

∇×Hb = −iωεEb + Jb (6.2.4a)
−∇× Eb = −iωµHb + M b (6.2.4b)

Forming Eb · (6.2.3a) + Ha · (6.2.4b) and Ea · (6.2.4a) + Hb · (6.2.3b) ,
we arrive at

−∇ ·
(
Eb ×Ha

)
= −iωεEa · Eb + Ja · Eb − iωµHa ·Hb + M b ·Ha

(6.2.5a)
−∇ ·

(
Ea ×Hb

)
= −iωεEa · Eb + Jb · Ea − iωµHa ·Hb + Ma ·Hb

(6.2.5b)

Subtracting (6.2.5b) from (6.2.5a) and integrating, we obtain

< a, b > − < b, a > =©
∫∫

S
dS ·

(
Ea ×Hb − Eb ×Ha

)
(6.2.6)

By definition, isotropic media are reciprocal provided that

©
∫∫

S
dS ·

(
Ea ×Hb − Eb ×Ha

)
= 0 (6.2.7)

This statement is referred to as the Lorentz reciprocity theorem. When
all sources and matter are of finite extent, we can extend the surface
of the volume to infinity and the left-hand side of (6.2.6) contains
all sources contributing to the reactions. At an infinite distance away
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from the source, the E and H fields are related by H = r̂×E/η and
r̂ ·E = r̂ ·H = 0 . As a consequence, Ea ×Hb −Eb ×Ha = 0 and we
find that the surface integral in (6.2.7) vanishes.

The reciprocity theorem that we have just proved is useful in many
situations. We shall apply it in subsequent sections to derive stationary
formulas in variational problems based on reciprocity. We now use it
to prove a few simple assertions.

Example 6.2.3
Consider an electric current sheet impressed on the surface of a perfect

conductor. If the surface of the conductor is a plane, the image theorem
assures us that no field is produced by the current. But what if the surface
is not a plane? Does it seem reasonable to extend the result and claim that
all electric current sheets impressed on the surface of a conductor of any
shape do not produce a field? The reciprocity theorem assures us that this is
true by a simple argument. Let the impressed source be denoted as source a
[Fig. E6.2.3.1]. Let there be a source b that measures the field produced by
source a; for instance, source b can be a dipole antenna. Source b produces
no tangential electric field along the surface of the conductor, because of the
boundary conditions. The reaction of a and b is < a, b > = 0. By the
reciprocity theorem,

< b, a > = < a, b > = 0

But <b, a> is the field arising from the impressed source a as measured by
source b, and b can be any arbitrary source. Therefore, source b measures
no field, and this proves that impressed electric current sheets on the surface
of a perfect conductor produce no field.

b

a

< b, a >=< a, b >= 0

Figure E6.2.3.1 Zero field produced by current sheet impressed on per-
fect conductor.

End of Example 6.2.3
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Example 6.2.4
For two antennas operating as a transmitter and a receiver, we can regard

the terminals of the two antennas as the terminals of a two-port network in
circuit theory. We write

Va = ZaaIa + ZabIb (E6.2.4.1a)
Vb = ZbaIa + ZbbIb (E6.2.4.1b)

Suppose both antennas a and b are excited with terminal currents Ia and
Ib . Since no magnetic sources are present, < a, b > = < b, a > gives

∫∫∫
Va

dV Ja · Eb =
∫∫∫

Vb

dV Jb · Ea

For perfectly conducting antennas, the electric fields are zero over the anten-
nas and we have

V oc
a Ia = V oc

b Ib (E6.2.4.2)

where

V oc
a = −

∫
dl · Eb

is the open circuit voltage at the terminal of antenna a due to the field
produced by antenna b , and similarly V oc

b is the open circuit voltage at
the terminal of antenna b due to the field produced by antenna a . From
(E6.2.4.1) we have

V oc
a = ZabIb

V oc
b = ZbaIa

It follows from (E6.2.4.2) that

Zab = Zba (E6.2.4.3)

This is a direct consequence of the reciprocity principle. If a current source I
excites antenna a , the open circuit voltage at the terminals of antenna b will
be V oc

b = ZbaI which is equal to V oc
a = ZabI at the terminals of antenna a

when the same current source is used to excite antenna b .
End of Example 6.2.4
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Example 6.2.5
We now prove that the receiving pattern of an antenna is identical to its

radiation pattern. Let antenna a be the antenna under consideration, and
antenna b be a test antenna, constructed so that it is omnidirectional. For
both receiving and radiation patterns we are concerned with far fields. By
the reciprocity theorem, we see that, in a direction where a as a transmitter
radiates a weaker plane wave to b, a as a receiver also receives a weaker plane
wave from b. Thus the radiation pattern and the receiving pattern of antenna
a are identical. The gain Ga(θ, φ) characterizes the radiation pattern of
antenna a when it is acting as a transmitter. When a is acting as a receiver,
we can define an effective area Aa(θ, φ) to characterize its receiving pattern.
From the proof we know that, for any antenna a, the effective area A(θ, φ)
is related to its gain G(θ, φ) by a constant independent of the structure of
the antenna. To determine this constant, we consider a dipole antenna with
the gain function

G(θ, φ) =
3
2

sin2 θ (E6.2.5.1)

l

θ

k

E

incident plane wave

Figure E6.2.5.1 Dipole as receiver.

Let there be a plane wave incident upon the dipole from a direction making
angle θ with the dipole axis along l [Fig. E6.2.5.1]. The power received by
the antenna with a properly matched load ZL is

P =
(E · l)2

2(ZL + Z∗
L)2

Rr =
E2l2 sin2 θ

8Rr
=

[
π

k2

3
2

sin2 θ
]

Sinc

The last equality follows on using the dipole radiation resistance Rr =
(η/6π)k2l2, and the incident power density Sinc = E2/2η . Thus we define

A(θ, φ) =
π

k2
G(θ, φ) (E6.2.5.2)

The power received by the antenna is equal to the power per unit area of the
incident wave times the effective area A(θ, φ) . Notice that the proportionality
factor, π/k2 , even though determined for a dipole antenna, is a universal
constant independent of antenna structures.

End of Example 6.2.5
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C. Reciprocity Conditions

In the preceding development we proved that isotropic media are recip-
rocal, and we applied the reciprocity theorem in various situations. We
shall now examine the validity of the reciprocity theorem for a bian-
isotropic medium. Using the same procedure as illustrated in (6.2.3)–
(6.2.7), we find

<a, b > − < b, a >

= iω

∫∫∫
V

dV (Eb ·Da − Ea ·Db + Ha ·Bb −Hb ·Ba) (6.2.8)

If the right-hand side is zero, the medium is reciprocal. The constitutive
relations for bianisotropic media are

D = ε · E + ξ ·H (6.2.9a)

B = µ ·H + ζ · E (6.2.9b)

Inserting (6.2.9) into the right-hand side of (6.2.8), we obtain

< a, b > − < b, a >

= iω

∫∫∫
V

dV
[
Eb · (ε− ε

T ) · Ea + Ha · (µ− µ
T ) ·Hb

+ Eb · (ξ + ζ
T
) ·Ha −Hb · (ζ + ξ

T
) · Ea

]

Thus the medium will be reciprocal if

ε = ε
T (6.2.10a)

µ = µ
T (6.2.10b)

ξ = −ζ
T

(6.2.10c)

These are the conditions for a medium to be reciprocal. Consequently,
isotropic media are reciprocal, and anisotropic media with symmetri-
cal permittivity and permeability tensors are reciprocal. Bianisotropic
media that satisfy (6.2.10a), (6.2.10b), and the symmetry condition

ξ = ζ
+

are reciprocal if ξ and ζ are purely imaginary matrices.
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D. Modified Reciprocity Theorem

The reciprocity theorem can be extended as follows. With respect to
source a, we write

−∇× Ea = −iω(µ ·Ha + ζ · Ea) + Ma (6.2.11a)

∇×Ha = −iω(ε · Ea + ξ ·Ha) + Ja (6.2.11b)

The medium is characterized by µ, ε, ξ, and ζ. With respect to source

b, we use constitutive relations characterized by µ
C

, ε
C

, ξ
C

, and ζ
C

such that

µ
C = µ

T (6.2.12a)

ε
C = ε

T (6.2.12b)

ξ
C

= −ζ
T

(6.2.12c)

ζ
C

= −ξ
T

(6.2.12d)

and call this medium the complementary medium. The Maxwell equa-
tions for source b in the complementary medium become

−∇× E
C
b = −iω(µC ·HC

b + ζ
C
· EC

b ) + M b (6.2.13a)

∇×H
C
b = −iω(εC · EC

b + ξ
C
·HC

b ) + Jb (6.2.13b)

where E
C
b and H

C
b denote the fields produced by Jb and M b in the

complementary medium. If we define a new reaction

< a, b >C=
∫∫∫

V
dV (Ja · EC

b −Ma ·HC
b )

we find from (6.2.11) and (6.2.13) that

< b, a > = < a, b >C (6.2.14)

This result may be called the modified reciprocity theorem, which
states that the reaction < b, a > of source b caused by source a
in a bianisotropic medium is equal to the reaction < a, b >C of source
a caused by source b in the complementary medium. The medium
is reciprocal if the complementary medium is identical to the original
medium.
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Topic 6.2A Stationary Formulas and Rayleigh-Ritz Procedure

Consider a cavity at resonance. We want to calculate the resonant fre-
quency, but we do not know the precise field distribution inside the
cavity. Nevertheless, we can find a formula that expresses resonant fre-
quencies in terms of field distributions. We can then assume a field
distribution and calculate the resonant frequency in terms of the as-
sumed field. If the formula is stationary, we can come closer to the
true resonant frequency than is possible by using a nonstationary for-
mula. Consider the formula y = f(x). We want to calculate y at
x = x0, but we do not know the precise value of x0. We assume that
x = x0 + p, where p is a parameter characterizing the deviation from
x0. The formula y = f(x) = f(x0 + p) can be expanded around x0

in a Taylor series. We call the formula stationary at p = 0 if

∂f

∂p

∣∣∣∣
p=0

= 0 (6.2A.1)

When this condition is satisfied, f(x) = f(x0) + (1/2)p2f (2)(x0) + · · ·
and the deviation of f(x) from f(x0) is of order p2. Clearly, the
stationary formula has an extremum at p = 0. When p is complex,
we have a saddle point at p = 0.

Stationary Formula for Resonator Wavenumbers

We shall derive a stationary formula for the resonant frequency of a
cavity with an assumed electric field. It is appropriate to mention that
a stationary formula involving an assumed magnetic field or a mixture
of electric and magnetic fields can be similarly derived. In terms of the
assumed electric field (with subscript a ), the Maxwell equation gives

Ja = iωεEa +∇×Ha

=
1

iωµ

[
−k2Ea +∇× (∇× Ea)

] (6.2A.2)

inside the cavity. On the cavity wall, we have

M s = n̂× Ea (6.2A.3)

where n̂ is the unit vector normal to the cavity wall and directed
outwards. This magnetic surface current sheet will be zero if the E
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field is the exact electric field, because of the boundary conditions.
Since the electric field will be assumed, there is no guarantee that it
satisfies the boundary conditions.

Using the definition for reaction, we form a reaction for the cavity,

< a, a > =
∫∫∫

V
dV Ja · Ea −©

∫∫
S

dS M s ·Ha

=
1

iωµ

{
−k2

∫∫∫
V

dV E
2
a +

∫∫∫
V

dV (∇× Ea)2

+ 2©
∫∫

S
dS n̂ ·

[
(∇× Ea)× Ea

]}
(6.2A.4)

In the derivation, we make use of the identities n̂ × Ea · ∇ × Ea =
−n̂ ·

[
(∇× Ea)× Ea

]
and Ea · ∇× (∇×Ea) = (∇×Ea)2 +∇ · [(∇×

Ea) × Ea] . We require that reaction < a, a > be equal to the true
reaction of the cavity < c, c > , with c standing for “correct”. What
is the true reaction of the cavity? Inside the cavity, where the field is
nonzero, the source is zero. On the cavity walls, where the source is
nonzero, the field is zero. Thus < c, c > = 0. When < a, a > is set
equal to < c, c > equal to zero, we obtain from (6.2A.4) a formula for
the resonant wavenumber k2 :

k2 =

∫∫∫
V

dV
(
∇× Ea

)2 + 2©
∫∫

S
dS n̂ ·

(
∇× Ea

)
× Ea∫∫∫

V
dV Ea · Ea

(6.2A.5)

Note that this formula is exact if Ea is the exact field. We would like
to find out whether this formula is stationary. Let Ea = E + pe and
denote (6.2A.5) by k2 = N(p)/D(p). We wish to examine

∂k2

∂p

∣∣∣∣
p=0

=
D(0)N ′(0)−N(0)D′(0)

D2(0)
=

N ′(0)− k2D′(0)
D(0)

since N(0) = k2D(0). Differentiating the numerator of (6.2A.5) and
setting p = 0, we obtain

N ′(0) =2
∫∫∫

V
dV

(
∇× E

)
· (∇× e) + 2©

∫∫
S
dS n̂ ·

(
∇× E

)
× e

=2k2

∫∫∫
V

dV e · E = k2D′(0)



6.2 Reaction and Reciprocity 705

a

d

z

Figure 6.2A.1 Circular cavity resonator.

Here we used the fact that n̂ × E = 0 on the boundary surface S,
the identity (∇ × E) · (∇ × e) = ∇ · (e × ∇ × E) + e · ∇ × ∇ × E,
and the wave equation ∇×∇×E = k2E. From these results we have
proved that ∂k2/∂p

∣∣
p=0

= 0. Therefore, by requiring that the reaction
caused by an assumed field be the same as the reaction attributable to
the true field, we obtain a stationary formula for the resonant frequency
of cavity.

Consider a circular cavity as shown in Figure 6.2A.1. The exact
field is known to be, for the fundamental mode, E = ẑE0J0(kρ). The
exact resonant wavenumber, which is the first root of J0(ka),

ka = 2.405 or k2a2 = 5.784

is also known. We now use (6.2A.5) to estimate the resonant wavenum-
ber. Let us assume a trial field

Ea = ẑ cos
πρ

2a

This trial field satisfies the boundary condition at ρ = a, and it is not
a solution to the wave equation. The curl of Ea can be calculated:

∇× Ea = φ̂
π

2a
sin

πρ

2a

Stationary formula (6.2A.5) becomes

k2a2 =

∫ d

0
dz

∫ 2π

0
dφ

∫ a

0
ρdρ (π/2)2 sin2(πρ/2a)∫ d

0
dz

∫ 2π

0
dφ

∫ a

0
ρdρ cos2(πρ/2a)

= 5.830
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This is very close to the exact solution.
Next, we assume the trial field

Ea = ẑ
(
1 + A

ρ

a

)
(6.2A.6)

where A is a constant. We shall determine the constant A by using
the Ritz procedure as illustrated below. Applying (6.2A.5), we obtain

k2a2 =

∫ d

0
dz

∫ 2π

0
dφ

∫ a

0
ρdρ A2 −

∫ d

0
dz

∫ 2π

0
dφ 2a2A(1 + A)∫ d

0
dz

∫ 2π

0
dφ

∫ a

0
ρdρ [1 + A(ρ/a)]2

=
−2A− (3/2)A2

(1/2) + (2/3)A + (1/4)A2
(6.2A.7)

requiring k2a2 to be stationary with respect to A . If ∂(k2a2)/∂A =
0, we find A = −1 or −2 . Inserting A = −1 into (6.2A.7) yields
k2a2 = 6. The value of A = −1 also enables the trial field to satisfy
the boundary condition at ρ = a. The other value of A = −2 gives
rise to a negative k2a2 and is discarded.

The Ritz procedure can then be extended to n parameters Al,
l = 1, 2, 3, . . . , n, which are then determined from the n equations
∂k2/∂Al = 0, l = 1, 2, . . . n. As an example, we assume a trial field
characterized by parameters A1 and A2 and write

E = ẑ(1 + A1
ρ

a
+ A2

ρ2

a2
)

Then
∇× E = −φ̂(A1 + 2A2

ρ

a
)/a

Inserting in the stationary formula and performing the integration, we
obtain

k2a2 = − 10[18A2
2 + (28A1 + 24)A2 + 9A2

1 + 12A1]
10A2

2 + (24A1 + 30)A2 + 15A2
1 + 40A1 + 30

The parameters A1 and A2 are determined by requiring that

∂(k2a2)
∂A1

= 0 ,
∂(k2a2)

∂A2
= 0
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These yield two equations:

38A3
2 + (90A1 + 84)A2

2

+(51A2
1 + 45A1 − 60)A2 − 45A2

1 − 135A1 − 90 = 0

(76A1 + 150)A2
2 + (180A2

1 + 600A1 + 540)A2

+102A3
1 + 461A2

1 + 720A1 + 360 = 0

Solving these equations gives A1 = −0.7817 and A2 = −0.1834 . With
these values for A1 and A2, we obtain

k2a2 = 5.934

This value is closer to the exact solution than the one we would have
obtained by using the trial field (6.2A.6). With these values of A1 and
A2 , we see that the trial field satisfies neither the wave equation nor
the boundary condition. Solutions from other values of A1 and A2 are
not calculated and may correspond to higher resonant wavenumbers.
As a final remark, we note that in using the Ritz procedure it is of-
ten advisable to choose the trial field components from an orthogonal
complete set of functions.

Stationary Formula for Antenna Impedance

We now derive a stationary formula for antenna self-impedance. Consi-
der an antenna made of perfect conductor excited by a current source
I. The self-reaction of this antenna is due entirely to the current at
the terminal. The reason is that on the conducting surface, where the
surface current is not zero, the field is zero. The self-reaction is equal
to −V I at the terminal. To calculate the self-impedance, we maintain
the same terminal current I and assume a current distribution on the
surface of the antenna. The self-reaction < a, a > is then calculated.
We require that this reaction be approximately equal to the correct
reaction < c, c >:

< a, a >≈< c, c > = −V I (6.2A.8)

The input impedance is approximated by

Zin = −< c, c >

I2
≈ −< a, a >

I2
(6.2A.9)
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a

Figure 6.2A.2 Probe excitation of a radial parallel-plate waveguide.

Let a = c + pe. We see that

∂Zin

∂p
= − 1

I2
(< e, c > + < c, e >) = − 2

I2
< e, c > = 0

The second equality follows from reciprocity. The last equality is due
to the fact that at the terminal, where the field is not zero, the error
source e is zero; everywhere else the correct field c is zero. Thus the
formula for the input impedance is proved to be stationary.

We apply the stationary formula for input impedance to a radial
parallel-plate waveguide excited by a probe of diameter a [Fig. 6.2A.2].
The source terminal of the probe is outside the waveguide. For the
TEM mode, we assume that the trial current is uniform along the
probe, Ja = ẑI/πa. The electric field generated by this current is

Ea = ẑ

[
−k2I

4ωε
H

(1)
0 (kρ)

]

Letting d denote the distance between the two plates, we find the
input impedance to be

Zin =
η

4
kd H

(1)
0 (ka/2)

by using the stationary formula (6.2A.9).

Stationary Formula for Scattering

We shall now derive a stationary formula for scattering problems. Con-
sider a transmitter, a receiver, and a conducting scatterer [Fig. 6.2A.3].
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receiver

transmitter

scatterer

Figure 6.2A.3 A transmitter, a receiver, and a conducting scatterer.

The receiver receives a wave composed of two components; one di-
rectly from the transmitter in the absence of the scatterer, and one
originating from currents on the scatterer induced by the transmitter
alone. Note that the receiver also induces currents on the scatterer.
We want to find a stationary formula for the scattered field Vs as re-
ceived by the receiver, Vs = − < i, t >, where i denotes the receiver
source current, and t the field produced by the transmitter-induced
currents on the scatterer. We anticipate that the stationary formula
will comprise of surface integrals over the scatterer surface. By reci-
procity, Vs = − < i, ct > = − < ct, i >, where, in < ct, i >, ct
denotes the current induced by the transmitter on the scatterer, and
i the field produced by the receiver in the absence of the scatterer.
In the presence of the scatterer, the field on the scatterer is equal and
opposite to i because the scatterer is a conducting body. The field on
the scatterer combined with the field in the absence of the scatterer
gives a zero field at the scatterer. Let this field be denoted by cr. We
then have on the scatterer surface

Vs = − < ct, i > = < ct, cr > (6.2A.10)

Thus far, we have established that the signal received by the receiver is
equal to the reaction between the current induced on the scatterer by
the transmitter and the field generated on the scatterer by the receiver
current.

The letter c in (6.2A.10) stands for “correct.” To calculate Vs,
we approximate < ct, cr > and write

Vs = < ct, cr >≈< at, ar > (6.2A.11)

where a stands for “assumed.” The formula is a stationary formula
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provided that the following constraints are met:

< at, ar > = < ct, ar > = < at, cr > (6.2A.12)

where ct is the correct current induced on the scatterer by the trans-
mitter, and cr is the correct field generated on the scatterer because
of the receiver current.

To show that the constraints of (6.2A.12) can lead us to a station-
ary formula, let us make a general proposition: a reaction < a, b > is
stationary if it satisfies the constraints

< a, b > = < ca, b > = < a, cb > (6.2A.13)

To prove this theorem, let

a = ca + paea

b = cb + pbeb

where c stands for “correct”, and e for “error”. By definition, < a, b >
is stationary if

∂ < a, b >

∂pa

∣∣∣∣
pa=pb=0

=
∂ < a, b >

∂pb

∣∣∣∣
pa=pb=0

= 0 (6.2A.14)

which is seen to be true as the constraint < a, b > = < ca, b > implies
<ea, b> = 0 , and the constraint <a, b> = <a, cb > implies <a, eb >
= 0 .

It is important to note that constraints (6.2A.13) are sufficient
conditions for a formula to be stationary; they are not necessary con-
ditions. Recall that we did not use these constraints in establishing
stationary formulas for the resonant wavenumber of a cavity or for the
input impedance of an antenna. In fact, the constraints may be vio-
lated. For instance, consider the input impedance of an antenna. Here
the constraint < a, a > = < a, c > is violated because, on the antenna
surface, the correct fields are zero, but the assumed fields are not.
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Topic 6.2B Method of Moments

The method of moments is a numerical technique useful in the solution
of electromagnetic wave scattering and radiation problems. Consider
a perfectly conducting scattering body that, when illuminated with
an incident field Ei and H i , produces scattered fields Es and Hs .
The scattered fields Es and Hs may be attributed to surface currents
induced on the scattering body by the incident field. Letting the surface
currents be Js , we have

Es(r) = iωµ

∫∫
dS′ G(r, r′) · Js(r′) (6.2B.1)

integrating over the surface of the scatterer S. The unknown surface
current may be expanded in terms of basis (or expansion) functions
Fn(r′) such that

Js(r′) =
∑
n

InFn(r′) (6.2B.2)

Once the expansion coefficients In are known, the unknown surface
current Js(r′) will be determined and used to find the desired scattered
fields.

The method of moments calls for the use of a set of testing func-
tions Jm(r) with which we form∫∫

Sm

dSm Jm(r) · Es(r)

=
∑
n

[∫∫
Sm

dSm Jm(r) · iωµ

∫∫
dS′G · Fn

]
In

=
∑
n

ZmnIn (6.2B.3)

where

Zmn =
∫∫

Sm

dSm Jm(r) · iωµ

∫∫
dS′G · Fn(r′) (6.2B.4)

and Sm is part of the surface of the perfectly conducting scatterer. The
set of testing functions covers the whole surface S of the scattering
body.
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On the conducting surface, the boundary condition requires that
the total tangential electric field Es + Ei = 0 . From (6.2B.3), we find∫∫

Sm

dSm Jm(r) · Es(r) = −
∫∫

Sm

dSm Jm(r) · Ei(r) (6.2B.5)

This should be compared with (6.2A.10) where < ct, cr > = − < ct, i >
although ct is now actually at . Defining

Vm = −
∫∫

Sm

dSm Jm(r) · Ei(r) (6.2B.6)

We find from (6.2B.3)–(6.2B.5)

ZmnIn = Vm (6.2B.7)

and consequently the unknown expansion coefficients for the surface
currents

In = Z−1
mn Vm (6.2B.8)

Thus the essence of the method of moments lies in the choice of the ba-
sis and testing functions, and the numerical inversion of the Z -matrix
Zmn . In the point matching technique, we choose the testing functions
to be delta functions such that Jm(r) = Jmδ(r − rm) and cover the
scattering body with enough points to ensure a convergent result. On
those chosen points, the boundary condition of zero tangential E field
is enforced. When the same function is used for both basis expansion
and testing, the technique is called Galerkin’s method.

Problems

P6.2.1
Which of the following media are lossless? Which of the following media

are reciprocal? For the nonreciprocal ones, what are their complementary
media?
(a) A biaxial medium with real constitutive parameters.
(b) A moving biaxial medium.
(c) A chiral medium

D = εE + iχH

B = µH − iχE
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(d) A biisotropic medium with a real χ .

D = εE + χH

B = µH − χE

(e) A ferrite in a dc magnetic field.

P6.2.2
Derive a stationary formula for the resonant frequency of a resonator

cavity in terms of the magnetic field H by assuming a trial field Ha to
obtain

Ea =
1
−iωε

∇×Ha, Ms = − 1
iωε

n̂× (∇×Ha)

Find the resonant frequency for a circular cavity by assuming approximate
magnetic field distributions to be Ha = φ̂ (ρ + Aρ2) .

P6.2.3
Show that, if the inside of a waveguide is filled with several different

isotropic media, the stationary formula for the cutoff frequency in terms of
the E field is

ω2
c =

∫∫
dS µ−1(∇× E)2∫∫

dS εE2

+
2
∫

dl n̂ ·
[
µ−1(∇× E)× E

]
∫∫

dS εE2

where n̂ is the outward-pointing unit vector normal to the waveguide walls.
Solve for the cutoff frequency of a rectangular waveguide filled with two

different dielectric media. Let the waveguide dimension a be along x̂ and b
along ŷ . The dielectric ε1 fills the space from x = 0 to x = a/2 , and the
dielectric ε2 fills the space from x = a/2 to x = a . Assume an electric field
of E = ŷ sin(πx/a) .

P6.2.4

Consider backscattering from a linearly polarized wave E
i

= ẑE0 eikx

produced by a current element Il , with E0 = −iωµIl/4πr . For backscatter-
ing, transmitter and receiver are the same,

Vs = − < ct, ct >= −I

∫
E
s · d+ = −Es

� I+

where Es
� signifies the scattered field component along the antenna.

Es
l =

< ct, ct >

(I+)
� < at, at >

(I+)
=

< at, ct >2

(I+) < at, at >
=

(∫∫
J
a · Ei

dS

)2

(I+)
∫∫

J
a · Ea

dS
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Show that the echo area for backscattering resulting from the linearly polar-
ized field is

Ae = lim
r→∞

4πr2

∣∣∣∣Es

Ei

∣∣∣∣
2

= π

∣∣∣∣∣∣∣∣∣
η

λ

(∫∫
Ja
z e+ikx, dS

)2

∫∫
E
a · Ja dS

∣∣∣∣∣∣∣∣∣

2

.

Ae = lim
r→∞

4πr2

∣∣∣∣Es

E
i

∣∣∣∣
2

= π

∣∣∣∣∣∣∣∣∣
η

λ

(∫∫
Ja
z e−ikxds

)2

∫∫
E
a · Ja

ds

∣∣∣∣∣∣∣∣∣

2

Consider a plane wave E
i
= ẑE0 eikx is normally incident upon a conducting

wire of length L = λ/2 along the z axis. Assume that the current on the wire
is Ia = cos kz . Using the stationary formula and the fact that < a, a > = 73 ,
find the echo area for backscattering.

P6.2.5
For a cavity filled with several different isotropic media, show that the

stationary formula with an assumed electric field is given by

ω2
r =

∫∫∫
V

dV µ−1(∇× E)2 + 2
∫∫

S

dS n̂ · {µ−1(∇× E)× E}∫∫∫
V

dV εE2

where n̂ is the outward-pointing unit vector normal to the cavity walls. Con-
sider a microwave oven, which has dimensions h = 25 cm, w = 40 cm, d =
40 cm . Consider a dielectric of rectangular shape with permittivity ε = 4εo
and dimensions 15 cm(h) × 30 cm(w) × 20 cm(d) . Assume the electric field
E = x̂ sin(πy/w) sin(πz/d) and find the percentage of variation in resonant
frequency.
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6.3 Quasi-Static Limits

To explore the quasi-static limit, we expand the field vectors in power
series of their values around ω = 0 . To facilitate the expansion, we
separate the field dependence by introducing a new independent vari-
able τ = ωt . The field quantities E(r, τ, ω), H(r, τ, ω), D(r, τ, ω),
B(r, τ, ω), J(r, τ, ω), and ρ(r, τ, ω) can now be expanded in power
series in ω . We write

E(r, τ, ω) =
∞∑

m=0

ωm

m!

[
∂m

∂ωm
E(r, τ, ω)

]
ω=0

=
∞∑

m=0

E
(m)(r, τ, ω) (6.3.1)

and similarly for other field quantities. From the Maxwell equations,
we find

∞∑
m=0

∇× E
(m) = −ω

∂

∂τ

∞∑
m=0

B
(m)

= −
∞∑

m=1

∂

∂τ

ωm

(m− 1)!

[
∂m−1

∂ωm−1
B(r, τ, ω)

]
ω=0

= −
∞∑

m=1

ω
∂

∂τ
B

(m−1) (6.3.2)

It follows that

∇× E
(0) = 0 (6.3.3a)

∇× E
(m) = − ∂

∂t
B

(m−1)
m = 1, 2, . . . (6.3.3b)

Similarly,

∇×H
(0) = J

(0) (6.3.4a)

∇×H
(m) = J

(m) +
∂

∂t
D

(m−1)
m = 1, 2, . . . (6.3.4b)

∇ ·D(0) = ρ(0) (6.3.5a)

∇ ·D(m) = ρ(m) m = 1, 2, . . . (6.3.5b)
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∇ ·B(0) = 0 (6.3.6a)

∇ ·B(m) = 0 m = 1, 2, . . . (6.3.6b)

∇ · J (0) = 0 (6.3.7a)

∇ · J (m) = − ∂

∂t
ρ(m−1) m = 1, 2, . . . (6.3.7b)

Equations (6.3.3a) and (6.3.5a) are the governing equations for elec-
trostatic fields. Equations (6.3.4a) and (6.3.6a) are the governing
equations for magnetostatic fields.

It is important to notice that the m th-order fields are now ex-
pressed in terms of the (m− 1) th-order fields. Thus, when the zeroth-
order fields are obtained for given sources J

(0) and ρ(0) , all higher
order fields can be determined in succession. The electrostatic fields are
governed by (6.3.3a), (6.3.5a), and (6.3.7b), with m = 1 . Namely,
the zeroth-order electrostatic fields as obtained from (6.3.3a) and
(6.3.5a) are now used to find the first-order current J

(1) from (6.3.7b)
and likewise the first-order magnetic field H

(1) from (6.3.4b) . Equa-
tions (6.3.4a), (6.3.6a), and (6.3.3b) with m = 1 are seen to be the
magnetostatic equations. Associated with each differential equation in
(6.3.3)–(6.3.7), corresponding boundary conditions can be derived.

Example 6.3.1 Consider the electromagnetic fields in a parallel-plate
waveguide [Fig. E6.3.1.1]. A time-harmonic voltage source is applied at z = 0
with

V (t) = V0 cos ωt (E6.3.1.1)

The zeroth-order electric field is the electrostatic field

E
(0)

= −x̂
V0

d
cos ωt (E6.3.1.2a)

H
(0)

= 0 (E6.3.1.2b)

The first-order magnetic field H
(1)

is found from (6.3.4b), which gives

∂

∂z
H(1)
y = −ω

εV0

d
sin ωt
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z

z = l

µ, ε

0
V

d
x

Figure E6.3.1.1 Parallel-plate waveguide.

Thus

H
(1)

= −ŷ ω
εV0

d
z sin ωt (E6.3.1.2c)

Since H
(0)

= 0 , we find that

E
(1)

= 0 (E6.3.1.2d)

for the first-order electric field.
For the second-order field quantities, we find from (6.3.4b) that

H
(2)

= 0 (E6.3.1.3a)

which follows from (E6.3.1.2d) . As seen from (6.3.3b),

∇× E
(2)

= ŷ ω2 µεV0

d
z cos ωt

Thus

E
(2)

= x̂
V0

d

k2z2

2
cos ωt (E6.3.1.3b)

where k2 = ω2µε .
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Continuing the process, we find that the odd-order terms E
(m)

are all
zero and the even-order terms are

E
(2n)

= −x̂(−1)n
V0

d

(kz)2n

(2n)!
cos ωt n = 0, 1, 2, . . . (E6.3.1.4a)

Similarly, we find that the even-order terms for H
(m)

are all zero and the
odd-order terms are

H
(2n+1)

= −ŷ(−1)n
V0

ηd

(kz)2n+1

(2n + 1)!
sin ωt n = 0, 1, 2, . . . (E6.3.1.4b)

Summing over the infinite number of terms, we obtain

E =
∞∑
n=0

E
(2n)

= −x̂
V0

d
cos kz cos ωt (E6.3.1.5a)

H =
∞∑
n=0

H
(2n+1)

= −ŷ
V0

ηd
sin kz sin ωt (E6.3.1.5b)

Equation (E6.3.1.5) represents the exact solution for an open-circuited trans-
mission line.

End of Example 6.3.1

Example 6.3.2
Consider the electromagnetic fields in between two plates with circular

cross-section as shown in [Figure E6.3.2.1]. A time-harmonic voltage source
is applied at z = 0 with

V (t) = V0 cos ωt (E6.3.2.1)

z

a

dd

Figure E6.3.2.1 Circular-plate capacitors.
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The zeroth-order electric field is the electrostatic field

E
(0)

= ẑ
V0

d
cos ωt (E6.3.2.2a)

H
(0)

= 0 (E6.3.2.2b)

The m th order fields are derived from the (m− 1) th order fields.
∂

∂ρ
E(m)
z =

∂

∂t
µH(m−1)

y (E6.3.2.3a)

1
ρ

∂

∂ρ
ρH

(m)
φ =

∂

∂t
εE(m−1)

z (E6.3.2.3b)

The first-order fields are

E(1)
z = 0 (E6.3.2.4a)

H
(1)
φ = −ω

εV0

d

ρ

2
sin ωt (E6.3.2.4b)

The second-order fields are

E(2)
z = −V0

d
(
kρ

2
)2 cos ωt (E6.3.2.5a)

H
(2)
φ = 0 (E6.3.2.5b)

The third-order fields are

E(3)
x = 0 (E6.3.2.6a)

H(3)
y =

V0

ηd

(kz)3

224
sin ωt (E6.3.2.6b)

Continuing the process, we find

E
(2n)

= ẑ(−1)n
V0

d
(

(kρ)2n

22 · 42 · 62 · · · · · (2n)2
) cos ωt n = 0, 1, 2, . . .(E6.3.2.7a)

H
(2n−1)

= φ̂(−1)n
ωV0

ηd
(

2n (kρ)2n−1

22 · 42 · 62 · · · · · (2n)2
) sin ωt n = 1, 2, 3, . . .(E6.3.2.7b)

Summing over the infinite number of terms, we obtain

E =
∞∑
n=0

E
(2n)

= ẑ
V0

d

(
1−(

1
1!

)2(
kρ

2
)2+(

1
2!

)2(
kρ

2
)4−(

1
3!

)2(
kρ

2
)6+· · ·

)
cos ωt

= ẑ
V0

d
J0(kρ) cos ωt (E6.3.2.8a)

H =
∞∑
n=0

H
(2n+1)

= −φ̂
ωV0

ηd
J1(kρ) sin ωt (E6.3.2.8b)

Equation (E6.3.2.8) represents the exact solution for the fundamental mode
inside a cylindrical cavity with circular cross-section.

End of Example 6.3.2
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Example 6.3.3
The magnetic field H for a Hertzian dipole with dipole moment Il =

−iωp pointing in the ẑ direction is

H = φ̂
−ikIleikr

4πr

[
1 +

i

kr

]
sin θ (E6.3.3.1)

where k = ω/c . We see from (E6.3.3.1) that the first-order magnetic field
for the Hertzian dipole is

H
(1)

= φ̂
Il

4πr2
sin θ

which is identical to the magnetic field for an infinitesimal current element
pointing in the ẑ direction (as obtained from the Biot-Savart law).

End of Example 6.3.3

Problems

P6.3.1
In the electroquasistatic field, the first-order current is obtained from

the time derivative of the zeroth-order charge distribution. For a capacitor
carrying charge Q = CV , the first-order current is

I =
dQ

dt
= C

dV

dt
+ V

dC

dt

Electroquasistatic transducers are devices that use the second term by me-
chanically vibrating a capacitor to generate electric current.

R
εo

V0

VS0

Figure P6.3.1.1

In a condenser microphone, a metal-plate diaphragm is tightly stretched
but still capable of movement in response to sound transients. It is often made
of a plastic film coated with an extremely fine, thin covering of gold to make
it conductive. The diaphragm forms one plate of a capacitor with a dielectric
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plastic backing facing the fixed back-plate electrode. The equivalent circuit
for a condenser microphone is shown in Figure P6.3.1.1.

For a time-harmonic sound pressure creating a diaphragm movement of
s(t) = S1 cos ωt , show that the differential equation for v(t) is

RC0
dv(t)

dt
+ v(t) = RC0V0

d

dt

[
s(t)
S0

]

where C0 = εoA/S0 and A is the area of the diaphragm. Let V0 = 50volts ,
R = 107 ohms , A = 8 cm2 , f = 1 kHz , S0 = 25 µm , and S1 = 1 µm . Find
the magnitude of the output voltage. Show that the induced voltage is directly
proportional to the diaphragm vibration amplitude S1 when ωRC0 � 1 .

P6.3.2

(a) Consider a surface current sheet with current density given by

J = x̂Jsδ(z)

Determine the time-average power per unit area generated by the current
sheet and the time-average power per unit area carried by the plane wave
in the half-space z > 0

(b) For a surface current sheet with the current density given by

J = x̂Jse
−jβyδ(z)

determine the amplitudes of the waves generated and the associated time-
average power densities. What happens when β = k = ω

√
µoεo ?

(c) In the quasistatic limit, show that the magnetic field approaches that
generated by a sinusoidal current sheet.
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6.4 Geometrical Optics Limit

Geometrical optics can be treated as a limiting case of very high fre-
quency approximation in Maxwell’s theory. Consider the solution

E(r) = E eik0L(r) (6.4.1)

H(r) = H eik0L(r) (6.4.2)

where k0 = ω/c and we shall let k0 →∞ . Substituting in the source-
free Maxwell equations and making use of the vector identities ∇ ×
(Aφ) = φ∇× A +∇φ× A , and ∇ · (Aφ) = ∇φ · A + φ∇ · A , we find
that in isotropic media,

∇L(r)×H +
n

η
E =

i

k0
∇×H (6.4.3)

∇L(r)× E − nηH =
i

k0
∇× E (6.4.4)

∇L(r) · E =
i

k0
∇ · E (6.4.5)

∇L(r) ·H =
i

k0
∇ ·H (6.4.6)

where n = c
√

µε is the refractive index and η =
√

µ/ε is the charac-
teristic impedance for the isotropic media.

In the high-frequency limit we omit the right-hand sides of (6.4.3)–
(6.4.6) and obtain the governing equations for geometrical optics

∇L×H +
n

η
E = 0 (6.4.7)

∇L× E − nηH = 0 (6.4.8)
∇L · E = 0 (6.4.9)
∇L ·H = 0 (6.4.10)

This set of equations is now independent of frequency.
Substituting (6.4.8) in (6.4.7) and making use of (6.4.9) we obtain

the eikonal equation in geometrical optics

|∇L(r)|2 = n2 (6.4.11)

The phase function L(r) is also called the eikonal. The geometrical
wavefronts are described by L(r) = constant. Let the unit normal to
a wavefront be ŝ . We see from (6.4.11) that

∇L = ŝn (6.4.12)



6.4 Geometrical Optics Limit 723

where ŝn is called the ray vector.
We see from (6.4.9) and (6.4.10) that the electric and magnetic

fields are perpendicular to the normal of the wavefront. The time-
average Poynting’s vector is

< S > =
1
2
Re

{
E ×H

∗} =
1

2nη
Re

{
E × (∇L× E)∗

}
=

1
2nη

(E · E∗)∇L =
2c

n2
< We > ∇L = ŝ

2c

n
< We >

(6.4.13)

or, in terms of H ,

< S > = − η

2n
Re

{
(∇L×H)×H

∗}
=

η

2n
(H ·H∗)∇L =

2c

n2
< Wm > ∇L = ŝ

2c

n
< Wm >(6.4.14)

where < We > = εE · E∗
/4 is the time-average electric energy, and

< Wm > = µH ·H∗
/4 is the time-average magnetic energy. We find by

equating (6.4.13) and (6.4.14) that < We > = < Wm > = < W > /2
where < W > is the total time-average stored energy. Thus

< S > = ŝ
c

n
< W > = ŝv < W > (6.4.15)

where v = c/n is the velocity of the electromagnetic wave in the
medium. We conclude that the time-average Poynting’s power vector
is in the direction of the ray vector ŝn and its magnitude is equal to
the product of the electromagnetic energy < W > and the velocity
v .

The intensity I is defined as the absolute value of the time-average
Poynting vector

I =
∣∣< S >

∣∣ = v < W >

Poynting’s theorem states that

∇ · S = −iω(ε|E|2 − µ|H|2)

Taking time-average of the above equation we obtain

∇ · (ŝI) = 0
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ray path

r(s)

ŝ

Figure 6.4.1 Ray path in geometrical optics.

This is the conservation equation for the intensity I .
Let the position vector along a ray path [Fig. 6.4.1] be denoted by

r(s) , expressed in terms of the arc length s as the parameter for the
path. Since dr/ds = ŝ , we find from (6.4.12)

d2r

ds2
=

dr

ds
· ∇

(
dr

ds

)
= ŝ · ∇(ŝ) =

∇L

n
· ∇

(∇L

n

)

For homogeneous media with n being a constant, it is seen that

d2r

ds2
=

1
2
∇

(
|∇L|2

n2

)
= 0

in view of (6.4.11). Thus the ray path is a straight line. When n is
spatially dependent, we make use of the vector identity

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B × (∇×A)

and find that

d2r

ds2
=

1
2
∇

(
|∇L|2

n2

)
− ∇L

n
×

(
∇ 1

n
×∇L

)

=
∇L

n

(
∇L · ∇ 1

n

)
−

(
∇ 1

n

) |∇L|2
n

+
1
2
∇

(
|∇L|2

n2

)

=
∇L

n

(
∇L · ∇ 1

n

)
− n∇ 1

n
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Figure 6.4.2 Derivation of Snell’s law.

Thus the ray is curved in inhomogeneous media.
Taking the curl of (6.4.12), we also have

∇× (ŝn) = 0 (6.4.16)

We now derive Snell’s law by integrating (6.4.16) around a ribbon-
like contour across the boundary separating two media with refractive
indices n1 and n2 [Fig. 6.4.2]. Applying Stokes’ theorem and letting
the ribbon width δ → 0 , we have∫∫

dS · ∇ × (ŝn) =
∮
C

dl · ŝn = 0 (6.4.17)

where dS is the unit vector perpendicular to the ribbon area and dl
is the differential line element along the closed contour of the ribbon.
The contributions from the two sides perpendicular to the surface are
neglected because they are proportional to δ . Thus the tangential
components of the ray vectors are continuous across the boundary. For
the transmitted ray we find from (6.4.17)

n1 sin θi = n2 sin θt (6.4.18)

For the reflected ray, we use θt = π− θr and n2 = n1 . From (6.4.18),
we find n1 sin θi = n1 sin θr . Thus the angle of reflection θr is equal to
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Figure 6.4.3 Reflection of wavefront S1 by a surface S.

the angle of incidence θi . Note that Snell’s law has also been derived
from phase matching wave vectors for plane waves. The above deriva-
tion is valid, provided that the radii of curvature of the incident wave
and of the boundary surface are large compared to the wavelength.
Due to the curl-free property of the ray vector, we have∮

C
dr · ŝn = 0 (6.4.19)

along any closed path C . This equation is true even across the bound-
ary of two different media by virtue of Snell’s law.

Consider the problem of reflection of a wavefront S1 by a surface S
and the reflected rays form another wavefront S2 [Fig. 6.4.3]. Note that
A1AA2 and B1BB2 are the ray paths in the direction of ŝ and A1B1

and A2B2 are wavefronts perpendicular to the ray paths. Applying
(6.4.19), we find{∫

A1AA2

+
∫
A2B2

+
∫
B2BB1

+
∫
B1A1

}
dr · ŝn = 0

The integrals along A2B2 and B1A1 are zero because dr · ŝ = 0 . We
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Figure 6.4.4 Converting spherical phase front to plane phase front.

have ∫
A1AA2

dr · ŝn−
∫
B1BB2

dr · ŝn = 0

The vectors dr and ŝn are in the same direction on the optical path.
The integrals define the optical path lengths along paths A1AA2 and
B1BB2 . We conclude∫

A1AA2

n ds =
∫
B1BB2

n ds (6.4.20)

Thus the optical path length between any two wavefronts is the same
for all rays. The above theorem is easily generalized to include cases
of refraction.

As an example, consider a reflecting surface that converts a spheri-
cal phase front to a plane phase front. Consider the ray paths as shown
in Figure 6.4.4. In view of (6.4.20), we have

OB + BB2 = OA + AA2 (6.4.21)

Since all reflected rays are parallel to AOA2 , we have

BB2 = OB cos θ + OA2 (6.4.22)
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Figure 6.4.5 Converting a spherical phase front to another spherical
phase front.

Substituting in (6.4.21), we find

OB(1 + cos θ) = OA−OA2 + AA2 = 2OA

r(1 + cos θ) = 2f
(6.4.23)

This equation describes a parabola. Revolving around the axis OA2

we see that the reflecting surface takes a paraboloidal shape.
A hyperboloidal surface converts one spherical phase front into

another spherical phase front. As shown in Figure 6.4.5, we obtain
from (6.4.20)

OB + BB2 = OA + AA2 (6.4.24)

The center of the spherical phase front of the reflected rays is at F ,
since

BB2 = FB2 − FB = FA2 − FB

We find from (6.4.24)

OB − FB = OA + AA2 − FA2 = OA− FA (6.4.25)

This equation determines a hyperbola. Revolution around axis FO
results in a hyperboloidal surface. Reflectors of this type were originally
designed by Cassegrain for optical telescopes.
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Figure 6.4.6 Establishing optical path-length theorem.

Lens Antennas

We first establish the optical path-length theorem for refraction
in geometrical optics. Consider the boundary surface S separating air
and a dielectric medium with refractive index n as shown in Figure
6.4.6. The two rays A1AA2 and B1BB2 emerge from the constant
phase front S1 , refracted by the medium and form the new phase
front S2 .

The field amplitudes of rays have the dependence eiωL(r)/c and
the ray vector nŝ = ∇L(r) has the curl-free property

∇× nŝ = 0 (6.4.26)

where n is the refractive index of air or the dielectric depending on
the ray location. Stokes’ theorem yields∫

A1A
dr · ŝ +

∫
AA2

dr · ŝn +
∫
A2B2

dr · ŝn

+
∫
B2B

dr · ŝn +
∫
BB1

dr · ŝ +
∫
B1A1

dr · ŝ = 0

By the boundary condition of the ray vector at the surface S , the
rays A1A to AA2 and similarly B1B to BB2 satisfy Snell’s law.
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Figure 6.4.7 One-surface lens to convert a spherical phase front to a
plane phase front.

The integrals along A1B1 and A2B2 are zero because dr · ŝ = 0 . We
thus have∫

A1A
dr · ŝ +

∫
AA2

dr · ŝn =
∫
B1B

dr · ŝ +
∫
BB2

dr · ŝn (6.4.27)

or simply
A1A + n AA2 = B1B + n BB2 (6.4.28)

This is the optical path length theorem which states that the optical
path lengths between two constant phase fronts are equal.

We now construct a one-surface lens that converts a spherical phase
front into a plane phase front. By the optical path length theorem, we
see from Figure 6.4.7 that

OB = OA + n AA2 (6.4.29)

Letting the length from the origin O to the refraction surface be ρ,
at an angle φ with the x axis, we find AA2 = ρ cos φ − f where
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f = OA . Equation (6.4.29) becomes

ρ =
(n− 1)f

n cos φ− 1
(6.4.30)

This is the equation for a hyperbola.
Consider a cylindrical lens antenna with the hyperbolic cross-

section as described by (6.4.30). The antenna is illuminated with a
line source. We shall show that the field amplitude distribution at the
aperture with diameter D is tapered. First we note that the total
power Pt passing through the strip at y with width dy is

Pt = dy P (y) (6.4.31)

where P (y) is power per unit length at y . Neglecting reflections, we
see that this total power is equal to that radiated by the line source
over the angle dφ,

Pt = U(φ) dφ (6.4.32)

where U(φ) is power per unit angle from the source. Since y = ρ sin φ ,
we obtain from (6.4.30)

dy = (n− 1)f
n− cos φ

(n cos φ− 1)2
dφ (6.4.33)

Equating (6.4.31) and (6.4.32) and making use of (6.4.33), we obtain

P (y) =
(n cos φ− 1)2

(n− 1)f(n− cos φ)
U(φ) (6.4.34)

In the aperture plane the ratio of the field amplitude E(y) at y to
E(0) at y = 0 corresponding to φ = 0 is equal to the square root of
their power ratio,

E(y)
E(0)

=

√
P (y)
P (0)

=
n cos φ− 1√

(n− 1)(n− cos φ)
(6.4.35)

The amplitude ratio becomes zero when φ = cos−1(1/n) .
The neglect of reflection at the convex surface increases the trans-

mitted power. Of more importance is the reflection from the plane
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Figure 6.4.8 Zoned dielectric lens.

surface which is focused back into the primary feed and causes a mis-
match. The reflections at both surfaces may be reduced with a mate-
rial of small refractive index. The reflection at the plane surface can
also be eliminated by a quarter-wavelength plate with refractive index√

n . The reason follows from transmission line theory where a quarter-
wavelength section with characteristic impedance

√
(Z0Z1) can be

shown to match a line with characteristic impedance Z0 to another
line with Z1 as its characteristic impedance. The transmission line
theory is applicable here because the wave is normally incident at the
plane surface.

To reduce the weight of the lens, zoned dielectric lenses are con-
structed [Fig. 6.4.8]. From the optical path length theorem (6.4.27),
we recognize that dr · ŝn = dL is the incremental phase change in the
field dependence eikoL(r) with ∇L(r) = ŝn . Thus we make the zoned
step ∆D such that

ko ∆D (n− 1) = 2π

or equivalently

∆D =
λo

n− 1

where λo = 2π/ko is the free-space wavelength. Then the phase dif-
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Figure 6.4.9 Metal-plate lens.

ference caused by removal of the dielectric is 2π . When the smallest
thickness of the lens is tm , the maximum thickness of the lens will be
tm + λo/(n− 1) .

The conversion of a cylindrical phase front produced by the line
source at the focal point to a plane phase front at the aperture plane of
the lens can be understood from the point of view of phase retardation
due to the dielectric medium. Inside the dielectric the phase velocity is
c/n . Close to the x axis, the dielectric is the thickest and the phase
retardation is the largest. At the edge of the lens the phase velocity
is not slowed down at all. The hyperbolic cross-section provides such
distribution in the phase retardation that the resultant phase front is
a plane.

The same concept can be used in the understanding of lens an-
tennas made of metal plates. Inside two parallel plates separated by a
distance a , the phase velocity of a TE1 wave is

v = c

[
1−

( π

ka

)2
]− 1

2

(6.4.36)

which is seen to be larger than the velocity of light in free space c .
The equivalent index of refraction is

n =
c

v
=

√
1−

( π

ka

)2
(6.4.37)

Note that in order to have a TE1 wave propagating above cutoff inside
the plate waveguide, we must have π < ka .

Consider a metal-plate lens antenna as shown in Figure 6.4.9. The
profile of the plates can be determined by the optical path length the-
orem with the equivalent refractive index concept. We have

OB + n BB2 = OA + n AA2 (6.4.38)
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Figure 6.4.10 Metal-plate lens with nonuniform separations.

Letting OB = ρ and OA = f , we find BB2 − AA2 = f − ρ cos φ .
From (6.4.38) we have

ρ =
(1− n)f

1− n cos φ
(6.4.39)

With n < 1 , (6.4.39) is the equation for an ellipse.
The effect of the longer metal plate waveguides is to speed up the

phase-front propagation to form a plane phase front at the aperture
plane. The smaller the separation a the larger the phase velocity inside
the plate waveguide; thus, metal-plate lens antennas can be made with
uniform length but nonuniform separations. Such an arrangement is
shown in Figure 6.4.10.

Paraboloidal Reflector Antenna

For the paraboloidal reflector surface as shown in Figure 6.4.11, it
is described by the equation

r + r cos θ = 2f (6.4.40)

where f is the focal length. Let the plane perpendicular to the z axis
at the focal point be called the aperture plane. Equation (6.4.40) states
that all path lengths measured from the focal point F to the reflector
surface and then to the plane surface perpendicular to the axis at the
focal point are equal to the constant 2f .

It is interesting to find by means of geometrical ray optics that
the power distribution on the aperture plane is nonuniform. Consider
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Figure 6.4.11 Paraboloidal reflector.

an omnidirectional source at the focal point; the power radiated in the
solid angle dθ rotating about the z axis is proportional to 2π sin θ dθ .
We write

dp = 2πC sin θ dθ

where C is a constant proportional to the source strength. By the
conservation law of geometrical optics, this power appears in the aper-
ture plane through a ring of differential width dρ with differential area
dA = 2πρ dρ . Thus

dp

dA
=

Csin θ dθ

ρ dρ
(6.4.41)

From (6.4.40) we have

r = f sec2 θ

2
(6.4.42)

and
ρ = r sin θ = 2f tan

θ

2
(6.4.43)

Making use of (6.4.43), we find (6.4.41) becomes

dp

dA
=

C

f2
cos4

(
θ

2

)
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On the aperture plane, we have a tapered amplitude distribution. The
distribution can be made uniform by making the gain pattern of the
feeding source G(θ, φ) = sec4(θ/2) .

The surface current density at the reflector surface is, under the
physical optics approximation,

Js = n̂× (H i + Hr) (6.4.44)

where n̂ is the unit normal to the paraboloidal surface, H i is the
incident magnetic field, and Hr is the reflected magnetic field. On a
perfectly conducting surface, n̂×H i = n̂×Hr . In terms of the incident
and reflected electric fields,

H i =
1
η

ŝi × Ei (6.4.45)

Hr =
1
η

ŝr × Er (6.4.46)

where ŝi is the unit incident ray vector and ŝr the unit reflected ray
vector. The surface current density becomes

Js =
2
η
[n̂× (ŝi × Ei)] (6.4.47)

or
Js =

2
η
[n̂× (ŝr × Er)] (6.4.48)

Now assume that at the feed there is a point source generating an
incident field vector

Ei = êi E(θ, φ)
eiωr/c

r
(6.4.49)

on the paraboloidal surface at r where r � λ . The amplitude E(θ, φ)
is related to the gain factor G(θ, φ) of the source by

1
2η
|E(θ, φ)|2 =

Pt

4π
G(θ, φ) (6.4.50)

where Pt is the total power radiated by the source.
We now study the polarization of the reflected field. The electro-

magnetic boundary condition requires that tangential electric fields
vanish at the reflector surface

n̂× (Er + Ei) = 0 (6.4.51)
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also
n̂ · Er = n̂ · Ei (6.4.52)

Cross-multiplying (6.4.51) by n̂ and making use of (6.4.52), we find

Er = 2n̂(n̂ · Ei)− Ei = êr E(θ, φ)
eiωr/c

r
(6.4.53)

The unit vector êr for the reflected wave in (6.4.53) is

êr = 2n̂

(
n̂ · Ei

)∣∣Er

∣∣ − Ei∣∣Er

∣∣ = 2n̂(n̂ · êi)− êi (6.4.54)

where we use the fact that
∣∣Er

∣∣ =
∣∣Ei

∣∣ as seen from (6.4.53).
We assume that the point source at the focus is linearly polarized

in the ŷ direction. The unit vector êi is

êi =
r̂ × (ŷ × r̂)
|r̂ × (ŷ × r̂)| =

ŷ − (r̂ · ŷ)r̂
|ŷ − (r̂ · ŷ)r̂| (6.4.55)

Since r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ , we find

êi =
1√

1− sin2 θ sin2 φ

{
−x̂ sin2 θ sin φ cos θ

+ ŷ (1− sin2 θ sin2 φ)− ẑ sin θ cos θ sin φ
}

(6.4.56)

in rectangular coordinates.
The unit normal to the reflector n̂ can be found by taking the

gradient of (6.4.42),

∇
[
f − r cos2

θ

2

]
=

(
−r̂ cos

θ

2
+ θ̂ sin

θ

2

)
cos

θ

2

Thus
n̂ = −r̂ cos

θ

2
+ θ̂ sin

θ

2
(6.4.57)

such that n̂ · n̂ = 1 . In rectangular coordinates

n̂ = −x̂ sin
θ

2
cos φ− ŷ sin

θ

2
sin φ− ẑ cos

θ

2
(6.4.58)
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We now determine the reflected field polarization êr . From (6.4.55)
and (6.4.57) we find n̂ · êi = (θ̂ · ŷ) sin(θ/2) = sin(θ/2) cos θ sin φ . It
follows from (6.4.54), (6.4.56), and (6.4.58), that

êr = 2n̂(n̂ · êi)− êi =
1√

1− sin2θ sin2φ

{
x̂(1− cos θ) sin φ cos φ

+ ŷ(cos θ sin2φ + cos2φ)
}

(6.4.59)

As we had expected, êr has no z component because ŝr is in the
−ẑ direction and Er is perpendicular to ŝr . The x component of êr
gives the newly generated cross-polarized field at the aperture plane.
By geometrical optics, the field at the aperture plane acquires an ad-
ditional phase (ω/c) r cos θ as compared with Er . We have

Eap = êr E(θ, φ)
e−i(ω/c)(r+r cos θ)

r
(6.4.60)

For large f/D ratio, the reflector section is relatively flat. We find
θ → 0 and the x component of êr , erx → 0 . It is interesting to
note that for an electric dipole at the feed, its incident field is pro-
portional to the sine of the angle γ between r̂ and the y axis with
sin γ =

√
1− cos2γ =

√
1− (r̂ · ŷ)2 =

√
1− sin2θ sin2γ . This cancels

the angular dependence in the denominator of êr .
Having determined the surface current distribution on the reflector

surface, we now find the radiation fields from

E(r) = iωµ
eikr

4πr
(θ̂fθ + φ̂fφ)

where the vector current moment

f =
∫∫

dS Js(r′) eik·r
′

The surface current density is derived in (6.4.48)

Js(r′) =
2
η

{
n̂× [ŝr × Er(r′)]

}
From (6.4.53), the reflected field

Er(r′) = êrE(θ′, φ′)
eikr

′

r′
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Since ŝr = −ẑ and −ẑ · n̂ = cos(θ/2) , we find

Js(r′) =
[
êr cos

θ′

2
− ẑ(n̂ · êr)

]
2E(θ′, φ′)

η

eikr
′

r′
(6.4.61)

where êr is given by (6.4.59) and n̂ by (6.4.57).
We see that the vector current moment f(r) has a component

along êr which is parallel to the x-y plane and a component along
the z axis. The z component makes no contribution to Eφ because
φ̂ is always perpendicular to z . Its contribution to Eθ is vanishingly
small around θ = 0 because ẑ · θ̂ = sin θ . This is similar to the
field produced by an electric dipole in the ẑ direction. In fact if we
use the aperture field distribution to calculate the radiation fields, the
equivalent surface current density will have no z component at all.

We therefore consider only the transverse component of f and
write

f =
∫∫

dS êr cos
θ′

2
2E(θ′, φ′)

ηr′
eikr

′−ik·r′ (6.4.62)

The differential area dS on the paraboloidal surface is

dS = (r′ sin θ′ dφ′)(r′ sec(
θ′

2
) dθ′)

The exponential phase factor inside the integral is

−kr′ + k · r′ = kr′
[
−1 + sin θ sin θ′ cos(φ′ − φ) + cos θ cos θ′

]
We now examine antenna gain along the z axis where θ = π . The

radiation vector in (6.4.62) becomes

f =
∫ 2π

0
dφ′

∫ θ0

0
dθ′ êrr

′ sin θ′
E(θ′, φ′)

η
ei2kf (6.4.63)

Neglecting the cross-polarization effect and letting êr ≈ ŷ , we obtain

E(r, π, 0) = ŷ
iωµeik(r+2f)

πηr

∫ 2π

0
dφ′

∫ θ0

0
dθ′ f tan

θ′

2
E(θ′, φ′) (6.4.64)

Suppose the gain of the feed is independent of φ′ . For instance, a stub-
supported dipole-feed [Silver, 1949] satisfies this requirement. Remem-
bering that

1
2η

∣∣E(θ′, φ′)
∣∣2 =

Pt

4π
G(θ′) (6.4.65)
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|Er|
D

f = D
4 cot θ0

2

f sec2 θ0

2
θ0

θ0

Figure 6.4.12 For a fixed D, gain increases as θ0 increases.

where Pt is the total radiated power by the feed, we find from (6.4.64)
by integrating over φ′

E(r, π, 0) = ŷ
i2ωµf eik(r+2f)

ηr

∫ θ0

0
dθ′ tan

θ′

2

√[
ηPt

2π
G(θ′)

]
(6.4.66)

The antenna gain in the forward direction is

g =
4πr2

Pt

1
2η
|E(r, π, 0)|2 = 4k2f2

[∫ θ0

0
dθ′ tan

θ′

2

√
[G(θ′)]

]2

(6.4.67)

To pursue interpretations of (6.4.67), we define an aperture diam-
eter D as [Fig. 6.4.12]

D = 2f sec2 θ0

2
sin θ0 = 4f tan

θ0

2
(6.4.68)
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We cast (6.4.67) in the form

g =
(

πD

λ

)2

cot2
θ0

2

[∫ θ0

0
dθ′ tan

θ0

2
[
G(θ′)

]1/2
]2

(6.4.69)

The factor (πD/λ)2 is the gain for a uniformly illuminated circular
aperture.

For a fixed D , the gain g increases as θ0 increases because the
available fraction of the total power from the feed is increased. But as
θ0 increases with a fixed D , the aperture efficiency with which the
reflector concentrates the available power in the forward direction de-
creases because the illumination becomes less tapered from the center
[Fig. 6.4.12]. As a result, the gain g is decreased. The optimum angle
θ0 is obtained by setting dg/dθ0 = 0 which gives

√
[G(θ0)] =

1
2

csc2

(
θ0

2

) ∫ θ0

0
dθ′ tan

θ′

2

√
[G(θ′)] (6.4.70)

The optimum angular aperture represents the proper compromise be-
tween spill-over of the feed energy and the aperture efficiency.

The gain can be modified by a number of factors: (i) phase-error
effects due to deviation of the antenna-feed wavefronts from spheri-
cal ones, and defocusing effects due to displacement of the feed center
from the focus. The maximum tolerable phase deviation is usually set
at λ/8 over the aperture. (ii) The back lobe of the primary antenna
feed will interfere with the main lobe of the radiation pattern. This
effect may be put into positive use by designing, according to the focal
length f, a back lobe that interferes constructively with the main lobe
along the axial direction. For a fixed-feed design it may be defocused
to achieve constructive interference. (iii) The current at the edge of
the reflector acts like a line source and radiates into the backward di-
rection. Such currents can be reduced by making the edges irregular,
by placing chokes or impedances on the edge, or by cutting properly
spaced loops near the edge. (iv) The blockage of the feed in the path of
the reflected ray significantly reduces the gain. This may be remedied
by off-axis feeding arrangements but these create other electrical and
hardware problems. (v) Cassegrain-fed paraboloidal reflector antennas
with a hyperboloidal subreflector are sometimes used with the primary
feeding source placed behind the main reflector. The arrangement per-
mits the installation of complex primary feeds, reduces the temper-
ature noise interference in radio astronomical receivers, and shortens
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the distance between the two reflectors because the subreflector will be
placed before the focal point of the paraboloid. However, the reflector
mismatch induced by spurious surface currents on the subreflector due
to reflected waves from the main reflector may become serious.

Problems

P6.4.1
Consider a lens formed by rotating a hyperbola around its axis. Assuming

that the angular dependence of power density at the source is φ -independent,
i.e., u = u(θ) , then the power enclosed in the shell formed by revolving dθ
about the z -axis is

Ps = u(θ)2π sin θ dθ

The power transmitted through an annulus of width dρ and centered on
z -axis is

Pt = P (ρ)2πr sin θdρ

where P (ρ) is the power density of the transmitted beam. By energy conser-
vation, Pt = Ps , therefore,

P (ρ)
u(θ)

=
1
r

dθ

dρ
=

n cos θ − 1
(n− 1)f

dθ

dρ

Find the field amplitude distribution E(ρ)
E(0) at the aperture plane.

P6.4.2
Let the gain function for the feed of a paraboloid reflector antenna be

G(θ′) = 6 cos2 θ′ 0 ≤ θ′ ≤ π/2
= 0 π/2 ≤ θ′

Show that ∫
G(θ′) dΩ = 4π

With this gain function what is the optimum aperture angle θ0?
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6.5 Paraxial Limit

In the paraxial limit, solutions to the scalar wave equation

(∇2 + k2)U = 0 (6.5.1)

can be written as
U = u(x, y, z)eikz (6.5.2)

Under the paraxial approximation when we assume that ∂2u/∂z2 is
negligible, the wave equation (6.5.1) becomes

∂2u

∂x2
+

∂2u

∂y2
+ i2k

∂u

∂z
= 0 (6.5.3)

We substitute into (6.5.3) the trial solution

u(x, y, z) = X

(√
2x

w

)
Y

(√
2y

w

)
e
+i

[
p+ k

2q (x2+y2)+Φ(z)
]

(6.5.4)

where the parameters w, p, and q are all functions of z.

Topic 6.5A Gaussian Beam

For the Gaussian beam solution, we let X = Y = 1 and Φ(z) = 0.
We find for

u(ρ, z) = e
i
[
p(z)+ k

2q(z)ρ
2
]

(6.5A.1)

where ρ2 = x2 + y2, equation (6.5.3) yields

2k

[
−p′ +

i

q

]
+

k2ρ2

q2

[
q′ − 1

]
= 0 (6.5A.2)

For (6.5A.2) to be valid for all ρ and z , we obtain p′ = i/q and
q′ = 1 . In the Gaussian beam expression, these conditions are made
by choosing

q = z − i
kw2

o

2
(6.5A.3)

p = tan−1 2z

kw2
o

− i ln
(

wo

w(z)

)
(6.5A.4)
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with

w(z) = wo

√
1 +

(
2z

kw2
o

)2

(6.5A.5)

describing the beamwidth as a function of z.

The Gaussian beam solution thus takes the form, by virtue of
(6.5.2), (6.5A.1), (6.5A.3) and (6.5A.4)

U(ρ, z) =
wo

w(z)
exp

[
−i tan−1 2z

kw2
o

]
eikz e

i 2kzρ2

4z2+(kw2
o)

2 e
− (kwoρ)2

4z2+(kw2
o)

2

(6.5A.6)
The ρ -dependent exponentially decaying term e−(kwoρ)2/[4z2+(kw2

o)
2]

describes the width of the Gaussian beam as a function of z. At z = 0 ,
we define the width to be ρ = wo for which the term becomes e−1.
The ρ -dependent phase term ei2kzρ

2/[4z2+(kw2
o)

2] describes the phase
front curvature. The phase shift at ρ = ρo as compared to that at
ρ = 0 is

kb =
2kzρ2

o

4z2 + (kw2
o)2

(6.5A.7)

In the paraxial approximation, we have

ρ2
o + R2 ≈ (R + b)2 ≈ R2 + 2Rb

From (6.5A.7) we find

R =
ρ2
o

2b
= z

[
1 +

(kw2
o)

2

4z2

]
(6.5A.8)

At z = 0, the phase front curvature is infinite. Using (6.5A.5) and
(6.5A.8) in (6.5A.6), we obtain

U(ρ, z) =
wo

w(z)
e
i

[
kz+ kρ2

2R(z)−tan−1 2z
kw2
o

]
e−[ρ/w(z)]2 (6.5A.9)

At z = 0, the beam waist is ρ = wo and the phase front is that of
a plane wave. With increasing z , the beam waist increases, and the
phase front curves with the curvature equal to R. As z → ∞, the
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2w0

R R

ρ

z

ρ0

b

Figure 6.5A.1

phase front curvature vanishes, while the arctangent terms gives π/2,
and the phase front again approaches that of a plane wave.

The scalar wave equation in (6.5.1) can be taken to be the x com-
ponent of a vector potential A = x̂U(ρ, z). The Gaussian beam solu-
tion (6.5A.9) is obtained from the paraxially-approximated equation
(6.5.2) under the assumption that |∂u/∂z| � |ku|. Corresponding to
the paraxial approximation, the magnetic field is

H =
1
µ
∇×A = ik

[
ŷU + iẑ

i

k

∂U

∂y

]

and the electric field is

E = iw

[
x̂U + iẑ

1
k

∂U

∂x

]

and the total power in a Gaussian beam is∫ ∞

−∞
dx

∫ ∞

−∞
dy

1
2
Re

{
E ×H

∗} ≈ ẑ
1
2η

where the amplitude of the Gaussian beam is assumed to be unity.
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Gaussian-Hermite Beam Modes

Let the parameters p, q, and w in the trial solution (6.5.4) be
given by (6.5A.3)–(6.5A.5). Substituting (6.5.4) into (6.5.3) and mak-
ing use of (6.5A.2), we find

X ′′

X
−i
√

2
kx

w

(
ww′−w2

q

)
X ′

X
+

Y ′′

Y
−i
√

2
kx

w

(
ww′−w2

q

)
+kw2Φ′(z) = 0

(6.5A.10)
It follows from (6.5A.3) and (6.5A.5) that ww′ −w2/q = −i2/k. Sep-
aration of variables and setting

kw2Φ′(z) = 2(m + n) (6.5A.11)

lead to the differential equations for Hermite polynomials

X ′′
(√

2x

w

)
− 2

(√
2x

w

)
X ′ + 2mX = 0 (6.5A.12a)

Y ′′
(√

2y

w

)
− 2

(√
2y

w

)
Y ′ + 2nY = 0 (6.5A.12b)

Requiring Φ(z = 0) = 0 and introducing (6.5A.5), we obtain the
solution for (6.5A.11)

Φ(z) = (m + n) tan−1

(
2z

kw2
o

)
(6.5A.13)

The solution as expressed in (6.5.2) and (6.5.4) now takes the form,
after use is made of (6.5A.3), (6.5A.4), and (6.5A.9)

U =
wo

w(z)
Hm

(√
2x

w

)
Hn

(√
2y

w

)
e−[ρ/w(z)]2

· ei[kz−(m+n+1) tan−1(2z/kw2
o)+kρ2/2R(z)] (6.5A.14)

where Hm(
√

2x/w) and Hn(
√

2y/w) are the Hermite polynomials of
orders m and n.

Hermite polynomials Hm(ξ) are solutions to the differential equa-
tion

d2

dξ2
Hm(ξ)− 2ξ

d

dξ
Hm(ξ) + 2mHm(ξ) = 0 (6.5A.15)
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The first five Hermite polynomials are

H0(ξ) = 1 (6.5A.16a)
H1(ξ) = 2ξ (6.5A.16b)
H2(ξ) = 4ξ2 − 2 (6.5A.16c)
H3(ξ) = 8ξ3 − 12ξ (6.5A.16d)
H4(ξ) = 16ξ4 − 48ξ2 + 12 (6.5A.16e)

The recurrence formula reads

Hm+1 − 2ξHm + 2mHm−1 = 0 (6.5A.17)

The Hermite polynomials can be defined by

Hm(ξ) = (−1)meξ
2 dm

dξm
e−ξ2 (6.5A.18)

There also exist integral relations

ine−ξ2/2Hm(ξ) =
1√
2π

∫ ∞

−∞
dζeiξζe−ζ2/2Hm(ζ)

and the orthogonality conditions
∫ ∞

−∞
dξ Hm(ξ)Hn(ρ)e−ξ2 = 0∫ ∞

−∞
dξ H2

m(ξ)e−ξ2 =
√

π2nn!

From (6.5A.14), we observe that all Gaussian-Hermite beam modes
have the same beam width parameter w(z), the same phase curvature
R(z), and the same q parameter in (6.5A.3). It is to be noted that the
Gaussian-Hermite beam modes form a complete system of orthogonal
functions and thus paraxial wave fields can be expressed as a superposi-
tion of such modes. However the paraxial modes are only approximate
solutions to the exact wave equation and the approximation becomes
poorer as higher order modes become important.
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Transmission of Gaussian Beams

The q parameter as defined in (6.5A.3) has fundamental impor-
tance in the description of ray optics with Gaussian beams. In view
of (6.5A.5) for the definition of beamwidth w and (6.5A.8) for the
definition of curvature R , we can write

1
q

=
1

z − ikw2
o/2

=
1
R

+ i
2

kw2
(6.5A.19)

The q parameter at z becomes

q1 = q + d (6.5A.20)

at z + d. A thin lens can be defined as a device which renders the
Gaussian beam in (6.5A.14) a phase shift e−ikρ2/2f after the beam
passes the lens. We have from (6.5A.14) the new curvature Re after
transmission to be

1
Re

=
1
R
− 1

f
(6.5A.21)

where f is the focal length of the lens. A mirror of radius Ro acts
like a lens with a focal length of f = Ro/2.

Both (6.5A.20) and (6.5A.21) can be expressed as a bilinear trans-
formation with the form

q1 =
A1q + B1

C1q + D1

For (6.5A.20) [
A1 B1

C1 D1

]
=

[
1 d
0 1

]
(6.5A.22)

And for (6.5A.21)
1
ql

=
1
q
− 1

f
(6.5A.23)

gives

ql =
q

1− q/f
=

Alq + Bl

Clq + Dl

The corresponding ABCD matrix is[
Al Bl

Cl Dl

]
=

[
1 0
− 1

f 1

]
(6.5A.24)
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ρ2

tan−1 ρ′2

optical system

ρ1

tan−1 ρ′1

Figure 6.5A.2 Transmission through an optical system.

For a beam with parameter q propagated over a distance d1, trans-
mitted through a lens of focal length f , and propagated over another
distance d2, we have the last parameter

q2 = ql + d2 =
q1 + d2 − d2q1/f

1− q1/f

=
(1− d2/f)q + d1 + d2 − d1d2/f

−q/f + 1− d1/f
=

A2q + B2

C2q + D2

The A2B2C2D2 matrix is easily shown to be a chain multiplication of
the following three matrices:[

A2 B2

C2 D2

]
=

[
1 d2

0 1

] [
1 0
−1/f 1

] [
1 d1

0 1

]

This chain rule of multiplication is characteristic of bilinear transfor-
mations and is extremely useful in the study of Gaussian beam trans-
mission optics.

The ABCD matrix is useful in the description of ray optics. Let
a ray have beam position ρ1 and slope ρ′1. The ray passes through
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an optical system with rotational symmetry and acquires a new beam
position ρ2 and slope ρ′2 [Fig. 6.5A.2]. We can write[

ρ2

ρ′1

]
=

[
A B
C D

] [
ρ1

ρ′1

]
(6.5A.25)

For propagation in free space, the ABCD matrix is identical to
(6.5A.22) and we find ρ2 = ρ1 + dρ′1 and ρ′2 = ρ′1. For transmis-
sion through a lens, the ABCD matrix is identical to (6.5A.24) and
we have ρ2 = ρ1 and ρ′1 = ρ′1 − ρ1/f.

Problems

P6.5.1
A Fabry-Perot resonator is composed of two parallel reflectors within

which a standing wave is formed. The field inside is a TEM wave standing
between the two plates. Show that the resonant wavenumbers are krd = mπ.
Strictly speaking, because of the finite transverse dimension, a TEM wave is
diffracted. Considering diffraction in the cavity, we assume that the transverse
field distribution takes a Gaussian form. At z = 0 , E = x̂E0 e−y

2/ω2
0 . At

z > 0, the electric field can be written as a superposition of plane waves with
k = ẑkz + ŷky and ky � kz :

E = x̂

∫ ∞

−∞
dky Eg eikzz+ikyy

where

kz =
√

k2 − k2
y ≈ k

(
1− 1

2
k2
y

k2

)
The amplitude Eg is determined by the field at z = 0. Determine Eg by
using an inverse Fourier transformation. Calculate and show that

E ≈ x̂
E0√

1 + iz/zF
eikz e(i z/zF−1)y2/w2

where zF = kw2
0/2 and w(z) = w0

√
1 + z2/z2

F . Prove that, for a given ω0,
the locus of w versus z is a hyperbola. The phase front formed by normals to
the family of the hyperbolas is curved. Show that the radius of curvature can
be determined approximately by R(z) ≈ w(z)/[dw(z)/dz] = z(1 + z2

F /z2).
Draw w(z) and show that the focal points for the right-hand phase front
and the left-hand phase front coincide when z = zF . When the mirrors have
radius of curvature R(zF ) = 2zF and are placed at a distance of d = 2zF
apart, the configuration is confocal. Determine modes inside an optical cavity
made of confocal mirrors. Are the modes with the confocal configuration
stable?
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6.6 Quantization of Electromagnetic Waves

In microscopic physics, quantum electrodynamics has become a well-
established discipline. In the study of interactions of electromagnetic
waves with material media, semi-classical approaches are usually taken,
as a full quantum theory is too complicated to carry out. We can either
treat electromagnetic waves classically or treat material media classi-
cally. In this section we quantize electromagnetic waves with material
media characterized by constitutive relations. The Heisenberg repre-
sentation will be used in the process of quantization. First we give a
brief review of this representation.

The state of a physical system is represented by a state vector,
which can be viewed either as a column matrix called a ket and de-
noted by |ψ> or as a row matrix called a bra and denoted by <ψ| .
The bra <ψ| is the complex conjugate and transpose of the ket |ψ> .
Physical observables are represented by Hermitian operators. An oper-
ator can be viewed as a square Hermitian matrix. Any measurement of
a physical observable O yields a statistical expectation value for the
observable. The average value of a series of measurements made on an
ensemble of systems characterized by the same state vector |ψ > is
given by

< O > = < ψ |O|ψ >

This average value, or expectation value, is a real scalar number.
Each Hermitian operator possesses a set of eigenvectors with asso-

ciated eigenvalues. The eigenvectors are eigenstates of the correspond-
ing observable. The result of a single measurement for an observable
O on a system described by the state vector |ψ > yields an eigen-
value λn of the operator O and sends the system into the correspond-
ing eigenstate |λn > . The probability of obtaining this eigenvalue λn

and resulting in this eigenstate |λn > is given by |< λn |ψ >|2 . As
time progresses, the eigenstates of the operator evolve as the operator
evolves with time, and the state of the system will no longer be an
eigenstate of the operator. The evolution of the operator with time is
determined by the equations of the motion. In classical electromagnetic
theory the equations of motion for the electromagnetic field vectors are
the Maxwell equations. In quantum theory, the field vectors are treated
as operators and are governed by the Maxwell equations.
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A. Uncertainty Principle

Since operators do not necessarily commute, commutation relations for
noncommuting operators must be postulated. The physical interpreta-
tion of the commutation relations leads to the uncertainty principle,
which states, in essence, that any measurement made on a physical
system, no matter how slight, perturbs the system. Thus reality is
forever beyond reach; only statistical results show up. This perturba-
tion, induced by a measurement on one observable, may or may not
affect the true values of measurements on other observables. When two
observables interfere with each other, they are noncommuting opera-
tors. When two observables do not interfere with each other, they are
simultaneously measurable and the commutation relation is zero. Com-
mutation relations for electromagnetic fields D and B are postulated
as

[Di(r, t), Bj(r′, t)] = Di(r, t)Bj(r′, t)−Bj(r′, t)Di(r, t)

= −ih̄ εijk
∂

∂xk
δ(r − r′) (6.6.1)

where h̄ = 1.05× 10−34 joule-sec is Planck’s constant divided by 2π .
The factor h̄ signifies that quantum effects are important whenever h̄
is not numerically negligible. The classical limit is obtained when we
let h̄→ 0 and treat operators as classical variables.

In vacuum the commutation relations for other field components
follow directly from the constitutive relations for vacuum:

[Ei(r, t), Bj(r′, t)] = −ih̄ εijk
1
εo

∂

∂xk
δ(r − r′) (6.6.2)

[Di(r, t), Hj(r′, t)] = −ih̄ εijk
1
µo

∂

∂xk
δ(r − r′) (6.6.3)

[Ei(r, t), Hj(r′, t)] = −ih̄c2 εijk
∂

∂xk
δ(r − r′) (6.6.4)

The commutation relations state that the perpendicular components
of the electric and magnetic fields interfere with each other, whereas
parallel components are simultaneously measurable. For instance, to
measure an electric field, we may use a test charge and observe its
motion along the electric field lines. But when a charge moves, it con-
stitutes a current. The current produces a magnetic field perpendicular
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to the electric field. Thus the test charge used in the measurement of
the electric fields interferes with a simultaneous measurement on mag-
netic fields.

Recall that the magnetic field B is expressible as the curl of a
vector potential A :

B = ∇×A (6.6.5)

The commutation relation (6.6.1) can be written as

[Bj(r, t), Di(r′, t)] = −ih̄ εijk
∂

∂xk
δ(r − r′)

From (6.6.5), we find

[εjkm
∂

∂xk
Am(r, t), Di(r′, t)] = εjkm

∂

∂xk
[Am(r, t), Di(r′, t)]

= −ih̄ εijk
∂

∂xk
δ(r − r′)

It follows that in terms of the vector potential A , the commutation
relation can be written as

[Ai(r, t), Dj(r′, t)] = −ih̄ δij δ(r − r′) (6.6.6)

Note that, although all commutation regions are written for equal
times, we can also deduce and postulate commutation relations for
unequal times.

In our description of a quantized system, the operators evolve
with time, as do their associated eigenvectors. The eigenvectors can be
viewed as forming base vectors describing a system state vector that is
not varying with time. This is known as the Heisenberg picture. The
Heisenberg picture is different from the Schrödinger picture, in which
the system state vectors are functions of time but the operators and
their eigenstates are stationary. In the Schrödinger picture, the equa-
tion of motion of a state vector |ψ(t) > is given by the Schrödinger
equation. In the Heisenberg picture, the time evolution of an operator
O representing a physical observable is governed by the Heisenberg
equation of motion. Under the assumption that O is not explicitly
dependent on time, the Heisenberg equation of motion for O is
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ih̄
dO

dt
= [O,H] (6.6.7)

where H is the Hamiltonian of the system, which corresponds to the
total energy of the system. The Hamiltonian of an electromagnetic field
in a source-free region is

H =
∫

d3r
1
2
(E ·D + H ·B) (6.6.8)

The equation of motion of the D field is determined from (6.6.7)

ih̄
dDi

dt
= [Di,H]

=
∫

d3r′
{

1
εo

[Di(r), Dj(r′)]Dj(r′) +
1
µo

[Di(r), Bj(r′)]Bj(r′)]
}

Remember that all field observables are now operators. The integral
can be evaluated with the use of commutation relations (6.6.1) and
(6.6.3). The first two commutators are zero because electric field oper-
ators commute. We obtain

dDi

dt
= −εijk

∂Hj

∂xk
(6.6.9)

which is Ampère’s law in the absence of the source term Ji . If sources
are present, the Hamiltonian in (6.6.8) must then include an interaction
term −J · A . In view of commutation relation (6.6.6), it is clear that
this extra term gives rise to a source term Ji in (6.6.9). Following a
similar procedure, we can derive Faraday’s law from the Heisenberg
equation of motion for B .

William Rowan Hamilton (4 August 1805 – 2 September 1865)
In 1823, Hamilton entered Trinity College, Dublin and submitted a pa-

per “On Caustics” in 1824. In April 1827 he submitted his paper “Theory of
Systems of Rays”, and Trinity College elected him to the post of Andrews
professor of astronomy and royal astronomer of Ireland while still an under-
graduate at age 21. In 1833 Hamilton married Helen Maria Bayley, who bore
him two sons and a daughter. In 1835 he published his memoir “On a Gen-
eral Method in Dynamics”, and made discovery of quaternions, which freed
algebra from the commutative postulate of multiplication. The Elements of
Quaternions was published posthumously with a preface by his son William
Edwin Hamilton in 1866.
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B. Annihilation and Creation Operators

The eigenstates of the Hamiltonian are energy eigenstates because the
Hamiltonian H is an energy operator. To facilitate discussion of the
energy states of a quantized wave field, it is useful to transform the
operator to k space:

A(r) = (2π)−3/2

∫
d3k A(k)eik·r (6.6.10a)

D(r) = (2π)−3/2

∫
d3k D(k)eik·r (6.6.10b)

The condition that D(r) and A(r) be real operators requires that
A

+(r) = Ai(r) and D
+(r) = D(r) which yields the reality condition

A(−k) = A
+(k) (6.6.11a)

D(−k) = D
+(k) (6.6.11b)

The reality conditions in (6.6.11) are satisfied with the following rep-
resentations:

A(k) = α

√
h̄

2
[a(k) + a+(−k)] (6.6.12a)

D(k) =
i

α

√
h̄

2
[a(k)− a+(−k)] (6.6.12c)

In terms of A(k) and D(k) , we have

a(k) =
1√
2h̄

[
1
α

A(k)− iαD(k)] (6.6.12b)

a+(k) =
1√
2h̄

[
1
α

A
+(k) + iαD

+(k)] (6.6.13a)

As we shall demonstrate in subsequent developments, the operator
a(k) is an annihilation operator and the operator a+(k) is a creation
operator. Upon operating on an energy eigenstate a(k) annihilates a
photon corresponding to wave vector k and polarization D in the
state, whereas a+(k) creates such a photon.

The commutation relation (6.6.6)

[Ai(r, t), Dj(r′, t)] = −ih̄ δij δ(r − r′) (6.6.14)
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gives rise to, using the integral representation for the delta function,
1

(2π)3

∫
d3keik·(r−r′) = δ(r − r′) ,

−ih̄δij δ(r − r′) =
1

(2π)3

∫
d3k

∫
d3k′eik·reik

′·r′ [Ai(k), Dj(k
′)]

=
1

(2π)3

∫
d3k

∫
d3k′eik·re−ik

′·r′ [Ai(k), D+
j (k′)]

=
1

(2π)3

∫
d3k

∫
d3k′e−ik·reik

′·r′ [A+
i (k), Dj(k

′)]

We thus deduce that

[Ai(k), D+
j (k′)] = [A+

i (k), Dj(k
′)] = −ih̄δijδ(k − k

′) (6.6.15)

In terms of a(k) and a+(k) , the commutation relation becomes

[ai(k), a+
j (k′)] =

1
2h̄

[(
1
α

Ai(k)− iαDi(k)), (
1
α

A+
j (k) + iαD+

j (k))]

= δijδ(k − k
′)

(6.6.16)
Thus perpendicular components commute and only like components
are non-commutable.

The Hamiltonian H becomes, noting that B(k) = k ×A(k) ,

H=
1

2(2π)3

∫∫∫
d3rd3kd3k′

{
1
εo

D(k)·D(k′)+
1
µo

B(k)·B(k′)
}

ei(k+k
′
)·r

=
1
2

∫
d3k

{
1
εo

D(k) ·D+(k) +
k2

µo
A(k) ·A+(k)

}

=
h̄

4

∫
d3k

{
1

εo|α|2
[a+(k)− a(−k)] · [a(k)− a+(−k)]

+
k2|α|2

µo
[a+(k) + a(−k)] · [a(k) + a+(−k)]

}

=
h̄

4

∫
d3k

{
(

1
εo|α|2

+
k2|α|2

µo
)[a+(k) · a(k) + a(−k) · a+(−k)]

+ (
−1

εo|α|2
+

k2|α|2
µo

)[a(−k) · a(k) + a+(k) · a+(−k)]
}

=
1
2

∫
d3k h̄kc [a+ (k) · a(k) + a(k) · a+ (k)] (6.6.17)
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where we set k2|α|2/µo = 1/εo|α|2 to obtain |α|2 =
√

µo/k2εo = η/k .
For the case i = j and k = k

′ , we simply write

[a, a+] = 1 (6.6.18)

The Hamiltonian for the photon with a particular k vector becomes

H =
h̄kc

2
(a+a + a+a) = h̄ω(a+a +

1
2
) (6.6.19)

where we made the use of commutator (6.6.18) and the vacuum dis-
persion relation ω = kc . To obtain eigenvalues and eigenvectors for
the energy operator H, we write

H |E> = E |E> (6.6.20)

where |E> denotes the eigenstate, and E the corresponding eigen-
value. We first show that the eigenvalue E is always non-negative.
Scalar-multiplying (6.6.20) by the eigenbra <E| and using (6.6.19),
we have

h̄ω <E| a+a +
1
2
|E> = E <E| E>

The scalar <E | E> is always non-negative because it is the product of
a column matrix |E> and its complex conjugate and transpose < E| .
The term <E |a+a| E> is also non-negative for the same reason. Note
that < E | a+ is the complex conjugate and transpose of a | E > .
Consequently, the eigenvalue E must be non-negative.

We next show that, if |E> is an eigenstate of H , so are a | E >
and a+ | E > . Consider H(a+ | E >) . Using commutation relation
(6.6.18), we find

[H, a+] = h̄ω[a+a, a+] = h̄ωa+

Thus

Ha+ |E> = a+H |E> +h̄ωa+ |E> = (E + h̄ω)a+ |E> (6.6.21)

It is seen that a+ |E> is an eigenstate of H with eigenvalue (E+h̄ω) .
Whenever a+ is applied to an eigenstate of H with energy E , the
state changes into another eigenstate with energy E + h̄ω . Since the
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net effect of this operation is to create one more photon with energy
h̄ω , the operator a+ is called a creation operator.

Following similar reasoning, we can show that

Ha |E> = (E − h̄ω)a |E> (6.6.22)

When a is applied to an eigenstate |E> , the result is another eigen-
state, |E − h̄ω > , with one photon annihilated. The operator a is thus
called an annihilation operator.

The separation between energy levels is h̄ω . When operated on by
a, the transition is downward; when operated on by a+ , the transition
is upward. The whole energy spectrum can be built up by successively
applying a+ to the ground state, which we denote by ket |0 > with
0 indicating no photon in the state. The state of n photons, |n > , is
then created by operating a+ on |0 > n times.

We have proved that all energy states of H possess non-negative
energy eigenvalues. Suppose that we apply the annihilation operator a
to the state |E> n times and reach the ground state |0 > . Further
operation of a on |0> will then yield a zero:

a |0> = 0

We find the energy of the ground state to be

E0 =
< 0 |H| 0 >

< 0 | 0 >
=

h̄ω < 0
∣∣(a+a + 1

2

)∣∣ 0 >

< 0 | 0 >
=

1
2

h̄ω (6.6.23)

Since

H |n> = h̄ω

(
a+a +

1
2

)
|n> = h̄ω

(
n +

1
2

)
|n>

The energy eigenvalue associated with |n > is thus (n + 1/2)h̄ω .
The energy eigenstate |n> can be represented by a column matrix

with all elements equal to zero except the (n+1) th one, which is equal
to unity. For instance,

|0 > =




1
0
0
0
...


 |1 > =




0
1
0
0
...


 |2 > =




0
0
1
0
...



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The Hamiltonian can be represented by a diagonal matrix

H = h̄ω




1/2 0 0 . . .
0 3/2 0 . . .
0 0 5/2 . . .
...

...
...

. . .


 (6.6.24)

The eigenstates of H are also eigenstates of the number operator N =
a+a ,

N | n > = n | n > (6.6.25)

The eigenvalue associated with a particular state of N is equal to the
number of photons in that state.

We now find an explicit representation of a and a+ in terms of
matrices. We write

a | n > = Cn | n− 1 > (6.6.26)

The coefficient Cn is determined from normalization. We require that
the scalar product of the bra and the ket of an eigenstate be unity. We
have

n = < n
∣∣a+a

∣∣ n > = |Cn|2

Thus,
a | n > =

√
n | n− 1 > (6.6.27)

The matrix elements of a can be obtained from (6.6.27) by noting that

< n− 1 |a|n > =
√

n (6.6.28)

which is the element in the (n − 1) th row and the n th column. All
other elements are zero:

a =




0 1 0 0 . . .
0 0

√
2 0 . . .

0 0 0
√

3 . . .
...

...
...

...
. . .


 (6.6.29)

Following similar reasoning, we let a+ | n > = C ′
n | n + 1 > and find

∣∣C ′
n

∣∣2 = < n
∣∣aa+

∣∣ n > = < n
∣∣a+a + 1

∣∣ n > = n + 1

Thus,
a+ | n > =

√
n + 1 | n + 1 > (6.6.30)
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Forming the product

< n + 1
∣∣a+

∣∣ n >=
√

n + 1 (6.6.31)

we see that the matrix representation of a+ takes the following form:

a+ =




0 0 0 0 . . .
1 0 0 0 . . .
0

√
2 0 0 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .


 (6.6.32)

Obviously, the matrix representation for a+ is the transpose of that for
a . The time evolution of a+ follows the Heisenberg equation of motion
as D and A do. From matrix multiplication we see that operating a
on the state |n > will move the unit element in the n th position
to the (n + 1) th position and form the state |n− 1 > multiplied by√

n . Similarly, operating a+ on |n− 1 > results in the state |n >
multiplied by

√
n . Operating on |n > by a+a will result in the same

state and give the photon number n .
We have discussed energy eigenstates and their associated eigen-

values for the Hamiltonian operator H, and we have seen what results
the annihilation operator a and creation operator a+ have when oper-
ating on the eigenstates. It is natural to ask, “What are the eigenstates
and eigenvalues for the annihilation and the creation operators?” First
we shall prove that a+ has no nonzero eigenstates. Denote the eigen-
states of a+ as |e > and let the eigenvalues be λ . In view of (6.6.32),
we have

λ




e0

e1

e2

e3
...


 =




0 0 0 0
1 0 0 0
0
√

2 0 0
0 0

√
3 0

...
...

...
...







e0

e1

e2

e3
...


 =




0
e0√
2e1√
3e2
...




We see that if λ = 0 , then e0 = e1 = e2 = · · · = 0 and |e >=| 0 > . If
λ 
= 0 , then e0 = 0, e1 = (1/λ)e0 = 0, . . . , en = (1/λ)

√
nen−1 = 0, . . . ,

and the eigenstate is identically zero.
The same procedure can be used to find eigenstates for a. We

write, in view of (6.6.29),
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λ




e0

e1

e2

e3
...


 =




0 1 0 0 . . .
0 0

√
2 0 . . .

0 0 0
√

3 . . .
...

...
...

...
...

...
...

...
. . .







e0

e1

e2

e3
...


 =




e1√
2e2√
3e3√
4e4
...




(6.6.33)
We see that e1 = λe0, e2 = (λ/

√
2)e1, . . . , en = (λ/

√
n)en−1, . . . In

terms of the energy eigenstates, we obtain

|e > = e0

[
|0 > +λ| 1 > +

λ2

√
2!
| 2 > + · · ·+ λn

√
n!
| n > + · · ·

]
(6.6.34)

Imposing the normalization condition < e | e > = 1 yields

|e0|2
[
1 + λ2 +

λ4

2!
+ · · ·+ λ2n

n!
+ · · ·

]
= 1 (6.6.35)

Thus e0 = exp(−λ2/2) and (6.6.34) becomes

|e > = e−λ2/2
∞∑
n=0

λn

√
n!
| n > (6.6.36)

We note that the expectation value for the photon number operator
a+a is determined from

n = < e
∣∣a+a

∣∣ e > = e−λ2
∞∑
n=0

n
λ2n

n!
= λ2 (6.6.37)

Consequently, the eigenvalue λ is equal to the square root of the pho-
ton number expectation value. Equation (6.6.36) becomes

|e > = e−n/2
∞∑
n=0

nn/2

√
n!
| n > (6.6.38)

This represents the eigenstate of the annihilation operator a . It is also
called the coherent state. The probability of finding the average photon
number of n is

|< n | e >|2 =
nne−n

n!
(6.6.39)

This is the Poisson distribution. It is seen that in the energy state rep-
resentation the precise photon number is given, whereas in the coherent
state representation the photon number obeys the Poisson probability
distribution.
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C. Wave Quantization in Bianisotropic Media

With the use of the annihilation and creation operators a and a+ , we
have diagonalized the Hamiltonian for an electromagnetic field in vac-
uum. The quantized fields have been discussed in terms of the energy
states. We now generalize the procedure to carry out wave quantiza-
tion in bianisotropic media. The commutation relations for D and B
are the same as postulated in (6.6.1), and those for other field opera-
tors are derived from (6.6.1) by using the constitutive relations. The
annihilation and creation operators are introduced by

Aj(k) = αj

√
h̄

2
[aj(k) + a+

j (−k)] (6.6.40a)

Dj(k) =
i

αj

√
h̄

2
[aj(k)− a+

j (−k)] (6.6.40b)

where αj is a constant to be determined. In view of the reality con-
dition (6.6.11), we must have αj(−k) = α∗

j (k) . Substituting (6.6.40)
into (6.6.14), we find that the commutation relations for a and a+ are
identical to (6.6.16) and (6.6.18). Using a and a+ , we shall diagonalize
the Hamiltonian by properly choosing αj .

As an example of bianisotropic media we consider a uniaxial me-
dium moving along the direction of its optic axis. We let the optic axis
be along the ẑ direction. In the kDB system, D3 = B3 = 0 and the
constitutive relation is

κk =


 κ 0 0

0 κ cos2 θ + κz sin2 θ (κ− κz) sin θ cos θ
0 (κ− κz) sin θ cos θ κ sin2 θ + kz cos2 θ




νk =


 ν 0 0

0 ν cos2 θ + νz sin2 θ (ν − νz) sin θ cos θ
0 (ν − νz) sin θ cos θ ν sin2 θ + νz cos2 θ




χk = ν
+
k =


 0 χ cos θ χ sin θ
−χ cos θ 0 0
−χ sin θ 0 0




The Hamiltonian becomes
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H =
1
2

∫
d3k

[
D

+(k) · E(k) + B
+(k) ·H(k)

]
=

1
2

∫
d3k

{[
κD+

1 (k)D1(k) + (κ cos2 θ + κz sin2 θ)D+
2 (k)D2(k)

+ k2νA+
2 (k)A2(k) + k2(ν cos2 θ + νz sin2 θ)A+

1 (k)A1(k)
]

− ikχ cos θ
[
D+

1 (k)A1(k)−A+
1 (k)D1(k)

+ D+
2 (k)A2(k) −A+

2 (k)D2(k)
]}

(6.6.41)

where θ is the angle between the k vector and the z axis. To ex-
press the Hamiltonian in terms of the annihilation and the creation
operators, we note that∫

d3k k[D+
j (k)Aj(k)−A+

j (k)Dj(k)]

= −ih̄

∫
d3k k[aj(k)a+

j (k) + a+
j (k)aj(k)]

Introducing (6.6.40) in (6.6.41), we obtain

H =
h̄

4

∫
d3k

{(
κ

α2
1

+ k2α2
1(ν cos2 θ + νz sin2 θ)− 2kχ cos θ

)

· [a1(k)a+
1 (k) + a+

1 (k)a1(k)] +
(

1
α2

2

(κ cos2 θ + κz sin2 θ)

+ κ2α2
2 − 2kχ cos θ

)
[a2(k)a+

2 (k) + a+
2 (k)a2(k)]

+
(

k2α2
1(ν cos2 θ + νz sin2 θ)− κ

α2
1

) [
a1(−k)a1(k)

+ a+
1 (k)a+

1 (−k)
]
+

(
k2να2

2 −
1
α2

2

(κ cos2 θ + κz sin2 θ)
)

· [a2(−k)a2(k) + a+
2 (k)a+

2 (−k)]

}
(6.6.42)

We see that the last two terms can be made to vanish by choosing

α4
1 =

κ

k2(ν cos2 θ + νz sin2 θ)
(6.6.43a)

α4
2 =

(κ cos2 θ + κz sin2 θ)
k2ν

(6.6.43b)
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The Hamiltonian H is seen to be diagonalized. It can be written as
the sum of two Hamiltonians, each corresponding to a characteristic
wave in the moving medium:

H = Hm +He (6.6.44a)

Hm =
h̄

2

∫
d3k

(
κ

α2
1

+ kχ cos θ

)
[a1(k)a+

1 (k) + a+
1 (k)a1(k)] (6.6.44b)

He =
h̄

2

∫
d3k

[
(κ cos2 θ + κz sin2 θ)

α2
2

+ kχ cos θ

]

[a2(k)a+
2 (k) + a+

2 (k)a2(k)] (6.6.44c)

In the case of a stationary uniaxial dielectric medium, χ = 0 . We see
that the photons associated with Hm are the ordinary photons and
those associated with He are the extraordinary photons. The Hamil-
tonians in (6.6.44) can be expressed in terms of the number operators.
When the Hamiltonian is operated on an energy state, the result is the
total photon energy in the state. The photon energies of the two types
of photons corresponding to Hm and He are as follows:

Em = h̄(
κ

α2
1

+ κχ cos θ) (6.6.45a)

Ee = h̄

[
(κ cos2 θ + κz sin2 θ)

α2
2

+ kχ cos θ

]
(6.6.45b)

The photon energies can be negative when the medium velocity is
sufficiently high. They correspond to classical slow waves in moving
media which can also possess negative energy, and this is a purely
kinematic effect when transforming from the moving to the stationary
frame.

In general, the energy of a photon with a specified wave vector
k is equal to h̄ times the angular frequency. Classically, the angu-
lar frequency is related to the k vector by dispersion relations. The
derivation of the dispersion relations is facilitated by the use of the
kDB system. Since each characteristic wave has a particular disper-
sion relation, we expect that for each characteristic wave there will be
a corresponding photon after quantization is carried out.
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Example 6.6.1
To show (6.6.14) gives rise to (6.6.1), we take curl of (6.6.14) with respect

to the unprimed coordinate r .

εkli
∂

∂xl
[Ai(r, t), Dj(r′, t)] = −ih̄εkli

∂

∂xl
δij δ(r − r′) = −ih̄εklj

∂

∂xl
δ(r − r′)

We find

[Bk(r, t), Dj(r′, t)] = −ih̄εklj
∂

∂xl
δ(r − r′)

Interchanging Bk and Dj , and r and r′ , we obtain (6.6.1).
End of Example 6.6.1

Example 6.6.2
The commutation relation for a and a+ can also be deduced directly

from (6.6.14) by substituting (6.6.10) and (6.6.40) into the commutation re-
lation (6.6.14) to yield

i
h̄

2

[∫
d3k [a+

i (k)eik·r + ai(k)e−ik·r],∫
d3k

′
[a+
j (k

′
)eik

′·r′ − aj(k
′
)e−ik

′·r′ ]
]

= −ih̄ δijδ(r − r′)

We thus deduce that

[ai(k), a+
j (k

′
)] = δijδ(k − k

′
)

End of Example 6.6.2

Problems

P6.6.1

A simple interferometer is shown in Figure P6.6.1.1. Light from a source
is split into two beams by a semi-transparent mirror. The semi-transparent
mirror has the property of transmitting e−iφt/

√
2 of the incident electric field

and reflecting e−iφr/
√

2 of the incident field with φt − φr = π/2 + lπ . In
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mirror

semi-transparent
mirror

source
light

ε

light
detector

l3

l1

l4 = l3

l2=l1

mirror
semi-transparent
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l

a

b

b a

b

a

a

Figure P6.6.1.1 A simple interferometer.

Chapter 3, the interferometry is analyzed with time-harmonic fields at steady
state. It is shown that at the light detector, fields constructively interfere.

Now consider a single photon incident on the system. Define a unitary
operator for the semi-transparent mirror as follows:

U =
1√
2

[
1 i
i 1

]

Let the routes of the interferometry be marked as a and b .
(a) Let the state of one photon incident from path a and no photon incident

from path b be denoted as |10 >=
[

1
0

]
. Find the photon state after

the photon passes through the semi-transparent mirror.
(b) Let the dielectric-filled path l1 render the photon a phase eiφ and define

a unitary operator

Up =
[

1 0
0 eiφ

]

Find the photon state after the photon passing through the reflecting
mirrors.

(c) Find the final photon state after the second semi-transparent mirror.
Where will the photon be when φ = 0 ?
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P6.6.2
For a given energy state |n > , what are the expectation values for the

field operator D and for D
2
?

P6.6.3
Let A, B, and C be Hermitian operators, with [A, B] = iC . Let

α = A− < A >; β = B− < B >

α|ψ > = |φ >; β|ψ >= |χ >

(∆A)2 =< φ|φ >; (∆B)2 =< χ|χ >

With respect to the state function |ψ > , define the mean-square deviation
by (∆A)2 = < ψ

∣∣(A− < A >)2
∣∣ ψ > and (∆B)2 = < ψ

∣∣(B− < B >)2
∣∣ ψ >

where < A > = < ψ |A|ψ > and < B > = < ψ |B|ψ > are expectation
values of A and B. By Schwartz inequality

(∆A)2(∆B)2 =< φ|φ >< χ|χ >≥ | < φ|χ > |2

show that

(∆A)2(∆B)2 ≥ 1
4
|< ψ |C|ψ >|2

Let C = h̄ , find the uncertainty value ∆A ∆B as implied by the commuta-
tion relation for A and B .

P6.6.4
Given [a, a+] = 1 , compute [a, (a+)n] and [a, ea

+
] .



768 6. Theorems of Waves and Media

Answers

P6.1.1

Z11 = Z∗
22, Z12 = −Z∗

12, and Z21 = −Z∗
21.

P6.1.2

Pr = 20(kI0+)2 , G(θ) = 3 sin2 θ .

P6.1.3

H(r) = iωε2E0
eikr

4πr
(θ̂ cos φ cos θ − φ̂ sin φ)

4
kxky

sin
(

kx
x0

2

)
sin

(
ky

y0

2

)
where kx = k sin θ cos φ; ky = k sin θ sin φ.

P6.1.4

For a < λ and b < λ , H(r) = −φ̂E0 ωεa eikr

4πr k(b2 − a2)π sin θ .

P6.1.5

As θo = 0 , Es = −ŷE0a
2r eikr−2ika , and Ae = limr→∞

(
4πr2 Ps

Pi

)
= πa2

P6.1.6

Za =
η2

4Zm
=

(377)2

4(73)
Ω = 486 Ω

P6.1.7

E(r) = ik cos θ ŷ2E0
eikr

4πr
b

2
π

d
cos kx

d

2(
π2

d2
− k2

x

)
P6.1.8

The first zero of sin(kxw/2z) occurs at kxw/2z = π which yields
2πwθ/2λ = π . Consequently θ = λ/w .

For the N th side lobe, kxw/2z = kwθ/2 = Nπ , which yields θN =
Nλ/w . Based on the assumption θ ≈ x/z < 1 , we thus deduce that N <
λ/w .

P6.1.9

Let the size of the ground illuminated by the radiating antenna during
the processing time be L. The range from the antenna to ground is R. And
the beam width of the small antenna is λ/+ . We have L = Rλ/+ . Since
the synthesized antenna of size L have a beamwidth of λ/+ , the ground
resolution is therefore Rλ/L = Rλ/(Rλ/+) = + . In order to achieve the
resolution for a large range R , we must have a large L. This will demand a
large processing capability which is inversely proportional to +.

P6.2.1

(a) A biaxial medium is lossless and reciprocal.
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(b) A moving biaxial medium is lossless and nonreciprocal. The complemen-
tary medium is moving in the opposite direction.

(c) A chiral medium is lossless and reciprocal.

(d) The biisotropic medium with real χ is lossy and reciprocal.

(e) A ferrite in a dc magnetic field is not reciprocal. The complementary
medium has its dc magnetic field in the opposite direction.

P6.2.2

k2 =

∫∫∫
dV (∇×H)2∫∫∫
dV |H|2

With Aa = −0.65432929 , k2a2 = 2+4Aa+ 9
4A

2a2

1
4+ 2

5Aa+
1
6A

2a2
= 5.80305

P6.2.3

w2
c =

2π2

a2µ(ε1 + ε2)
.

P6.2.4

Ae = 0.86λ2 .

P6.2.5

Percentage shift ∆ωr
ωr0

=
√

0.410−1.0
1.0 = −0.360 = −36% .

36% down in resonant frequency.

P6.3.1

V (t) � −2 cos ωt

P6.3.2

(a) The time-average power per unit area generated by the sheet per unit
area is <Pg>= − 1

2Re
{

Ex|z=0J∗
s

}
= η

4 |Js|2. .
The time-average power per unit area carried by the plane wave in z > 0
is <Sz+ >= 1

2Re{E ×H
∗} = η

8 |Js|2. .
An equal amount is carried by the plane wave in z < 0 .

(b) Evanescent waves are generated. There is no time-average power per unit
area generated by the current sheet.

P6.4.1

E(ρ)
E(0) =

√
P (ρ)
P (0)

=
1

n− 1

√
(n cos θ − 1)3

n− cos θ

P6.4.2

θ0 ≈ 66◦.
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P6.6.1

(a) 1√
2

[
1 i
i 1

][
1
0

]
= 1√

2

[
1
i

]

(b) 1√
2

[
1 0
0 eiφ

][
1
i

]
= 1√

2

[
1

ieiφ

]

(c) 1
2

[
1 i
i 1

][
1

ieiφ

]
= 1

2

[
1− eiφ

i + ieiφ

]
= ieiφ/2

[
− sin φ/2
cos φ/2

]
When φ = 0 , the photon reaches the light detector through path b .

P6.6.2

< n|D(k)|n > =
i

α

√
h̄

2
(< n|a(k)|n > − < n|a+(−k)|n >) = 0.

< n|D2(k)|n > =
h̄k

2η
< n|a+a + aa+|n >

h̄k

2η
(2n + 1).

P6.6.3

The uncertainty relation ∆A ∆B ≥ h̄/2 .

P6.6.4

[a, (a+)n] = n(a+)n−1; [a, ea+] = ea
+
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7.1 Scattering by Spheres

A. Rayleigh Scattering

Rayleigh scattering characterizes the scattering of electromagnetic
waves by particles much smaller than a wavelength. Consider a spher-
ical particle with permittivity εs , permeability µs , and radius a , at
the origin of a coordinate system [Fig. 7.1.1]. A plane wave polarized
in the ẑ direction is incident upon the particle, E = ẑE0e

ikx . Because
the particle is very small, the scattered field is essentially that result-
ing from a point source. The ẑ directed electric field induces a dipole
moment, and the particle re-radiates as a dipole antenna. The solution
takes the form

E =
−iωµIl eikr

4πr

{
r̂

[(
i

kr

)2

+
i

kr

]
2 cos θ

+ θ̂

[(
i

kr

)2

+
i

kr
+ 1

]
sin θ

}
(7.1.1a)

H = φ̂
−ikIl eikr

4πr

(
i

kr
+ 1

)
sin θ (7.1.1b)

The dipole moment Il will be determined by E0 and εs .

sphere
a

E

k x

z

µ, ε µs, εs

Figure 7.1.1 Rayleigh scattering by a small sphere.

Very close to the origin, kr � 1 . This also corresponds to the
static limit when the frequency is very low since k = ω/c . The dipole
solution is electric in nature and the magnetic field vanishes in the
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limit, since | H |∼ Il and | E |∼ Il/k while Il is proportional to ω .
The electric field in the static limit is

E ≈ iωµIl
4πr

1
(kr)2

(r̂ 2 cos θ + θ̂ sin θ)

= (r̂ 2 cos θ + θ̂ sin θ)
(a
r

)3
Es (7.1.2a)

where

Es =
iηIl

4πka3
(7.1.2b)

and η =
√
µ/ε. This solution satisfies the Maxwell equations for static

fields, that is, ∇× E = 0 and ∇ · E = 0 .
We assume the field inside the sphere to be uniform and is in the

same direction as the incident field:

E = ẑEi = (r̂ cos θ − θ̂ sin θ)Ei r ≤ a

This solution also satisfies the Maxwell equations for static fields.
On the surface r = a , the boundary conditions require that the

tangential E field and the normal D be continuous. We find

−E0 + Es = −Ei (7.1.3a)
εE0 + 2εEs = εsEi (7.1.3b)

In terms of the applied field E0 , we find from (7.1.3a) and (7.1.3b)

Es =
εs − ε
εs + 2ε

E0 (7.1.4a)

Ei =
3ε

εs + 2ε
E0 (7.1.4b)

From (7.1.2b) and (7.1.4a) we solve for Il and obtain

Il = −i4πka3

√
ε

µ

(
εs − ε
εs + 2ε

)
E0

When this is inserted in (7.1.1), we obtain the electromagnetic fields
for Rayleigh scattering.
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We shall now study the scattered field as kr 
 1 . Equation (7.1.1)
gives

Eθ = −
(
εs − ε
εs + 2ε

)
k2a2E0

a

r
eikr sin θ (7.1.5a)

Hφ =
√
ε

µ
Eθ (7.1.5b)

The total scattered power from the sphere is

Ps =
1
2

∫ π

0
r2 sin θ dθ

∫ 2π

0
dφEθH

∗
φ =

4π
3

√
ε

µ

(
εs − ε
εs + 2ε

k2a3E0

)2

(7.1.6)
The scattering cross section is calculated as

Σs =
Ps

1
2

√
ε

µ
| E0 |2

=
8π
3

(
εs − ε
εs + 2ε

)2

k4a6 (7.1.7)

Thus the total scattered power is proportional to the fourth power of
the wavenumber; high-frequency waves are scattered more than lower
ones. The scattered power is also proportional to the sixth power of
the radius.

In the case of a perfectly conducting sphere, the electric field inside,
Ei , is identically zero. From (7.1.2b) and (7.1.3a) we find

Il = −i4πka3

√
ε

µ
E0 (7.1.8)

The boundary condition corresponding to (7.1.3b) for the normal D
field can be used to find the surface charge densities ρs . Note that
we can obtain (7.1.8) from (7.1.4) by letting εs → ∞ . Since there
are surface charges, their time variation will lead to a surface current,
creating magnetic dipoles. The near field H for magnetic dipoles is
the dual of that for the electric dipole in (7.1.2),

H ∼ ikKl
4πr

√
ε

µ

1
(kr)2

(
r̂ 2 cos θy + θ̂y sin θy

)
(7.1.9)

where Kl is the magnetic moment of the dipole. Notice that for the
incident H field in the ŷ direction, the angle θy now refers to the
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y axis as opposed to the z axis for the electric dipole. The boundary
condition requires zero normal B field, and the discontinuity of the
tangential H field gives rise to the surface current densities Js . We
find

Kl = −i2πka3

√
µ

ε
H0 (7.1.10)

where H0 is the amplitude of the incident plane wave. Thus the scat-
tered field corresponds to that of a magnetic dipole along the y axis.

We shall remember that the above analysis for Rayleigh scattering
is valid only when the radius of the sphere is very small. For larger
radii, the scattering process is called Mie scattering. In fact, as we
shall show in the following, scattering of a plane wave by a sphere of
arbitrary size with permittivity εs and permeability µs can be solved
exactly in closed form.

B. Mie Scattering

The problem of a plane wave scattered by a sphere can be solved rigor-
ously by matching boundary conditions. To facilitate the solution, we
decompose the spherical waves into TM to r̂ and TE to r̂ components
by introducing the Debye potentials πe and πm so that

A = rπe (7.1.11a)

H = ∇×A = θ̂
1

sin θ
∂

∂φ
πe − φ̂

∂

∂θ
πe (7.1.11b)

for TM to r̂ waves, and

Z = rπm (7.1.12a)

E = ∇× Z = θ̂
1

sin θ
∂

∂φ
πm − φ̂

∂

∂θ
πm (7.1.12b)

for TE to r̂ waves.
The Debye potentials πe and πm satisfy the Helmholtz equation

in spherical coordinates

(
∇2 + k2

) {
πe
πm

}
= 0 (7.1.13)

where

∇2 =
1
r

∂2

∂r2
r +

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2
(7.1.14)
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The solution to this equation is composed of superpositions of spher-
ical Bessel functions, associated Legendre polynomials, and sinusoids.
Using the Maxwell equations and (7.1.13), we find that the field com-
ponents in spherical coordinates take the forms

Er =
i

ωε

(
∂2

∂r2
rπe + k2rπe

)
(7.1.15a)

Eθ =
i

ωε

1
r

∂2

∂r∂θ
rπe +

1
sin θ

∂

∂φ
πm (7.1.15b)

Eφ =
i

ωε

1
r sin θ

∂2

∂r∂φ
rπe −

∂

∂θ
πm (7.1.15c)

Hr = − i

ωµ

(
∂2

∂r2
rπm + k2rπm

)
(7.1.16a)

Hθ = − i

ωµ

1
r

∂2

∂r∂θ
rπm +

1
sin θ

∂

∂φ
πe (7.1.16b)

Hφ = − i

ωµ

1
r sin θ

∂2

∂r∂φ
rπm −

∂

∂θ
πe (7.1.16c)

The total electromagnetic fields are now decomposed into TE and TM
components and expressed in terms of the Debye potentials πe and
πm .

Consider a sphere with radius a located at the origin of a coor-
dinate system [Fig. 7.1.2]. The sphere has permittivity εs and perme-
ability µs . A plane wave,

E = x̂E0 e
ikz = x̂E0 e

ikr cos θ

H = ŷ

√
ε

µ
E0 e

ikr cos θ

is incident upon the sphere. Note that the direction of propagation of
the plane wave is along ẑ . The coordinate system is different from
that used for Rayleigh scattering, where the z axis is in the direction
of the linearly polarized electric field. Rayleigh scattering

To match boundary conditions at the sphere’s surface, we expand
the incident wave in terms of spherical harmonics by using the wave
transformation:

eikr cos θ =
∞∑
n=0

(−i)−n(2n+ 1)jn(kr)Pn(cos θ) (7.1.17)
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incident wave

k

µ, ε µs, εs

sphere

z

a

x

E

Figure 7.1.2 Mie scattering.

To determine the Debye potentials for the incident wave, we note
that

Er = E0 sin θ cosφ eikr cos θ

= − iE0 cosφ
(kr)2

∞∑
n=1

(−i)−n(2n+ 1)Ĵn(kr)P 1
n(cos θ)

where
Ĵn(kr) = krjn(kr)

The summation now starts with n = 1 because P 1
0 (cos θ) = 0 .

The potential πe satisfies (7.1.15) and can be shown to be

πe = −E0 cosφ
ωµr

∞∑
n=1

(−i)−n(2n+ 1)
n(n+ 1)

Ĵn(kr)P 1
n(cos θ) (7.1.18a)

By a dual process, the potential πm is found to be

πm =
E0 sinφ
kr

∞∑
n=1

(−i)−n(2n+ 1)
n(n+ 1)

Ĵn(kr)P 1
n(cos θ) (7.1.18b)
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The scattered field can be characterized by Debye potentials:

πse = −E0 cosφ
ωµr

∞∑
n=1

anĤ
(1)
n (kr)P 1

n(cos θ) (7.1.19a)

πsm =
E0 sinφ
kr

∞∑
n=1

bnĤ
(1)
n (kr)P 1

n(cos θ) (7.1.19b)

where
Ĥ(1)

n (kr) = krh(1)
n (kr)

The total field outside the sphere is equal to the sum of the incident
and scattered fields.

The field inside the sphere can also be expressed in terms of the
Debye potentials:

πie = −E0 cosφ
ωµsr

∞∑
n=1

cnĴn(ksr)P 1
n(cos θ) (7.1.20a)

πim =
E0 sinφ
ksr

∞∑
n=1

dnĴn(ksr)P 1
n(cos θ) (7.1.20b)

The boundary conditions at r = a require that Eθ, Eφ, Hθ, and
Hφ be continuous, with the result that four equations are solvable for
the unknown coefficients an, bn, cn, and dn . In view of (7.1.15) and
(7.1.16), the coefficients are determined as

an=
(−i)−n(2n+ 1)
n(n+ 1)

· −
√
εsµ Ĵ

′
n(ka)Ĵn(ksa) +

√
εµs Ĵn(ka)Ĵ ′

n(ksa)
√
εsµ Ĥ

(1)′
n (ka)Ĵn(ksa)−

√
εµs Ĥ

(1)
n (ka)Ĵ ′

n(ksa)
(7.1.21a)

bn =
(−i)−n(2n+ 1)
n(n+ 1)

· −
√
εsµ Ĵn(ka)Ĵ ′

nksa) +
√
εµs Ĵ

′
n(ka)Ĵn(ksa)

√
εsµ Ĥ

(1)
n (ka)Ĵ ′

n(ksa)−
√
εµs Ĥ

(1)′
n (ka)Ĵn(ksa)

(7.1.21b)

cn =
(−i)−n(2n+ 1)
n(n+ 1)

· i
√
εsµ

√
εsµ Ĥ

(1)′
n (ka)Ĵn(ksa)−

√
εµs Ĥ

(1)
n (ka)Ĵ ′

n(ksa)
(7.1.21c)

dn =
(−i)−n(2n+ 1)
n(n+ 1)

· −i√εµs
√
εsµ Ĥ

(1)
n (ka)Ĵ ′

n(ksa)−
√
εµs Ĥ

(1)′
n (ka)Ĵn(ka)

(7.1.21d)
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In the case of small spheres, ka � 1 and ksa � 1 , only the n =
1 terms dominate, with an → −(ka)3(εs − ε)/(εs + 2ε), and bn →
−(ka)3(µs − µ)/(µs + 2µ) . The results reduce to those of Rayleigh
scattering. Rayleigh scattering For the scattering of electromagnetic
waves by spheres of finite radius, where the Rayleigh limit ka� 1 is
not met, the phenomenon is known as Mie scattering.

The above results also reduce to the case of a perfectly conducting
sphere. In the limit of εs →∞ or Ei = 0 for a perfect conductor, the
source-free Ampère’s law ∇ × H = −iωεsE gives a finite H . From
Faraday’s law ∇×E = iωB , we see that a finite B field will give rise
to a finite E field, violating the definition of a perfect conductor which
requires E to be zero. Thus, B must be zero. However, there are no
explicit mathematical requirements that H must be zero. If we let
the permeability of the perfect conductor be µs such that B = µsH ,
we see that µs = 0 . We can thus replace the definition of a zero E
field for a perfect conductor by mathematically letting εs → ∞ and
µs = 0 when the general case of a medium with permittivity εs and
permeability µs is solved. As a dual case, we can also define a perfect
magnetic conductor by requiring H be identically zero, which leads to
the mathematical limit of µs →∞ and εs = 0 .

Problems

P7.1.1

(a) For the electromagnetic field solution of a Hertzian dipole with current
moment Il = −iωp , let ω → 0 and show that H = 0 . Determine the
electric field E of a static dipole with moment p .

(b) Consider the Rayleigh scattering of electromagnetic waves by particles of
size much smaller than a wavelength, such as sunlight by air molecules.
Model the particle as a small sphere of radius a and permittivity εp .
When the particle is illuminated with a light wave with electric field
intensity E0 polarized in the ẑ direction, what is the induced dipole
moment p ?

(c) Find the total power Ps re-radiated by the particle acting as a Hertzian
dipole. Find the scattering cross section defined by 2ηP/E2

0 . The above
result is usually used to explain why the sky is blue (but why isn’t it
purple?).

(d) Consider an optical fiber with cross section area A . The electromagnetic
wave guided inside the fiber is scattered by the atoms and the molecules
making up the fiber. Since the size of the scattering particles are much
smaller than the guided light wavelength, the process can again be de-
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scribed by Rayleigh scattering. Assume the guided light has intensity
E0 , wavelength 10−6 m , particle radius a = 10−10 m, µ = µo , and
ε = 2εo . Find the guided power flow in watts and the total scattered
power of a fiber with a length of 1 km . The ratio of the scattered power
to the guided power gives the intrinsic loss of the fiber, a lower bound
no matter how pure the fiber. Estimate, with the numbers given above,
the fiber loss per kilometer (in dB/km ) due to the Rayleigh scattering.

(e) The scattering of microwave by rain drops is another example of Rayleigh
scattering. Assume a plane wave at a frequency of 10 GHz is incident on
a rain drop of radius 1mm which has a permittivity ε+iσ/ω where σ =
ωε and ε = 40εo . In addition to the power scattered by the particle, there
is also power absorbed due to the imaginary part iσ/ω . The absorbed
power can be calculated as

Pdiss =
1
2

∫
dV σ|Eo|2

Which is the primary loss of power in the microwave, scattering or ab-
sorption?
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7.2 Scattering by a Conducting Cylinder

A. Exact Solution

Consider a plane wave incident upon a conducting cylinder [Fig. 7.2.1].
The incident wave is linearly polarized with electric vector Ei parallel
to the axis of the cylinder. The incident k vector is perpendicular to
the axis of the cylinder. In terms of cylindrical coordinates, we have

E
i = ẑE0 e

−ikx = ẑE0 e
−ikρ cosφ (7.2.1)

y

x
k

E = ẑE0e
−ikx

a

ρ

φ

φ− π/2− cos−1 a/ρ

√
ρ2 − a2

cos−1 a
ρ

3π
2 − φ− cos−1 a

ρ

Figure 7.2.1 Scattering by a conducting cylinder.

To match boundary conditions at ρ = a , we transform the plane
wave solution into a superposition of cylindrical waves satisfying the
Helmholtz wave equation in cylindrical coordinates:

e−ikρ cosφ =
∞∑

m=−∞
amJm(kρ)eimφ

The constant am can be determined by using orthogonality relations
for eimφ . We multiply both sides by e−inφ and integrate over φ from
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0 to 2π . In view of the integral representation for the Bessel function,

Jn(kρ) =
1
2π

∫ 2π

0
dφ e−ikρ cosφ−inφ+inπ/2

We obtain an = e−inπ/2 and

e−ikρ cosφ =
∞∑

n=−∞
Jn(kρ)einφ−inπ/2 (7.2.2)

This expression is referred to as the wave transformation, which rep-
resents a plane wave in terms of cylindrical waves.

The scattered wave can also be expressed as a superposition of the
cylindrical functions satisfying the Helmholtz wave equation. Expect-
ing outgoing waves, we write the solution in terms of Hankel functions
of the first kind. The sum of the incident wave and the scattered wave
satisfies the boundary condition of a vanishing tangential electric field
at ρ = a . We find the total solution to be E = ẑEz ,

Ez = E0

∞∑
n=−∞

[
Jn(kρ)− Jn(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
einφ−inπ/2 (7.2.3)

The first summation term represents the incident wave; the second
summation term, the scattered wave. At ρ = a , we find from (7.2.3)
E(ρ = a) = 0 .

In the far-field zone, kρ 
 1 , we make use of the asymptotic
formula for H(1)

n (kρ) and find that the scattered wave takes the form

Es ≈ −ẑE0

∞∑
n=−∞

√
2

iπkρ

Jn(ka)

H
(1)
n (ka)

eikρ+in(φ−π)

We can expand this result with respect to ka :

Es = ẑiE0

√
π

i2kρ

[
1

ln ka
+ (ka)2 cosφ− (ka)4

8
cos 2φ+ · · ·

]
eikρ

(7.2.4)
Observe that this series converges rapidly when the radius of the cylin-
der is small compared with the wavelength, ka � 1 . The first term
is angle-independent and signifies that the scattered wave caused by a
thin wire is isotropic. We can show, however, that for an incident wave
with magnetic field H parallel to the axis of the cylinder the scattered
wave will no longer be isotropic and will be angle-dependent.
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B. Watson Transformation

The series in (7.2.4) converges very slowly when the radius of the
cylinder is not small compared to the wavelength. In this case, we
use the Watson transformation to convert the solution into a rapidly
convergent series. The Watson transformation relates a residue series
to a contour integration. Let the contour C in the complex ν plane
be as depicted in Figure 7.2.2. We find

∞∑
n=−∞

einφEn =
i

2

∮
C
dν
eiν(φ−π)

sin νπ
Eν (7.2.5)

C

C

νR

νI

Complex ν plane

Figure 7.2.2 Watson transformation.

under the assumption that Eν has no singularities on the real axis.
The singularities from sin νπ are all first-order poles located on the
real axis at ν = 0,±1,±2, . . . Note that because of the direction of
the contour, the contour integral is equal to −2πi times the residues
of the function eiν(φ−π)Eν/ sin νπ , which are einφEn/π for all integer
values of n .
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ka

νI

νR

Figure 7.2.3 Integration over complex ν plane.

To make use of the Watson transformation, we identify En ac-
cording to (7.2.3):

En =
E0

H
(1)
n (ka)

[
Jn(kρ)H(1)

n (ka)− Jn(ka)H(1)
n (kρ)

]
e−inπ/2

=
E0

2H(1)
n (ka)

[
H(2)

n (kρ)H(1)
n (ka)−H(2)

n (ka)H(1)
n (kρ)

]
e−inπ/2

(7.2.6)
The singularities of En are caused by the zeros of H(1)

n (ka) , which
are illustrated in Figure 7.2.3.

Using the relations

H
(1)
−ν (ξ) = eiνπH(1)

ν (ξ)

H
(2)
−ν (ξ) = e−iνπH(2)

ν (ξ)

we find E−ν = Eν .
The contour integration on the right-hand side of (7.2.5) can be

carried out by converting it into an integral from −∞ to +∞ and then
closing the contour on the upper half-plane [Fig. 7.2.3]. It can be shown
that integration along the large semicircle makes no contribution. The
entire contribution comes from the singularities of Eν . From (7.2.5),
we find
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Ez =
∞∑

n=−∞
einφEn = ẑ

i

2

∮
C
dν
eiν(φ−π)

sin νπ
Eν

= lim
δ→0

i

2

{∫ ∞+iδ

−∞+iδ
+

∫ −∞−iδ

∞−iδ

}
dν

eiν(φ−π)

sin νπ
Eν

=
i

2

∫ ∞

−∞
dν

1
sin νπ

{
eiν(φ−π)Eν + e−iν(φ−π)E−ν

}

=
i

2

∫ ∞

−∞
dν

1
sin νπ

{
eiν(φ−π) + e−iν(φ−π)

}
Eν

= πE0

∞∑
n=1

H
(2)
νn (ka)

[∂H(1)
ν (ka)/∂ν]ν=νn

cos νn(φ− π)e−iνnπ/2

sin νnπ
H(1)

νn (kρ)

(7.2.7)

where νn denotes zeros of H(1)
ν (ka) . Note that the first term of En

in (7.2.6) does not contribute because H(1)
n (ka) in the numerator and

the denominator cancel each other.

C. Creeping Waves

The series in (7.2.7) converges rapidly when π/2 < φ < 3π/2 . This is
due to the fact that

cos νn(φ− π)e−iνnπ/2

sin νnπ
=
−i

[
eiνn(φ−π/2) + eiνn(3π/2−φ)

]
1− eiνn2π

(7.2.8a)

and νn takes positive imaginary values. The convergent range is in
the shadow region of the cylinder. An interesting interpretation can
be given to the terms involved. We use the asymptotic formula for
H

(1)
νn (kρ) when kρ > νn 
 1 :

H(1)
νn (kρ) ∼

√
2

iπ(k2ρ2 − ν2
n)1/2

e
i
(√

k2ρ2−ν2
n−νn cos−1(νn/kρ)

)
(7.2.8b)

Note that the imaginary part of νn is positive and increases for in-
creasing n . For the first few dominant terms we may approximate
νn ∼ ka , √

k2ρ2 − ν2
n ≈ k

√
ρ2 − a2
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and
cos−1 νn

kρ
≈ cos−1 a

ρ

In view of (7.2.8), the exponential dependence of (7.2.7) takes the form

eik
√

ρ2−a2
{
eiνn[φ−(π/2)−cos−1(a/ρ)] + eiνn[3π/2−φ−cos−1(a/ρ)]

}
(7.2.9)

Now consider rays or photons incident upon the cylinder at tangent
points, traveling along the surface, leaving the cylinder surface, and
reaching the observation point at (ρ, φ) [Fig. 7.2.1]. The terms (φ −
π/2− cos−1 a/ρ) and (3π/2− φ− cos−1 a/ρ) correspond to the paths
of the two rays along the surface of the cylinder. The attenuation of
the two rays is determined by the imaginary part of νn . The term
k(ρ2 − a2)1/2 corresponds to the path along which the rays travel
after leaving the cylinder surface. The two rays recombine at ρ in the
shadow region. Because of this vivid picture, they are called creeping
waves.

In the illuminated region, −π/2 < φ < π/2 , a useful formula can
be obtained by noting that

eiν(φ−π) + e−iν(φ−π) = −i2eiνφ sin νπ + 2eiνπ cos νφ

When this relation is used, the contour integral in (7.2.5) becomes

Ez =
i

2

∫ ∞

−∞
dν

1
sin νπ

{
eiν(φ−π) + e−iν(φ−π)

}
Eν

=
∫ ∞

−∞
dν eiνφEν + i

∫ ∞

−∞
dν

cos νφ
sin νπ

eiνπEν (7.2.10)

instead of (7.2.7). Upon closing the contour in the upper half-plane,
the second integral is evaluated in terms of residues from H

(1)
n (ka) .

Because the zeroes of H(1)
n (ka) have positive imaginary parts, this

contribution will not be as significant as that of the first integral in the
parentheses. The evaluation of the first integral is left as an exercise to
the reader. The result is

Ez ∼ E0

[
e−ikρ cosφ −

√
a cosφ/2

2ρ
eik(ρ−2a cosφ/2)

]
(7.2.11)
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This can be interpreted in terms of geometrical optics. The first term is
the incident wave, and the second term corresponds to the ray reflected
at the surface of the cylinder. Upon striking the surface at ρ = a , the
incident ray has a phase factor e−i(ka cosφ/2) . Upon reflection from the
cylinder the ray reaches the observation point and gains another phase
factor, e−i(kρ−ka cosφ/2) .

Problems

P7.2.1
Consider scattering by a conducting cylinder of radius a of an incident

wave with magnetic field H parallel to the axis of the cylinder.

H
i
= ẑHoe

−ikz = ẑHoe
−ikρ cosφ

Using wave transformation

H
i
= ẑHo

∞∑
n=−∞

Jn(kρ)einφ−inπ/2

determine the electric field of the incident wave. The scattered wave can be
expressed as a superposition of Hankel functions.

H
s

= ẑ

∞∑
n=−∞

AnH
(1)
n (kρ)einφ−inπ/2

Determine the electric field of the scattered wave. The tangential component
of electric field should vanish at ρ = a . Show that

H
s

= −Hoẑ

∞∑
n=−∞

J ′
n(ka)

H
(1)
n

′
(ka)

H(1)
n (kρ)einφ−inπ/2

For ka � 1 , use small argument approximation of Bessel’s function and
Hankel’s function as x→ 0

J ′
o(x)

H
(1)
o

′
(x)

= 0

J ′
n(x)

H
(1)
n

′
(x)

= i
πx2n

22n(n− 1)!n!

to find the scattered field in the far field for ka� 1.
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7.3 Scattering by Periodic Rough Surfaces

A. Scattering by Periodic Corrugated Conducting Surfaces

Consider a perfectly conducting surface that is corrugated periodically
with rectangular grooves [Fig. 7.3.1] that are infinite in the ŷ direction
and have width w and depth d . The period of the corrugation is p.
A plane wave with incident wave vector k = x̂kx − ẑkz is scattered
by the rough surface. The scattered wave can be expanded in terms
of Floquet modes that are characteristic waves for periodic structures.
For an incident TM wave,

H = ŷH0

{
eikxx−ikzz +

∞∑
n=−∞

Rn e
i(kx+2nπ/p)x+ikznz

}
(7.3.1a)

where
kzn =

√
k2 − (kx + 2nπ/p)2 (7.3.1b)

d

p

w

z

x

Figure 7.3.1 Scattering by a periodic corrugated surface.

The first term in (7.3.1a) denotes the incident wave. The summa-
tion term represents a superposition of the Floquet modes. The electric
field follows from the Maxwell equation

E =
i

ωε
∇×H (7.3.2)
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We observe that for k2 < [kx + (2nπ/p)]2 the Floquet modes are es-
sentially evanescent waves that decay exponentially in the ẑ direction.
The n = 0 mode corresponds to the specularly reflected wave.

Within the grooves the field can be expanded in terms of waveguide
modes:

H = ŷH0

∞∑
m=0

Gm cos
mπ

w
(x+ w/2)

cos k(2)
zm(z + d)

cos k(2)
zmd

z < 0 (7.3.3a)

where
k(2)
zm =

√
k2 − (2mπ/w)2 (7.3.3b)

The electric field is derived from the magnetic field H by using the
Maxwell equation

E =
i

ωε
∇×H =

i

ωε

{
ẑ
∂

∂x
Hy − x̂

∂

∂z
Hy

}

= x̂
ik

(2)
zm

ωε
H0

∞∑
m=0

Gm cos
mπ

w
(x+ w/2)

sin k(2)
zm(z + d)

cos k(2)
zmd

− ẑ imπ
ωεw

H0

∞∑
m=0

Gm sin
mπ

w
(x+ w/2)

cos k(2)
zm(z + d)

cos k(2)
zmd

(7.3.4)

It is straightforward to show that the fields in the grooves indeed sat-
isfy the boundary conditions of tangential E fields vanishing at the
perfectly conducting surfaces.

Consider the special case of normal incidence when kx = 0 . At
z = 0 , the boundary conditions require that the tangential magnetic
field be continuous for −w/2 ≤ x ≤ w/2 ,

1 +
∞∑

n=−∞
Rn e

i2nπx/p =
∞∑

m=0

Gm cos
mπ

w
(x+ w/2) (7.3.5a)

The tangential electric field is also continuous for −w/2 ≤ x ≤ w/2

1−
∞∑

n=−∞

kzn
kz
Rn e

i2nπx/p=−
∞∑

m=0

i
k

(2)
zm

kz
Gm tan

(
k(2)
zmd

)
cos

mπ(x+ w/2)
w

(7.3.5b)
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The tangential electric field vanishes for w/2 ≤ |x| ≤ p/2 ,

1−
∞∑

n=−∞

kzn
kz
Rn e

i2nπx/p = 0 (7.3.5c)

The task is to determine Rn and Gm from (7.3.5). We use the or-
thogonality properties for cosine functions by multiplying both sides
of (7.3.5a) by cos[mπ(x+ w/2)/w] and integrating over the interval
−w/2 ≤ x ≤ w/2 . We obtain

[1 + δm0]
w

2
Gm =

∫ w/2

−w/2
dx cos

mπ(x+ w/2)
w

[
1 +

∞∑
n=−∞

Rne
i2nπx/p

]

(7.3.6)
We multiply (7.3.5b) by e−i2nπx/p and integrate over the interval
−p/2 ≤ x ≤ p/2 . By virtue of (7.3.5c) , we know the right-hand
side is nonzero only in the interval −w/2 ≤ x ≤ w/2 . It follows that

p

[
δn0 −

kzn
kz
Rn

]
=− i

∫ w/2

−w/2
dx e−2nπx/p

·
∞∑

m=0

k
(2)
zm

kz
Gm tan k(2)

zmd cos
mπ(x+ w/2)

w
(7.3.7)

We define

Pmn =
∫ w/2

−w/2
dx ei2mπx/p cos

nπ(x+ w/2)
w

=




4mπ/p
(2mπ/p)2 − (nπ/w)2

sin
mπw

p
n: even

i
4mπ/p

(2mπ/p)2 − (nπ/w)2
cos

mπw

p
n: odd

wδ0n n = 0

(7.3.8)

Equations (7.3.6) and (7.3.7) can be written as

[1 + δm0]
w

2
Gm = P0m +

∞∑
n=−∞

PnmRn (7.3.9)

Rn =

{
kz
kzn

δn0 +
∞∑

m=0

ik
(2)
zm

pkzn
tan

(
k(2)
zmd

)
P ∗
nmGm

}
(7.3.10)
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This represents a set of matrix equations to be solved for Rn . Substi-
tuting (7.3.10) into (7.3.9), we find

∞∑
l=0

[
(1 + δl0)

w

2
δml − i tan

(
k

(2)
zl d

)
Qml

]
Gl = 2P0m (7.3.11)

where

Qml =
∞∑

n=−∞

k
(2)
zl

pkzn
PnmP

∗
nl

=




1
p

(
P0mP

∗
0l + 2

∞∑
n=1

k
(2)
zl

kzn
PnmP

∗
nl

)
m+ l = even

0 m+ l = odd

(7.3.12)

The mode amplitudes Gl are solved by straightforward matrix inver-
sion. The number of groove modes needed to calculate the reflection
coefficient Rn is determined by the width of the grooves w .

For sufficiently narrow grooves, kw � 1 . We use the lowest mode
amplitudes G0 to calculate Rn . With m = 0 , (7.3.6) and (7.3.7)
become

G0 = 1 +
∞∑

n=−∞
Rn

p

nπw
sin

nπw

p
(7.3.13)

and

Rn =
kz
kzn

δn0 + i
k

kzn

tan kd
nπ

sin
(
nπw

p

)
G0 (7.3.14)

Substituting (7.3.14) into (7.3.13), we obtain

G0 = 2

[
1− i

∞∑
n=−∞

kp tan kd
(nπ)2kznw

sin2 nπw

p

]−1

(7.3.15)

Substituting back into (7.3.14) we find the reflection coefficients Rn .
This mode-matching technique is often useful in solving problems

involving periodic structures. The use of Floquet modes also greatly
facilitates the discussions of scattered waves. As another example, con-
sider a similar structure made of parallel conducting plates of widths
(p − w) and separated by a distance w. The conducting plane at
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incident wave
n = −1

n = 0

n = 1

x

p

h

Figure 7.3.2 Scattering by a periodic rough surface.

z = −d in Figure 7.3.1 is now removed. For an incident TM wave with
the magnetic field in the ŷ direction, the TEM waveguide mode in
the parallel-plate regions is excited. The reflectivity is always less than
unity. For an incident TE wave with electric field E in the ŷ direction,
the excited guided waves in the plate regions are all TE modes. Thus,
if the plate separation is such that kw < π , all guided-wave modes
are evanescent and all the incident power will be scattered.

B. Scattering by Periodic Dielectric Surfaces

Consider a plane wave incident on a periodic surface described by
f(x) = f(x + p) where p denotes the period of the surface in the
x̂ direction [Fig. 7.3.2]. Let the incident field be

Ei = ŷEiy(r) = ŷEo e
iki·r (7.3.16)

where ki = x̂kix − ẑkiz is the incident wave vector.
We make use of the scalar formulation of the Huygens’ principle

to derive the extinction theorem for the solution of the problem. Using
the scalar Green’s function in region 0, we have the total electric field
in regions 0 and 1 as follows:

Eiy(r) +
∫∫ ∞

−∞
dS′ {

Ey(r′)n̂ · ∇′
s g(r, r

′)− g(r, r′)n̂ · ∇′
sEy(r′)

}
=

{
Ey(r) z > f(x)
0 z < f(x) (7.3.17)
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where

dS′ n̂ =
[
ẑ − x̂ d

dx′
f(x′)

]
dx′ (7.3.18)

Equation (7.3.17) states that the total field in region 0 is equal to the
sum of the incident field and the scattered field produced by the in-
duced surface currents. The sum of the incident field and the scattered
field in region 1 is equal to zero on account of Huygens’ principle. This
is referred to as the extinction theorem.

The surface integral in (7.3.17) is over an infinite domain. However,
it can be condensed into a single period. First we recognize that the
surface fields have periodic properties, e.g.,

Ey(r′ + x̂np) = Ey(r′)eikixnp (7.3.19)

From the theory of Fourier series, we can represent a periodic train of
Dirac delta functions by an infinite summation of complex exponentials

∞∑
m=−∞

ei(kix−kx)mp =
∞∑

m=−∞

2π
p
δ

(
kx − kix −

2mπ
p

)
(7.3.20)

The Green’s function for region 0 is

g(r, r′) =
i

4
H

(1)
0 (k|r − r′|) =

i

4π

∫ ∞

−∞
dkx

1
kz
eikx(x−x′)+ikz|z−z′|

(7.3.21)
To reduce the surface integral in (7.3.17) to only one period, we use the
following identity derived from (7.3.20) and (7.3.21), with the transla-
tion phase factor eikixmp in (7.3.19) included in the Green’s function,

∞∑
m=−∞

g(r, r′+x̂mp)eikixmp

=
i

4π

∫ ∞

−∞
dkx

1
kz
eikx(x−x′)+ikz|z−z′| ∑

m

ei(kix−kx)mp

= gp(r, r′) =
i

2p

∑
n

1
kzn

eikxn(x−x′)+ikzn|z−z′| (7.3.22)

where

kxn = kix + n
2π
p

(7.3.23a)

kzn = (k2 − k2
xn)1/2 (7.3.23b)
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When k2
xp is larger than k2 , we choose kzn = i(k2

xn− k2)1/2. Making
use of (7.3.19) and (7.3.22) in (7.3.17) we obtain

Eiy(r) +
∫
p
dS′ {

Ey(r′)n̂ ·∇′
s gp(r, r

′)− gp(r, r′)n̂ · ∇′
sEy(r′)

}
=

{
Ey(r) z > f(x)
0 z < f(x) (7.3.24)

This integration now only extends over a single period.
In terms of the Green’s function (7.3.24) for region 1, we find,

similar to (7.3.22) and (7.3.24),

∞∑
m=−∞

g1(r, r′ + x̂mp)eikixmp = g1p(r, r′)

=
i

2p

∑
n

1
k1zn

eikxn(x−x′)+ik1zn|z−z′| (7.3.25)

where
k1zn = (k2

1 − k2
xn)1/2 (7.3.26)

and

−
∫
p
dS′ {E1y(r′)n̂ · ∇′

s g1p(r, r
′)− g1p(r, r′)n̂ · ∇′

sE1y(r′)
}

=
{

0 z > f(x)
E1y(r) z < f(x) (7.3.27)

Notice that the minus sign in front of the integral signifies the fact
that the unit vector n̂ is the surface normal pointing into region 0 and
Huygens’ principle requires the surface normal to point outward.

From the representations of the periodic Green’s functions in
(7.3.22) and (7.3.25), we see that the scattered waves are propagat-
ing in discrete Floquet modes, with directions determined by (7.3.23)
and (7.3.26). Defining θrn as the angle of the n th-order reflected Flo-
quet mode and θtn as the angle of the n th-order transmitted Floquet
mode, we find

k sin θrn = kxn = k sin θi + n
2π
p

(7.3.28a)

k1 sin θtn = ktxn = k sin θi + n
2π
p

(7.3.28b)
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Figure 7.3.3 k space diagram.

The phase-matching results of (7.3.28) are depicted in Figure 7.3.3.
Given the incident wave vector k−0 as shown in the figure, the zeroth
order modes of the reflected wave and the transmitted wave are the
same as those for a planar surface.

Equation (7.3.24) can be simplified by allowing z to be larger than
fmax or smaller than fmin where fmax and fmin are respectively
the maximum and minimum values of the surface profile f(x). For
z > fmax, |z− z′| becomes z− z′ and for z < fmin, |z− z′| becomes
−(z − z′). Thus

Ey(r) = Eiy(r) +
∑
n

bn
eik

+
n ·r

√
kzn

z > fmax (7.3.29a)

0 = Eiy(r)−
∑
n

an
eik

−
n ·r

√
kzn

z < fmin (7.3.29b)

where
k
±
n = x̂kxn ± ẑkzn (7.3.30)
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are the wave vectors of the Floquet modes. The coefficients bn and an
are related to the surface field by the following integrals:

bn =
i

2p

∫
p
dS′

{
Ey(r′)n̂ · ∇′

s

e−ik
+
n ·r′

√
kzn

− e
−ik

+
n ·r′

√
kzn

n̂ · ∇′
sEy(r′)

}
(7.3.31)

an=− i

2p

∫
p
dS′

{
Ey(r′)n̂ · ∇′

s

e−ik
−
n ·r′

√
kzn

− e
−ik

−
n ·r′

√
kzn

n̂ · ∇′
sEy(r′)

}
(7.3.32)

Similarly, making use of (7.3.27) we find

0 = −
∑
n

Bn
eik

+
1n·r

√
k1zn

z > fmax (7.3.33a)

E1y(r) =
∑
n

An
eik

−
1n·r

√
k1zn

z < fmin (7.3.33b)

where
k
±
1n = x̂k1xn ± ẑk1zn (7.3.34)

Bn =
i

2p

∫
p
dS′

{
E1y(r′)n̂ · ∇′

s

e−ik
+
1n·r′

√
k1zn

− e
−ik

+
1n·r′

√
k1zn

n̂ · ∇′
sE1y(r′)

}

(7.3.35)

An = − i

2p

∫
p
dS′

{
E1y(r′)n̂ · ∇′

s

e−ik
−
1n·r′

√
k1zn

− e
−ik

−
1n·r′

√
k1zn

n̂ · ∇′
sE1y(r′)

}

(7.3.36)
Equations (7.3.29b) and (7.3.33a) are referred to as the extended
boundary conditions (EBC). By letting the observation point be outside
the trough regions of the periodic surface, we find from (7.3.29b)

Eiy(r) =
∑
n

an
eik

−
n ·r

√
kzn

z < fmin

which gives
an = δno

√
kzEo (7.3.37)

and from (7.3.33a)
Bn = 0 (7.3.38)



798 7. Scattering

Knowing an and Bn , we can solve (7.3.32) and (7.3.35) for the un-
known surface fields which can then be used to determine the scattered
field amplitudes bn and An from (7.3.31) and (7.3.36).

We now apply the boundary conditions for the tangential fields
on the periodic surface S′ . The continuity of tangential electric fields
requires

Ey (x, z = f(x)) = E1y (x, z = f(x)) (7.3.39)

and the continuity of tangential magnetic fields requires

n̂×∇s × ŷEy = n̂×∇s × ŷE1y

or equivalently
n̂ · ∇sEy = n̂ · ∇sE1y (7.3.40)

where

n̂ =
ẑ − x̂ df

dx√
1 + (df/dx)2

n̂dS = dx

[
ẑ − x̂df(x)

dx

]

Noting that the surface fields are dependent on x only, we express the
unknown fields in terms of Fourier series expansions as follows:

Ey(r) =
∑
n

2αsn e
i(kix+nK)x (7.3.41)

dS n̂ · ∇sEy(r) = −idx
∑

2βsn e
i(kix+nK)x (7.3.42)

where K = 2π/p. This choice of basis functions is appropriate be-
cause the surface fields when multiplied by the term exp(−ikixx) are
periodic functions of x [Chuang and Kong, 1983].

Substituting (7.3.41) and (7.3.42) into (7.3.32) and defining Q±
D1

and Q±
N1 as the Dirichlet and Neumann matrices with elements

[
Q

±
D

]
mn

= ±1
p

∫
p
dx
e−ik±

m·r
√
kzm

ei[kix+nK]x

= ± 1
p
√
kzm

∫
p
dx e−i[(m−n)Kx±kzmf(x)] (7.3.43a)
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[
Q

±
N

]
mn

= ±(−i)
p

∫
p
dS n̂ ·

(
∇s
e−ik±

m·r
√
kzm

)
ei[kix+nK]x

= ± (−1)
p
√
kzm

∫
p
dx

[
kxm

df

dx
∓ kzm

]
e−i[(m−n)Kx±kzmf(x)]

= ± (−1)
p
√
kzm

∫
p
dx

[
kxm(m− n)K

kzm
∓ kzm

]
e−i[(m−n)Kx±kzmf(x)]

= ±(−k2 + kxmkxn)
kzmp

√
kzm

∫
p
dx e−i[(m−n)Kx±kzmf(x)] (7.3.43b)

we obtain the matrix equation

a = −Q
−
D · β

s −Q
−
N · αs (7.3.44)

Similarly, (7.3.35) leads to the matrix equation

−Q
+

D1 · β
s −Q

+

N1 · αs = B = 0 (7.3.45)

where

[
Q±

D1

]
mn

= ± 1
p
√
k1zm

∫
p
dx e−i[(m−n)Kx±k1zmf(x)] (7.3.46a)

[
Q±

N1

]
mn

= ±(−k2
1 + k1xmk1xn)
k1zm

√
k1zm p

∫
p
dx e−i[(m−n)Kx±k1zmf(x)] (7.3.46b)

Combining (7.3.45) and (7.3.46), we can determine αs and β
s from

the following matrix equation

−
[
Q

−
N Q

−
D

Q
+

N1 Q
+

D1

] [
αs

β
s

]
=

[
a

0

]
(7.3.47)

Notice that a on the right-hand side has been calculated and is given
by (7.3.37).

After αs and β
s are determined from (7.3.47), the scattered field

amplitudes can be obtained from (7.3.31) and (7.3.36) with the Q
matrices defined in (7.3.43) and (7.3.46). The upward-propagating field
amplitudes are

b = −Q
+

D · β
s −Q

+

N · αs (7.3.48)
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The downward-propagating field amplitudes are

A = −Q
−
D1 · β

s −Q
−
N1 · αs (7.3.49)

Thus the problem of the scattering of a TE wave incident upon a
periodic dielectric medium is now completely solved. The solution for
a TM incident wave can be carried out in a similar manner.

For a sinusoidal rough surface with

f(x) = −h cos
(

2π
p
x

)
(7.3.50)

the Q
±

matrices can be calculated by carrying out the integrations in
(7.3.43) and (7.3.47). Expressed in terms of Bessel functions, we have[

Q
±
D

]
mn

= ± 1√
kzm

(±i)|m−n| J|m−n|(kzmh) (7.3.51a)

[
Q

±
N

]
mn

=
(−k2 + kxmkxn

kzm
√
kzm

)
(±i)|m−n| J|m−n|(kzmh) (7.3.51b)

[
Q

±
D1

]
mn

= ± 1√
k1zm

(±i)|m−n| J|m−n|(k1zmh) (7.3.51c)

[
Q

±
N1

]
mn

=
(−k2

1 + kxmkxn)
k1zm

√
k1zm

(±i)|m−n| J|m−n|(k1zmh) (7.3.51d)

For a general profile of a periodic surface defined by a single-valued
function z = f(x), the EBC method can be applied by numerically

integrating (7.3.43) and (7.3.46) to calculate the elements of the Q
±

matrices. In practice, the matrices used may become ill-conditioned
when the surface corrugation is deep or when the corrugation depth
divided by the period is large.

Problems

P7.3.1

Calculate Q
±
D , Q

±
N , Q

±
D1, and Q

±
N1 for the following periodic surface

height:

f(x) =
{
h/2 0 ≤ x < p/2
−h/2 p/2 ≤ x < p
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7.4 Scattering by Random Rough Surfaces

Two analytical approaches have been applied to the study of the scat-
tering of electromagnetic waves by random rough surfaces. In the
Kirchhoff approximation (KA), the fields at any point on the surface
are approximated by the fields that would be present on the tangent
plane at that point. Thus the tangent plane approximation requires
a large radius of curvature relative to the incident wavelength at ev-
ery point on the surface. In the small perturbation method (SPM) the
surface variations are assumed to be much smaller than the incident
wavelength and the slopes of the rough surface are relatively small.

Region 0

Region 1

n̂

n̂d

k̂t

k̂s

k̂i

x

z

Figure 7.4.1 Scattering by a random rough surface.

Consider a plane wave incident upon a random rough surface
[Fig. 7.4.1]. The electric field of the incident wave is given by

Ei = êiEo e
iki·r

where ki is the incident wave vector and êi the polarization of the
electric field vector. The rough surface is characterized by a random
height distribution z = f(r⊥) where f(r⊥) is a Gaussian random
variable with zero mean, < f(r⊥)>= 0. From Huygens’ principle,
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which expresses the field at an observation point in terms of fields at
the boundary surface, the following expressions are obtained for the
scattered fields in region 0 and the transmitted fields in region 1:

Es(r) =
∫∫

S′
dS′

{
iωµoG(r, r′) · [n̂×H(r′)]

+ ∇×G(r, r′) · [n̂× E(r′)]
} (7.4.1a)

Et(r) =
∫∫

S′
dS′

{
iωµoG1(r, r′) · [n̂d ×H(r′)]

+ ∇×G1(r, r′) · [n̂d × E(r′)]
} (7.4.1b)

where S′ denotes the rough surface on which the surface integration
is to be carried out, n̂ and n̂d are the unit vectors normal to the
rough surface and pointing into the reflected and transmitted regions
[Fig. 7.4.1]. The dyadic Green’s function for the homogeneous space of
regions 0 and 1, G(r, r′) and G1(r, r′), are

G(r, r′) =
[
I +

1
k2
∇∇

]
eik|r−r′|

4π |r − r′| (7.4.2a)

and

G1(r, r′) =
[
I +

1
k2

1

∇∇
]
eik1|r−r′|

4π |r − r′| (7.4.2b)

where k = ω
√
µoεo and k1 = ω

√
µoε1. If the observation point is in

the far field region, then the dyadic Green’s functions can be simplified
to

G(r, r′) � (I − k̂sk̂s)
eikr

4πr
exp(−iks · r′) (7.4.3)

G1(r, r′) � (I − k̂tk̂t)
eik1r

4πr
exp(−ikt · r′) (7.4.4)

where k̂s and k̂t denote the scattered and the transmitted directions
in regions 0 and 1.

Substituting (7.4.3) and (7.4.4) into the diffraction integral (7.4.1),
we obtain, in the reflected direction k̂s and the transmitted direction
k̂t,

Es(r) =
ik eikr

4πr
(I − k̂sk̂s)

·
∫∫

S′
dS′

{
k̂s × [n̂× E(r′)] + η[n̂×H(r′)]

}
e−iks·r′ (7.4.5a)
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Et(r) =
ik1 e

ik1r

4πr
(I − k̂tk̂t)

·
∫∫

S′
dS′

{
k̂t × [n̂d × E(r′)] + η1[n̂d ×H(r′)]

}
e−ikt·r′ (7.4.5b)

where η and η1 are the wave impedances in regions 0 and 1.

A. Kirchhoff Approximation

We first form an orthonormal system (p̂i, q̂i, k̂i) at a point r′, with

q̂i =
k̂i × n̂
|k̂i × n̂|

(7.4.6a)

p̂i = q̂i × k̂i (7.4.6b)

where n̂(r′) = −n̂d(r′) is the normal to the surface at the point r′

pointing into region 0. The unit vectors are the local perpendicular and
parallel polarization vectors at the point r′. In applying the tangent
plane approximation, we solve the boundary value problem for the
TE and TM polarization of a wave incident onto an infinite planar
interface with the tangent plane as the interface. The incident field is
decomposed into locally perpendicular and parallel polarization fields.

The TE component of the incident field is (êi · q̂i)q̂iEo e
iki·r′ and

the local reflected field is RTE(êi · q̂i)q̂iEo e
iki·r′ where RTE is the

local Fresnel reflection coefficient for the TE component

RTE =
k cos θli −

√
k2

1 − k2 sin2 θli

k cos θli +
√
k2

1 − k2 sin2 θli

where θli is the local angle of incidence at the point r′. The magnetic
fields associated with the incident and reflected fields are k̂i × (êi ·
q̂i)q̂iEo e

iki·r′/η and RTE k̂r × (êi · q̂i)q̂iEo e
iki·r′/η where k̂r is the

local reflected direction and is related to the incident direction by

k̂r = k̂i − 2n̂(n̂ · k̂i) (7.4.7)

Hence, the tangential electric field of this perpendicular component at
the point r′ is

n̂× E = (n̂× q̂i)(êi · q̂i)(1 +RTE)Eo e
iki·r′ (7.4.8a)
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and the associated magnetic field is

n̂×H =
1
η
(êi · q̂i)n̂×

[
(k̂i × q̂i) +RTE(k̂r × q̂i)

]
Eo e

iki·r′

= −(1−RTE)(n̂ · k̂i)
(êi · q̂i)
η

q̂iEo e
iki·r′ (7.4.8b)

where we have made use of the relations n̂ · q̂i = 0 and n̂ · k̂r = −n̂ · k̂i.
The calculations can be repeated for the local TM component with
local reflection coefficient

RTM =
ε1k cos θli − εo

√
k2

1 − k2 sin2 θli

ε1k cos θli + εo
√
k2

1 − k2 sin2 θli

(7.4.9)

Summing up the local parallel and perpendicular polarized com-
ponents, we obtain

n̂× E(r′) =Eo

{
(êi · q̂i)(n̂× q̂i)(1 +RTE)

+ (êi · p̂i)(n̂ · k̂i)q̂i(1−RTM)
}
eiki·r

′
(7.4.10a)

n̂×H(r′) =
Eo

η

{
−(êi · q̂i)(n̂ · k̂i)q̂i(1−RTE)

+ (êi · p̂i)(n̂× q̂i)(1 +RTM)
}
eiki·r

′
(7.4.10b)

The local angle of incidence can be calculated from the formula

cos θli = −n̂ · k̂i (7.4.11)

The normal vector at the point r′ is given by

n̂(r′) =
−x̂α− ŷβ + ẑ√

1 + α2 + β2
(7.4.12)

where α and β are the local slopes in the x̂ and ŷ directions,

α =
∂f(x′, y′)
∂x′

(7.4.13a)

β =
∂f(x′, y′)
∂y′

(7.4.13b)



7.4 Scattering by Random Rough Surfaces 805

Substituting (7.4.10) into (7.4.5), we obtain, after some algebraic ma-
nipulations,

Es(r) =
ik eikr

4πr
Eo(I − k̂sk̂s) ·

∫
Ao

dr′⊥ F (α, β) ei(ki−ks)·r′ (7.4.14a)

Similarly, for the transmitted field,

Et(r) = − ik1 e
ik1r

4πr
Eo(I − k̂tk̂t) ·

∫
Ao

dr′⊥N(α, β) ei(ki−kt)·r′ (7.4.14b)

where

F (α, β) = (1 + α2 + β2)1/2
{
−(êi · q̂i)(n̂ · k̂i)q̂i(1−RTE)

+ (êi · p̂i)(n̂× q̂i)(1 +RTM)

+ (êi · q̂i)(k̂s × (n̂× q̂i))(1 +RTE)

+ (êi · p̂i)(n̂ · k̂i)(k̂s × q̂i)(1−RTM)
}

(7.4.15a)

N(α, β) =(1 + α2 + β2)1/2
{
−η1
η

(êi · q̂i)(n̂ · k̂i)q̂i(1−RTE)

+
η1
η

(êi · p̂i)(n̂× q̂i)(1 +RTM)

+ (êi · q̂i)[(k̂t × (n̂× q̂i)](1 +RTE)

+ (êi · p̂i)(n̂ · k̂i)(k̂t × q̂i)(1−RTM)
}

(7.4.15b)

We note that except for the phase factors, the expressions in the inte-
grands of the diffraction integral (7.4.14) are not explicit functions of
r′. They are explicit functions of the slopes α and β which are func-
tions of r′. The tangent-plane-approximated diffraction integrals, as
expressed in (7.4.14), do not take into account the effects of shadowing
and multiple scattering.

Expanding the integrands F (α, β) and N(α, β) about zero slopes,
we obtain

F (α, β) = F (0, 0) + α
∂F

∂α

∣∣∣∣
α,β=0

+ β
∂F

∂β

∣∣∣∣
α,β=0

+ · · · (7.4.16)
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N(α, β) = N(0, 0) + α
∂N

∂α

∣∣∣∣
α,β=0

+ β
∂N

∂β

∣∣∣∣
α,β=0

+ · · · (7.4.17)

where F (0, 0) and N(0, 0) are evaluated at α = β = 0, etc. For
angles of incidence near normal and for surfaces with small root mean
square (rms) slope, the Fresnel reflection coefficients vary only slightly
with a change in local angle of incidence. Keeping only the first terms
in (7.4.16) and (7.4.17), we obtain from (7.4.14)

Es =
ik eikr

4πr
Eo(I − k̂sk̂s) · F (0, 0)I (7.4.18a)

Et = − ik1 e
ik1r

4πr
Eo(I − k̂tk̂t) ·N(0, 0)It (7.4.18b)

where the integrals I and It are given by

I =
∫∫

Ao

dr′⊥ e
i(ki−ks)·r′ (7.4.19a)

It =
∫∫

Ao

dr′⊥ e
i(ki−kt)·r′ (7.4.19b)

The scattered and transmitted fields are next separated into a mean
field and a fluctuating part of the field

Es(r) = Esm(r) + Esf (r) (7.4.20a)

Et(r) = Etm(r) + E tf (r) (7.4.20b)

with
<Esf (r)> = <E tf (r)> = 0

where Esm and Etm denote the mean scattered and transmitted fields
respectively. The total scattered intensity is then a sum of coherent and
incoherent intensities

< |Es(r)|2> = |Esm|2+ < |Esf (r)|2> (7.4.21a)

< |Et(r)|2> = |Etm|2+ < |E tf (r)|2> (7.4.21b)
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In view of (7.4.18) and (7.4.19) and noting that (p̂i, q̂i, k̂i) , (v̂s, ĥs, k̂s),
and (v̂t, ĥt, k̂t) are the three orthogonal systems for the incident, scat-
tered, and transmitted systems, we find

|Esm(r)|2 =
k2|Eo|2
16π2r2

{∣∣∣v̂s · F (0, 0)
∣∣∣2+∣∣∣ĥs · F (0, 0)

∣∣∣2} |<I>|2 (7.4.22a)

< |Esf (r)|2> =
k2 |Eo|2
16π2r2

{∣∣∣v̂s · F (0, 0)
∣∣∣2+∣∣∣ĥs · F (0, 0)

∣∣∣2}DI (7.4.22b)

|Etm(r)|2 =
k2

1 |Eo|2
16π2r2

{∣∣∣v̂t ·N(0, 0)
∣∣∣2+∣∣∣ĥt ·N(0, 0)

∣∣∣2} |<It>|2 (7.4.23a)

< |E tf (r)|2> =
k2

1 |Eo|2
16π2r2

{∣∣∣v̂t ·N(0, 0)
∣∣∣2+∣∣∣ĥt ·N(0, 0)

∣∣∣2}DIt (7.4.23b)

where

DI = < |I|2> − |<I>|2 (7.4.24a)
DIt = < |It|2> − |<It>|2 (7.4.24b)

We now specify the height distribution function f(r⊥) by assum-
ing a stationary Gaussian process and that the probability for f(r⊥)
is independent of the position r⊥ on the rough surface and has the
Gaussian distribution

p(f(r⊥)) =
1√
2π σ

e−f2/2σ2
(7.4.25)

where σ is the standard deviation of the surface height. For two points
r⊥1 and r⊥2 on the surface, the joint probability density is

p(f1(r⊥1), f2(r⊥2)) =
e−(f2

1−2Cf1f2+f2
2 )/2σ2(1−C2)

2πσ2
√

1− C2
(7.4.26)

where C is the correlation coefficient between the two points and is
a function of r⊥1 and r⊥2. For a statistically homogeneous isotropic
surface, C is only a function of ρ =

√
(x1 − x2)2 + (y1 − y2)2,

<f(r⊥1)f(r⊥2)> = σ2C(ρ) (7.4.27)

with C(0) = 1 and C(∞) = 0. It is easily shown that

< eiνf(r⊥) > =
∫ ∞

−∞
df p(f)eiνf = e−σ2ν2/2 (7.4.28)
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and

< eiν(f1(r⊥1)−f2(r⊥2)) > =
∫ ∞

−∞

∫ ∞

−∞
df1 df2 p(f1, f2) eiν(f1−f2)

= e−σ2ν2(1−C(ρ)) (7.4.29)

The expressions for |<I>|2 , DI , |<It>|2 and DIt can now be de-
rived in terms of the statistical moments of the height distribution.

The integral I is given by

I =
∫∫

Ao

dr′⊥ e
ikd⊥·r′⊥ eikdzf(r′⊥) (7.4.30)

where
kd = ki − ks = x̂kdx + ŷkdy + ẑkdz (7.4.31)

The ensemble average of I is

<I> =
∫∫

Ao

dr′⊥ e
ikd⊥·r′⊥ < eikdzf(r′⊥) >

= 4LxLy e
−k2

dzσ
2/2 sinc(kdxLx) sinc(kdyLy) (7.4.32)

where sincx = sinx/x, and 2Lx and 2Ly are the lengths of the rough
surface illuminated in the x̂ and ŷ directions so that Ao = 4LxLy .
By allowing Lx and Ly to approach infinity in the above expression,
we obtain

|<I>|2 = 4π2Aoe
−k2

dzσ
2
δ(kdx)δ(kdy) (7.4.33)

where we make use of the identity

lim
Lx,Ly→∞

Lx Ly

π2
sinc(kdxLx) sinc(kdyLy) = δ(kdx) δ(kdy)

The integral for <II∗> is given by

<II∗> =
∫∫

Ao

dr⊥

∫∫
Ao

dr′⊥ e
ikd⊥·(r⊥−r′⊥) < eikdz(f(r⊥)−f(r′⊥)) >

Using (7.4.29) and making the usual change of variables to the differ-
ence and half the sum of coordinates, we obtain

<II∗>=
∫ 2Lx

−2Lx

dx

∫ 2Ly

−2Ly

dy (2Lx−|x|)(2Ly−|y|)

· eikdxx+ikdyy e−k2
dzσ

2(1−C(ρ)) (7.4.34)
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The correlation function C(ρ) is assumed to have a Gaussian form

C(ρ) = e−ρ2/l2 (7.4.35)

where l is the correlation length for the random variable f(r⊥) in the
transverse plane.

The expression for the standard derivation of the integral I can
now be evaluated in closed form. First notice that |<I>|2 can also be
expressed as

|<I>|2 =
∫ 2Lx

−2Lx

dx

∫ 2Ly

−2Ly

dy (2Lx − |x|)(2Ly − |y|)eikdxx+ikdyye−σ2k2
dz

(7.4.36)
In view of (7.4.35), we note that the contribution of the integral of
<II∗> − |<I>|2 comes from |x| and |y| of the same order of l and
the integrand is practically zero for ρ = (x2 + y2)1/2 larger than a
few l ’s. Assuming that the illuminated rough surface contains many
correlation lengths Lx, Ly 
 l, we obtain

DI = <II∗> − |<I>|2

= Ao

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
e−σ2k2

dz(1−C(ρ)) − e−σ2k2
dz

}
eikdxx+ikdyy

(7.4.37)
Converting the integral in (7.4.37) to cylindrical coordinates and car-
rying out the integral in dφ give a Bessel function Jo(kρρ) where
kρ = (k2

dx + k2
dy)

1/2 in the integrand. We further make a power series
expansion

e−σ2k2
dz(1−C(ρ)) − e−σ2k2

dz = e−σ2k2
dz

∞∑
m=1

(σ2k2
dz)

m

m!
e−mρ2/l2 (7.4.38)

and make use of the integral identity∫ ∞

o
dρ ρ Jo(kρρ) e−mρ2/l2 =

l2

2m
e−k2

ρl
2/4m (7.4.39)

Using (7.4.38) and (7.4.39) in (7.4.37), we obtain

DI = <II∗> − |<I>|2

= πAo

∞∑
m=1

(k2
dzσ

2)m

m!m
l2 e− (k2

dx+k2
dy)l

2/4m e−σ2k2
dz (7.4.40)
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In a similar manner, the expressions for |<It>|2 and DIt may be
derived. They are

|<It>|2 = 4π2Aoe
−σ2k2

tdz δ(ktdx)δ(ktdy) (7.4.41)

and

DIt = πAo

∞∑
m=1

(k2
tdzσ

2)m

m!m
l2 e−(k2

tdx+k2
tdy)l

2/4m e−σ2k2
tdz (7.4.42)

where
ktd = ki − kt = x̂ktdx + ŷktdy + ẑktdz

The bistatic scattering coefficients for the reflected intensities are de-
fined as

γrab(k̂s, k̂i) =
4πr2(Sr)a

Ao cos θi(So)b
(a, b = v, h) (7.4.43)

where subscript b represents the polarization of the incident wave,
subscript a the polarization of the scattered wave, So the Poynting
power density of the incident wave, Sr the Poynting density of the
scattered wave, Ao the area of the rough surface projected onto the
x-y plane, and θi the incident angle. From (7.4.18) and (7.4.22), we
calculate the vertically and horizontally polarized coherent and inco-
herent scattered intensities for the cases of vertically and horizontally
polarized incident fields. Let

F b(0, 0) = F (0, 0)
∣∣∣êi=b̂i

F (0, 0) can be calculated by setting α = β = 0 in (7.4.12) and
(7.4.15a) . Next we take the dot product with v̂s and ĥs. Thus,

ĥs · F h(0, 0) =
[
(1−RTE

o ) cos θi − (1 +RTE
o ) cos θs

]
cos(φs − φi)

(7.4.44a)
v̂s·F h(0, 0) =

[
(1−RTE

o ) cos θi cos θs−(1+RTE
o )

]
sin(φs−φi) (7.4.44b)

ĥs · F v(0, 0) =
[
(1 +RTM

o )− (1−RTM
o ) cos θi cos θs

]
sin(φs − φi)

(7.4.44c)
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v̂s · F v(0, 0) =
[
−(1 +RTM

o ) cos θs + (1−RTM
o ) cos θi

]
cos(φs − φi)

(7.4.44d)
where RTM

o and RTE
o are the Fresnel reflection coefficients of a smooth

flat surface for the vertically and horizontally polarized incident waves.
In view of (7.4.21a) , the bistatic scattering coefficients γrab can

be decomposed into a coherent part and an incoherent part

γrab(k̂s, k̂i) =
k2

4πAo cos θi

∣∣âs · F b(0, 0)
∣∣2 {
|<I>|2 +DI

}
(7.4.45)

The first term is the coherent part. Making use of (7.4.33) and (7.4.44)
and the fact that

δ(kdx)δ(kdy) =
δ(θs − θi)δ(φs − φi)

(k2 sin θi cos θi)
(7.4.46)

we find that the coherent part becomes

k2

4πAo cos θi

∣∣âs · F b(0, 0)
∣∣2 |< I >|2 =

4π |Rbo|2
sin θi

e−4k2σ2 cos2 θi

· δ(θs − θi)δ(φs − φi)δab (7.4.47)

Thus the coherent wave exists only in the specular directions. Similar
derivation and observation follow for the transmitted waves.

B. Geometrical Optics Solution

The diffraction integral in (7.4.14) can also be evaluated with the
stationary-phase method which leads to the geometrical optics solu-
tion. The exponential phase factor in (7.4.14) is

ψ = kd · r′ = kdxx
′ + kdyy′ + kdzf(x′, y′)

Setting ∂ψ/∂x′ = 0 and ∂ψ/∂y′ = 0, we find the stationary-phase
points

αo = −kdx
kdz

βo = −kdy
kdz
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The slopes αo and βo are such that the incident and scattered wave
directions form a specular reflection. This is seen from (7.4.12) which
gives

n̂(αo, βo) = (ks − ki)/|kd|

Replacing the surface slopes α and β by αo and βo, we obtain from
(7.4.14)

< |Es|2> =
k2 |Eo|2
16π2r2

∣∣∣(I − k̂sk̂s) · F (αo, βo)
∣∣∣2 <II∗> (7.4.48)

where

<II∗> = <

∫∫
Ao

dr⊥

∫∫
Ao

dr′⊥ e
ikd⊥·(r⊥−r′⊥) eikdz(f(r⊥)−f(r′⊥)) >

(7.4.49)
The above integral can be solved by the method of asymptotics. For
large k, contributions of the integral come from regions where (x′, y′)
is close to (x, y). Expanding f(x′, y′) about (x, y),

f(x′, y′) = f(x, y) + α(x′ − x) + β(y′ − y) + · · ·

and replacing the integration variables by

u = k(x− x′)
v = k(y − y′)

we obtain

<II∗> =
〈 1
k2
Ao

∫∫
du dv eiu(qx+αqz)+iv(qy+βqz)+O(1/k)

〉

Ignoring the O(1/k) and higher order terms, we have

<II∗> =
4π2Ao

k2
<δ(qx + αqz)δ(qy + βqz)>

Therefore

< lim
k→∞

II∗> =
4π2Ao

k2

∫ ∞

−∞

∫ ∞

−∞
dα dβ δ(qx + αqz)δ(qy + βqz) p(α, β)
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where p(α, β) is the probability density function for the slopes at the
surface. It follows that

< lim
k→∞

II∗> =
4π2Ao

k2
dz

p
(
−kdx
kdz
,−kdy
kdz

)
(7.4.50)

For the Gaussian random rough surface

p(α, β) =
1

2πσ2 |C ′′(0)| exp
[
− α2 + β2

2σ2|C ′′(0)|

]
(7.4.51)

where σ is the standard deviation of the height of rough surface and
C ′′(0) is the double derivative of the correlation function at ρ = 0.
Thus, σ2|C ′′(0)| is the mean square surface slope s2 and for the Gaus-
sian correlation function of (7.4.35) with correlation length l,

s2 = σ2
∣∣C ′′(0)

∣∣ = 2
σ2

l2

Using (7.4.51) in (7.4.50) gives

<II∗> =
2πAo

k2
dzσ

2 |C ′′(0)|e
− (k2

dx+k2
dy)/2k

2
dzσ

2|C′′(0)| (7.4.52)

Another way to evaluate <II∗> is to perform the ensemble average
first, and then to approximate the integral. From (7.4.34)

<II∗>=
∫ 2Lx

−2Lx

dx

∫ 2Ly

−2Ly

dy (2Lx−|x|)(2Ly−|y|)eikd⊥·r⊥e−k2
dzσ

2(1−C(ρ))

(7.4.53)
Since k2

dzσ
2 
 1, most of the contribution comes from around the

origin. Thus, expanding the integrand about the origin we have 1 −
C(ρ) ≈ ρ2 |C ′′(0)| /2, and substituting into (7.4.53) the integral can
be evaluated readily by making use of the integral identity of (7.4.39).
The final result for <II∗> is the same as (7.4.52).

For an incident field with polarization b, the scattered intensity
for polarization as is given by

< |Es(r)|2> =
k2|Eo|2
16π2r2

|âs · F b(αo, βo)|2 <II∗> (7.4.54)
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where
F b(αo, βo) = F (αo, βo)

∣∣∣êi=b̂

Using (7.4.15a) , we find

|âs · F b(αo, βo)|2 =
|kd|4

k2|k̂i × k̂s|4k2
dz

fba

where

fvv = |(ĥs · k̂i)(ĥi · k̂s)RTE + (v̂s · k̂i)(v̂i · k̂s)RTM|2 (7.4.55a)

fhv = |(v̂s · k̂i)(ĥi · k̂s)RTE − (ĥs · k̂i)(v̂i · k̂s)RTM|2 (7.4.55b)

fvh = |(ĥs · k̂i)(v̂i · k̂s)RTE − (v̂s · k̂i)(ĥi · k̂s)RTM|2 (7.4.55c)

fhh = |(v̂s · k̂i)(v̂i · k̂s)RTE + (ĥs · k̂i)(ĥi · k̂s)RTM|2 (7.4.55d)

and RTM and RTE are evaluated at

n̂ =
x̂ kdx/kdz + ŷ kdy/kdz + ẑ(
k2
dx/k

2
dz + k2

dy/k
2
dz + 1

)1/2

In view of (7.4.43) and (7.4.52) the bistatic scattering coefficients for
the reflected intensities are

γrab(k̂s, k̂i) =
fab|kd|4

cos θi|k̂i × k̂s|4k4
dz

e−(k2
dx+k2

dy)/2k
2
dzσ

2|C′′(0)|

2σ2 |C ′′(0)| (7.4.56)

In the backscattering direction k̂s = −k̂i. The backscattering cross
sections are defined to be

σab(k̂i) = cos θi γrab(−k̂i, k̂i) (7.4.57)

From (7.4.56), we obtain

σhh(θi) = σvv(θi) =
|R|2 e−tan2 θi/2σ2|C′′(0)|

cos4 θi 2σ2 |C ′′(0)| (7.4.58)

σvh(θi) = σhv(θi) = 0 (7.4.59)

where R is the reflection coefficient at normal incidence. We note from
(7.4.59) that there is no depolarization in the backscattering direction.
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C. Small Perturbation Method

In the small perturbation method, use is made of the Huygens’ princi-
ple in conjunction with the extinction theorem. We have∫∫

S′
dS′

{
iωµoG(r, r′) · [n̂×H(r′)] + ∇×G(r, r′) · [n̂× E(r′)]

}

+ Ei(r) =
{
E(r) z > f(r⊥)
0 z < f(r⊥)

(7.4.60a)
(7.4.60b)

∫∫
S′
dS′

{
iωµ1G1(r, r′) · [n̂d ×H1(r′)] +∇×G1(r, r′) · [n̂d × E1(r′)]

}

=
{

0 z > f(r⊥)
E1(r) z < f(r⊥)

(7.4.61a)
(7.4.61b)

Since tangential fields are continuous, we can define surface field un-
knowns

dS′ η n̂×H(r′) = dr′⊥ a(r
′
⊥) = dS′ η n̂×H1(r′) (7.4.62a)

dS′ n̂× E(r′) = dr′⊥ b(r
′
⊥) = dS′ n̂× E1(r′) (7.4.62b)

Next we make use of the integral representation of dyadic Green’s
function (6.6.26) [Zuniga and Kong, 1980]

G(r, r′) = −ẑẑ δ(r, r
′)

k2
o

+




i

8π2

∫∫
d2k⊥

1
kz

[ê(kz)ê(kz) + ĥ(kz)ĥ(kz)]eik·(r−r′) z > z′

i

8π2

∫∫
d2k⊥

1
kz

[ê(−kz)ê(−kz) + ĥ(−kz)ĥ(−kz)]eik1·(r−r′) z < z′

where ê(−kz) = ê(kz) and ĥ(−kz) = ê × k̂1/k . Evaluating (7.4.60b)
for z < fmin and (7.4.61a) for z > fmax we obtain

Ei(r) =
1

8π2

∫
dk⊥ e

ik⊥·r⊥ e−ikzz k

kz

∫
dr′⊥ e

−ik⊥·r′⊥ eikzf(r′⊥)

·
{[
ê(−kz)ê(−kz) + ĥ(−kz)ĥ(−kz)

]
· a(r′⊥)

+
[
−ĥ(−kz)ê(−kz) + ê(−kz)ĥ(−kz)

]
· b(r′⊥)

}
(7.4.63a)
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0 =
1

8π2

∫
dk⊥ e

ik⊥·r⊥ eik1zz k1

k1z

∫
dr′⊥ e

−ik⊥·r′⊥ e−ik1zf(r′⊥)

·
{
k

k1

[
ê1(k1z)ê1(k1z) + ĥ1(k1z)ĥ1(k1z)

]
· a(r′⊥)

+
[
−ĥ1(k1z)ê1(k1z) + ê1(k1z)ĥ1(k1z)

]
· b(r′⊥)

}
(7.4.63b)

The above equations are the extended boundary conditions, and can
be used to solve for the surface fields along with the following results
of (7.4.62)

n̂(r′⊥) · a(r′⊥) = 0 (7.4.64a)

n̂(r′⊥) · b(r′⊥) = 0 (7.4.64b)

Using (7.4.12), (7.4.64) can be rewritten as

az(r′⊥) =
(
x̂
∂f(r′⊥)
∂x′

+ ŷ
∂f(r′⊥)
∂y′

)
· a⊥(r′⊥) (7.4.65a)

bz(r′⊥) =
(
x̂
∂f(r′⊥)
∂x′

+ ŷ
∂f(r′⊥)
∂y′

)
· b⊥(r′⊥) (7.4.65b)

with az and bz as the z components of a and b .
Once the surface fields are obtained, the scattered field in region

0 immediately follows from (7.4.60a)

Es(r) = − 1
8π2

∫
dk⊥ e

ik⊥·r⊥+ikzz k

kz

∫
dr′⊥ e

−ik⊥·r′⊥−ikzf(r′⊥)

·
{[
ê(kz)ê(kz) + ĥ(kz)ĥ(kz)

]
· a(r′⊥)

+
[
−ĥ(kz)ê(kz) + ê(kz)ĥ(kz)

]
· b(r′⊥)

}
(7.4.66)

To solve for the surface fields, the perturbation method makes use of
series expansions. Let

a(r′⊥) =
∞∑

m=0

1
m!
a(m)(r′⊥) (7.4.67a)

b(r′⊥) =
∞∑

m=0

1
m!
b
(m)(r′⊥) (7.4.67b)
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where am and b
m are the m th-order solutions of a and b. We also

have

e±ikzf(r′⊥) =
∞∑

m=0

1
m!

[±ikzf(r′⊥)]m (7.4.68a)

e±ik1zf(r′⊥) =
∞∑

m=0

1
m!

[±ik1zf(r′⊥)]m (7.4.68b)

In SPM, f and its derivatives are regarded as small parameters. The
expansion of (7.4.67) and (7.4.68) are substituted into (7.4.63) to ob-
tain the set of equations for the different-order solutions. From (7.4.65)
and (7.4.67)

a(0)
z (r′⊥) = b(0)z (r′⊥) = 0 (7.4.69a)

a(m)
z (r′⊥) = m

(
x̂
∂f(r′⊥)
∂x′

+ ŷ
∂f(r′⊥)
∂y′

)
· a(m−1)

⊥ (r′⊥) (7.4.69b)

b(m)
z (r′⊥) = m

(
x̂
∂f(r′⊥)
∂x′

+ ŷ
∂f(r′⊥)
∂y′

)
· b(m−1)

⊥ (r′⊥) (7.4.69c)

In summary, the assumptions for the SPM are

kzf(r′⊥), k1zf(r′⊥),
∂f

∂x′
,
∂f

∂y′
� 1 (7.4.70)

Substituting (7.4.67)–(7.4.68) into (7.4.63) and (7.4.65) and equating
the same-order terms, we shall calculate the scattered fields to the
zeroth and first-order in the following.

Zeroth-Order Solution

We first define an orthonormal system (q̂i, p̂i, ẑi), such that

q̂i = x̂
kiy
kiρ
− ŷ kix

kiρ
= ê(kiz) (7.4.71)

ẑi = ẑ , p̂i = ẑi × q̂i = (x̂kix + ŷkiy)/kρi where k2
ρi = k2

ix + k2
iy and let

a(r′⊥) = q̂iaq(r′⊥) + p̂iap(r′⊥) + ẑiaz(r′⊥) (7.4.72a)

b(r′⊥) = q̂ibq(r′⊥) + p̂ibp(r′⊥) + ẑibz(r′⊥) (7.4.72b)
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and note that

Ei(r) = êiEo e
iki⊥·r⊥−ikizz

=
êi

4π2

∫
dk⊥ e

ik⊥·r⊥−ikzz

∫
dr′⊥ e

iki⊥·r′⊥−ik⊥·r′⊥ (7.4.73)

Using (7.4.73) in (7.4.63a) , we find

êi e
iki⊥·r′⊥ =

k

2kiz

{[
ê(− kiz)ê(− kiz) + ĥ(− kiz)ĥ(− kiz)

]
· a(0)

⊥ (r′⊥)

+
[
− ĥ(− kiz)ê(− kiz) + ê(− kiz)ĥ(− kiz)

]
· b(0)⊥ (r′)

}
(7.4.74a)

and from (7.4.63b) , we have

[
ê1(k1iz)ê1(k1iz) + ĥ1(k1iz)ĥ1(k1iz)

]
· a(0)

⊥ (r′⊥)
k

k1

+
[
−ĥ1(k1iz)ê1(k1iz) + ê1(k1iz)ĥ1(k1iz)

]
· b(0)⊥ (r′⊥) = 0 (7.4.74b)

Using (7.4.69), (7.4.72), and noting that

ê(kiz) =
k̂i × ẑ
|k̂i × ẑ|

=
1
kiρ

(x̂kiy − ŷkix)

ĥ(kiz) =
1
k2
ê× k̂i =

kiz
kkiρ

(x̂kix + ŷkiy) + ẑ
kiρ
k

we find from (7.4.74a)

êi e
iki⊥·r′ =

k

2kiz

{
ê(−kiz)

(
a(0)
q (r′) +

kiz
k
b(0)p (r′⊥)

)

+ ĥ (−kiz)
(kiz
k
a(0)
p (r′⊥)− b(0)q (r′⊥)

)}
(7.4.75a)

Using (7.4.74b) , we have

ka(0)
q (r′)− k1izb

(0)
p (r′) = 0 (7.4.75b)

kk1iz

k2
1

a(0)
p (r′) + b(0)q (r′) = 0 (7.4.75c)
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Since (7.4.75a) contains two scalar equations, (7.4.75) provides four
equations for the four unknowns a(0)

p , a
(0)
q , b

(0)
p , and b(0)q . Solving them

and substituting back into a(0)(r′⊥) and b
(0)(r′⊥) give

a(0)(r′⊥) = a(0)(ki⊥) eiki⊥·r′⊥ (7.4.76a)

b
(0)(r′⊥) = b

(0)(ki⊥) eiki⊥·r′⊥ (7.4.76b)

where

a(0)
q (ki⊥) = [ê(−kiz) · êi]

kiz
k

(1−RTE
o ) (7.4.77a)

a(0)
p (ki⊥) = [ĥ(−kiz) · êi](1 +RTM

o ) (7.4.77b)

b
(0)
q (ki⊥) = −[ĥ(−kiz) · êi]

kiz
k

(1−RTM
o ) (7.4.77c)

b
(0)
p (ki⊥) = [ê(−kiz) · êi](1 +RTE

o ) (7.4.77d)

and RTE
o and RTM

o are the Fresnel reflection coefficients for the TE
and TM waves

RTE
o =

kiz − k1iz

kiz + k1iz
(7.4.78a)

RTM
o =

ε1kiz − εok1iz

ε1kiz + εok1iz
(7.4.78b)

Using (7.4.76) in (7.4.66), we find the zeroth-order scattered field to
be

E
(0)
s =

{
RTE

o [ê(−kiz) · êi]ê(kiz)

+RTM
o [ĥ(−kiz) · êi]ĥ(kiz)

}
Eoe

iki⊥·r⊥+ikizz (7.4.79)

which is the reflected field for a flat surface.

First-Order Solution

The first-order solution for the surface fields can be obtained by
substituting (7.4.67) and (7.4.68) into (7.4.63), (7.4.65), (7.4.66), and
(7.4.69) and equating first-order terms. From (7.4.69a) and (7.4.76a)



820 7. Scattering

a(1)
z (r′⊥) =

(
x̂
∂f(r′⊥)
∂x′

+ ŷ
∂f(r′⊥)
∂y′

)
· a(0)

⊥ (ki⊥) eiki⊥·r′⊥ (7.4.80)

To simplify (7.4.80), we introduce the Fourier transforms

F (k⊥) =
1

(2π)2

∫
dr′⊥ f(r

′
⊥) e−ik⊥·r′⊥ (7.4.81)

A
(1)(k⊥) =

1
(2π)2

∫
dr′⊥ a

(1)(r′⊥) e−ik⊥·r′⊥ (7.4.82a)

B
(1)(k⊥) =

1
(2π)2

∫
dr′⊥ b

(1)(r′⊥) e−ik⊥·r′⊥ (7.4.82b)

Strictly speaking, the Fourier transforms do not exist for random func-
tions and stochastic Fourier Stieltjes integral have to be defined
[Tatarskii, 1971; Ishimaru, 1978]. However, the final results for scat-
tered intensities are not affected.

Multiply (7.4.80) by e−ik⊥·r′⊥/(2π)2 and integrate over dr′⊥. We
obtain, by expressing ∂f(r′⊥)/∂x′ and ∂f(r′⊥)/∂y′ in terms of F (k⊥),

A(1)
z (k⊥) =

{
kxkiy − kykix

kiρ
a(0)
q (ki⊥)

+
(
kxkix + kykiy

kiρ
− kiρ

)
a(0)
p (ki⊥)

}
iF (k⊥ − ki⊥)

(7.4.83a)
Similarly from (7.4.69b)

B(1)
z (k⊥) =

{
kxkiy − kykix

kiρ
b(0)q (ki⊥)

+
(
kxkix + kykiy

kiρ
− kiρ

)
b(0)p (ki⊥)

}
iF (k⊥ − ki⊥)

(7.4.83b)
Next we match both sides of equation (7.4.63a) to the first order. We
note that[∫

dr′⊥e
−ik⊥·r′⊥ eikzf(r′⊥)a(r′⊥)

]
first order

=
∫
dr′⊥e

−ik⊥·r′⊥
[
ikzf(r′⊥)a(0)(ki⊥)eiki⊥·r′ + a(1)(r′)

]
= (2π)2

[
ikzF (k⊥ − ki⊥)a(0)(ki⊥) +A(1)(k⊥)

]
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Hence, the first-order equation from (7.4.63a) is

0 =
[
ê(−kz)ê(−kz) + ĥ(−kz)ĥ(−kz)

]
·
[
A

(1)(k⊥) + ikza(0)(ki⊥)F (k⊥ − ki⊥)
]

+
[
−ĥ(−kz)ê(−kz) + ê(−kz)ĥ(−kz)

]
·
[
B

(1)(k⊥) + ikzb
(0)(ki⊥)F (k⊥ − ki⊥)

]
(7.4.84)

and similarly, from (7.4.63b) we obtain

0 =
k

k1

[
ê1(k1z)ê1(k1z) + ĥ1(k1z)ĥ1(k1z)

]
·
[
A

(1)(k⊥)− ik1za
(0)(ki⊥)F (k⊥ − ki⊥)

]
+

[
−ĥ1(k1z)ê1(k1z) + ê1(k1z)ĥ1(k1z)

]
·
[
B

(1)(k⊥)− ik1zb
(0)(ki⊥)F (k⊥ − ki⊥)

]
(7.4.85)

Equations (7.4.84) and (7.4.85) are vector equations so that they com-
prise four scalar equations for the four unknowns A(1)

q (k⊥), A(1)
p (k⊥),

B
(1)
q (k⊥), and B

(1)
p (k⊥).

The first-order scattered fields can now be obtained from (7.4.66),

E
(1)
s =− 1

2

∫
dk⊥ e

ik⊥·r⊥ eikzz
k

kz

{[
ê(kz)ê(kz) + ĥ(kz)ĥ(kz)

]
·
[
A

(1)(k⊥)− ikzF (k⊥ − ki⊥)a(0)(ki⊥)
]

+
[
−ĥ(kz)ê(kz) + ê(kz)ĥ(kz)

]
·
[
B

(1)(k⊥)− ikzF (k⊥ − ki⊥)b(0)(ki⊥)
]}

(7.4.86)

In view of the fact that

<F (k⊥)> =
1

(2π)2

∫
dr′⊥ e

ik⊥·r′⊥ <f(r⊥)> = 0

we find <E
(1)
s > = <E

(1)
t > = 0 . Thus, the first-order solution does

not modify the coherent reflection coefficient and we have to calculate
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the second-order solution to see the correction term for the coherent
wave due to the rough surface.

The lowest-order incoherent coefficients can be derived from
(7.4.86). For an incident field with polarization âi, the scattered in-
tensity with polarization b̂s is given by

< |E(1)
s |2> =

∫
dk⊥ f

′
baW (|k⊥ − ki⊥|)

=
∫
dΩs k

2 cos θs f ′baW (|k⊥ − ki⊥|) (7.4.87)

where W (|k⊥ − ki⊥|) is the spectral density of the rough surface and
is the Fourier transform of the correlation function.

The spectral density is

W (k⊥) =
σ2

(2π)2

∫
dr⊥ e

ik⊥·r⊥ C(r⊥)

and satisfies the relation

<F (k′⊥)F ∗(k⊥)> = δ(k′⊥ − k⊥)W (|k′⊥|)

For a Gaussian correlation function of (7.4.35), we have the spectral
density given by

W (|k⊥ − k⊥i|) =
1
4π
σ2l2 e−(k2

dx+k2
dy)l

2/4 (7.4.88)

where kd⊥ = k⊥ − ki⊥ , σ is the standard deviation of the surface
height and l is the correlation length for f(r⊥) in the transverse
plane.

The bistatic scattering coefficients γrba(k̂s, k̂i) are defined as the
ratio of the scattered power of polarization bs per unit solid angle in
the direction k̂s to the intercepted power of polarization ai in the
direction k̂i averaged over 4π radians. Thus, from (7.4.87) we have

γrba(k̂s, k̂i) = 4π
k2 cos θsf ′baW (|k⊥ − ki⊥|)

cos θi|Eo|2

After carrying out a tedious solution for (7.4.84) and (7.4.85) and mak-
ing use of (7.4.88), we obtain
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γrba(k̂s, k̂i) =
4k4σ2l2 cos2 θs cos2 θi

cos θi
fbae

−k2
dρl

2/4 (7.4.89)

where

k2
dρ = k2

[
sin2 θs + sin2 θi − 2 sin θs sin θi cos(φs − φi)

]
and

fhh =
∣∣∣∣ (k2

1 − k2)
(kz + k1z)(kiz + k1iz)

∣∣∣∣
2

cos2(φs − φi)

fvh =
∣∣∣∣ (k2

1 − k2)kk1z

(k2
1kz + k2k1z)(kiz + k1iz)

∣∣∣∣
2

sin2(φs − φi)

fhv =
∣∣∣∣ (k2

1 − k2)kk1iz

(kz + k1z)(k2
1kiz + k2k1iz)

∣∣∣∣
2

sin2(φs − φi)

fvv =
∣∣∣∣ (k2

1 − k2)
(k2

1kz + k2k1z)(k2
1kiz + k2k1iz)

·
[
k2

1k
2 sin θs sin θi − k2k1zk1iz cos(φs − φi)

]∣∣∣∣
2

In the backscattering direction k̂s = −k̂i. The backscattering cross
sections per unit area are

σhh = 4k4σ2l2 cos4 θi
∣∣RTE

o

∣∣2 e−k2l2 sin2 θi (7.4.90a)

σvv = 4k8σ2l2 cos4 θi

∣∣∣∣(k2
1 − k2)(k2

1 sin2 θi + k1zk1zi)
(k2

1kzi + k2k1zi)2

∣∣∣∣
2

e−k2l2 sin2 θi

(7.4.90b)

σvh = σhv = 0 (7.4.90c)

It is seen from (7.4.90c) that there is no depolarization in the backscat-
tering direction. In order to calculate for the depolarization returns,
we must resort to the solution of second-order fields.
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Problems

P7.4.1
Consider the bistatic scattering coefficients for a Gaussian random rough

surface f(x, y) under the geometrical optics approximation. Express your
answer in terms of the slope probability density function p(α, β), where α =
∂f/∂x and β = ∂f/∂y.

P7.4.2
Plot the backscattering coefficients for a random rough surface for σ/L =

0.1 as a function of incidence angle θi using the geometric optics approxi-
mation. Let ε1 = 80εo.
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7.5 Scattering by Periodic Media

In the study of periodic media with applications to holography, to
ultrasonic light diffraction, and to various active and passive compo-
nents in integrated optics, the coupled-mode approach proves to be
the simplest method leading to results that can be easily interpreted
physically. Consider a periodic medium (Figure 7.5.1 without regions
1 and 3) described by the permittivity

ε(x, z) = ε2(1 + η cos(K · r)) (7.5.1)

where K = K(x̂ sin γ + ẑ cos γ), K = 2π/Λ , and Λ is the periodicity.
For a TE wave polarized in the ŷ direction, the electric field vector E
satisfies the wave equation[

∇2 + ω2µε(x, z)
]
Ey(x, z) = 0 (7.5.2)

To facilitate the derivation of the coupled-mode equations, we let

Ey(x, z) =
∞∑

m=−∞
φm(x)eimπ/2eikmxx (7.5.3)

E = ŷE0e
iki·r

Region 1 Region 2 Region 3

µ, ε1 µ, ε(x, z) µ, ε3

θ x

z

d

γ

k

Figure 7.5.1 Geometrical configuration of the problem.
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where
kmx = k0x +mK cos γ (7.5.4)

k0x is the x component of the wave vector for the zeroth-order Floquet
mode.

Substituting (7.5.3) in (7.5.2) and letting γ = 0 yield

d2φm
dx2

+
(
k2

2 − k2
mx

)
φm + i

η

2
k2

2 (φm+1 − φm−1) = 0 (7.5.5)

where k2 = ω(µε)1/2. Equation (7.5.5) represents a set of coupled
second-order differential equations.

Near the first Bragg angle, the two Floquet modes that couple
strongly to each other are of the zeroth order and first order. Keeping
only these two modes, (7.5.5) becomes

d2φ0

dx2
+

(
k2

2 − k2
0x

)
φ0 = i

ηk2
2

2
φ−1 (7.5.6a)

d2φ−1

dx2
+

(
k2

2 − k2
−1x

)
φ−1 = −iηk

2
2

2
φ0 (7.5.6b)

This set of coupled equations can be converted into two uncoupled
Helmholtz equations. We let

U1 = φ0 + iα1φ−1 (7.5.7a)
U2 = φ0 + iα2φ−1 (7.5.7b)

or, equivalently,

φ0 =
α2U1 − α1U2

α2 − α1
(7.5.7c)

φ−1 = i
U1 − U2

α2 − α1
(7.5.7d)

where α1 and α2 are constants to be determined. Adding (7.5.6a) to
(7.5.6b) multiplied by αj , where j = 1, 2 , we obtain

d2Uj

dx2
+

(
k2

2 − k2
0x − αj

ηk2
2

2

)
Uj = 0 (7.5.8)

and

αj = (1/ηk2
2)

{
k2
−1x − k2

0x ±
[
(k2

−1x − k2
0x)

2 + η2k4
2

]1/2
}

(7.5.9)
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The plus sign in front of the radical is for α1 and the minus sign for
α2 . Clearly, exponential functions are solutions to (7.5.8). The four
independent solutions to the two coupled-mode equations in (7.5.6)
are therefore

φ0 =
1

α2 − α1

[
α2

(
W exp(ika2xx)
X exp(−ika2xx)

)
− α1

(
Y exp(ikb2xx)
Z exp(−ikb2xx)

)]
(7.5.10a)

φ−1 =
i

α2 − α1

[(
W exp(ika2xx)
X exp(−ika2xx)

)
−

(
Y exp(ikb2xx)
Z exp(−ikb2xx)

)]
(7.5.10b)

where

ka2x =
[
(1− α1η/2)k2

2 − k2
0z

]1/2 (7.5.11a)

kb2x =
[
(1− α2η/2)k2

2 − k2
0z

]1/2 (7.5.11b)

The constants W, X, Y, and Z are to be determined by the appro-
priate boundary conditions for specific problems.

A. First-Order Coupled-Mode Equations

First-order coupled-mode equations are easily obtained from (7.5.2)
and (7.5.3) by letting

φm(x) = ψm(x)eikmxx (7.5.12)

where
kmx = k0x +mK sin γ (7.5.13)

and
k2

0x + k2
0z = k2

2 (7.5.14)

Neglecting the second-order derivative term, we obtain

dψm(x)
dx

+ i
mK

2kmx
[mK + 2(k0x cos γ + k0x sin γ)]

+
ηk2

2

4kmx
[ψm+1(x)− ψm−1(x)] = 0 (7.5.15)

When γ = 0 , it becomes the differential equation used by Klein and
Cook [1967] in their numerical solution by converting (7.5.15) to dif-
ference equations.
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The Raman-Nath regime is characterized by γ = 0 , k0x = 0 ,
kmx ≈ k2 , and neglecting the ψm term in (7.5.15). These conditions
are met when a wave is normally incident on a periodic medium with
periodicity along the ẑ direction and with a very small K . Equation
(7.5.15) becomes

dψm(x)
dx

+
ηk2

4
[ψm+1(x)− ψm−1(x)] = 0 (7.5.16)

This equation is identical to the recurrence relation for Bessel func-
tions. Thus

ψm(x) = Jm(ηk2x/2) (7.5.17)

Note that J2
0 (x) + 2

∑∞
m=1 J

2
m(x) = 1 , which is a statement of conser-

vation of energy.
We now assume that only two modes exist, m = 0 and m = −1 .

Then (7.5.15) becomes

dψ0

dx
− ηk2

2

4k0x
ψ−1 = 0 (7.5.18a)

dψ−1

dx
+

K

4k−1x
[K − 2(k0x cos γ + k0x sin γ)]ψ−1(x) +

ηk2
2

4k−1x
ψ0 = 0

(7.5.18b)
In Kogelnik’s [1969] treatment of thick holograms, he requires that for
transmission holograms φ0(x = 0) = 1 and φ−1(x = 0) = 0 , whereas
for reflection holograms φ0(x = 0) = 1 and φ−1(x = d) = 0 , where
d is the thickness of the hologram. Only two boundary conditions are
required because the two governing equations involve only first-order
derivatives.

The Phariseau limit is characterized by γ = 0 and k0x = K/2 .
This condition occurs when a wave propagates at the Bragg angle in a
periodic medium with periodicity along the ẑ direction. Noting that
from k−1x = k0x , we obtain from (7.5.18)

k0x
dψ0(x)
dx

=
ηk2

2

4
ψ−1(x) (7.5.19a)

k0x
dψ−1(x)
dx

= −ηk
2
2

4
ψ0(x) (7.5.19b)

Imposing the boundary condition ψ0(x = 0) = 1 and ψ−1(x = 0) = 0 ,
we have the solution

ψ0(x) = cos(ηk2
2x/4k0x) (7.5.20a)

ψ−1(x) = sin(ηk2
2x/4k0x) (7.5.20b)
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Conservation of energy holds for all x since ψ2
0(x) + ψ2

−1(x) = 1 .
In order to reduce to the first-order coupled-mode equations used

by Kogelnik and Shank [1972] in their treatment of distributed feed-
back devices, we let γ = π/2 , kmx = 0 , and k0x = k2 . This occurs
when the spatial periodicity is along the x̂ direction and the wave is
also propagating along the x̂ direction. We let

E(x, z) = Ψ0(x)ei(K/2)x + Ψ−1(x)e−i(K/2)x (7.5.21)

Substituting in (7.5.2), and neglecting the second-order derivative
term, we have

Ψ′
0(x)− (2i/K)(k2

2 −K2/4)Ψ0(x) + (ηk2
2/K)Ψ−1(x) = 0 (7.5.22a)

−Ψ′
−1(x)− (2i/K)(k2

2 −K2/4)Ψ−1(x) + (ηk2
2/K)Ψ0(x) = 0 (7.5.22b)

This set of coupled-mode equations has been extensively studied by
Kogelnik and Shank. The wavenumber k2 = ω(µε)1/2 is made a vari-
able that corresponds to a changing angular frequency ω . Right at
the first Bragg frequency, k2 = K/2 and (7.5.22) becomes the coupled
equations shown in (7.5.19).

B. Reflection and Transmission by Periodically-Modulated
Slab

Consider a periodic slab medium with thickness d [Fig. 7.5.1]. A plane
wave is incident at the slab with wave vector k = x̂kx + ẑk0z, where
k0z = k1 sin θ, k1 = ω(µε1)1/2, and θ is the angle of incidence. The
electric field for the reflected wave takes the form

Ey =E0 exp(ika1xx+ ik0zz) +R0 exp(−ika1xx+ ik0zz)

+R−1 exp(−kb1xx+ ik−1xz) (7.5.23)

where

ka1x = (k2
1 − k2

0z)
1/2 (7.5.24a)

kb1x = (k2
1 − k2

−1z)
1/2 (7.5.24b)

and R0 and R1 are the reflection coefficients for the zeroth- and the
first-order modes. The transmitted wave takes the form

Ey = T0 exp[ika3x + ik0zz] + T−1 exp[ikb3xx+ ik−1zz] (7.5.25)
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where

ka3x = (k2
3 − k2

0z)
1/2 (7.5.26a)

kb3x = (k2
3 − k2

−1x)
1/2 (7.5.26b)

and T0 and T−1 are the transmission coefficients for the zeroth- and
the first-order modes.

Inside the slab medium, the electric field Ey takes the form

Ey = φ0e
ik0zz + iφ−1e

ik−zz

= [1/(α2 − α1)]

· (α2We
ika2xx + α2Xe

−ika2xx − α1Y e
ikb2xx − α1Ze

−ikb2xx)eik0zz

− [1/(α2 − α1)](Weik
a
2xx +Xe−ika2xx − Y eikb2xx − Ze−ikb2xx)eik−1zz

(7.5.27)

Thus we have a total of eight constants R0, R−1, T0, T−1, W, X, Y,
and Z to be determined by the boundary conditions, which require
that the tangential electric and magnetic fields be continuous at the
boundaries x = 0 and x = d. The tangential magnetic field Hz is
determined from Ey by using the Maxwell equation

Hz =
1
iωµ

∂

∂x
Ey (7.5.28)

The four boundary conditions must be met for all z. This results
in eight linear simultaneous equations to be solved for the unknown
coefficients.

After considerable algebra, we obtain the transmission and reflec-
tion coefficients as follows:

T0 =
4(α2 − α1)ka1x(α1Abb − α2Bbb)e−ika3xd

(α2Aaa−α1Baa)(α1Abb−α2Bbb)−α1α2(Aab−Bab)(Aba−Bba)

(7.5.29)

T−1 =
4(α2 − α1)ka1x(Aba −Bba)e−ikb3xd

(α2Aaa − α1Baa)(α1Abb−α2Bbb)−α1α2(Aab−Bab)(Aba −Bba)

(7.5.30)
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R0 =
α1α2(αab − βab)(Aba −Bba)− (α2αaa − α1βaa)(α1Abb−α2Bbb)
(α2Aaa−α1Baa)(α1Abb−α2Bbb)−α1α2(Aab −Bab)(Aba −Bba)

(7.5.31)

R−1 =
(α2Aaa − α1Baa)(αab − βab)− (Aab −Bab)(α2αaa − α1βaa)

(α2Aaa−α1Baa)(α1Abb−α2Bbb)−α1α2(Aab−Bab)(Aba−Bba)

(7.5.32)

where

Aρσ =ka2x
(
1 +

kρ1x
ka2x

)(
1 +

kρ3x
ka2x

)
(e−ika2xd −Raρ

21R
aσ
23 e

ika2xd) (7.5.33)

Bρσ =kb2x
(
1 +

kρ1x
kb2x

)(
1 +

kρ3x
kb2x

)
(e−ikb2xd −Rbρ

21R
bσ
23e

ikb2xd) (7.5.34)

αρσ =ka2x
(
1 +

kρ1x
ka2x

)(
1 +

kρ3x
ka2x

)
(Raρ

21e
−ika2xd −Raσ

23 e
ika2xd) (7.5.35)

βρσ =kb2x
(
1 +

kρ1x
kb2x

)(
1 +

kρ3x
kb2x

)
(Rbρ

21e
−ikb2xd −Rbσ

23e
ikb2xd) (7.5.36)

Rρα
ij =

kρix − kσjx
kρix + kσjx

(7.5.37)

The superscripts ρ and σ stand for either a or b and the subscripts
i and j for 1, 2, or 3.

The solutions (7.5.29)–(7.5.32) reduce to known results in the ab-
sence of modulation, where Aρσ = Bρσ, αρσ = βρσ, and

Rρσ
ij = Rij =

1− kjx/kix
1 + kjx/kix

we have R−1 = T−1 = 0 and

R0 =
−R21 +R23e

i2k2xd

1−R21R23ei2k
a
2xd

(7.5.38)

T0 =
4 exp [i(k2x − k3x)d]

(1 + k2x/k1x)(1 + k3x/k2x)(1−R21R23ei2k
a
2xd)

(7.5.39)
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It is easily shown that |R0|2+k3x|T0|2/k1x = 1, which is the statement
for power conservation.

When modulation is present but the wave is incident at exactly
the Bragg angle, K0z = K/2 and α1 = −α2 = 1. The expressions for
the transmission and reflection coefficients can be simplified to read

R0 =
1
2
(Ra +Rb) (7.5.40)

R−1 =
1
2
(Ra −Rb) (7.5.41)

T0 =
1
2
(Ta + Tb) (7.5.42)

T−1 =
1
2
(Ta + Tb) (7.5.43)

where

Ra =
−Ra

21 +Ra
23e

i2ka2xd

1−Ra
21R

a
23e

i2ka2xd
(7.5.44)

Rb =
−Rb

21 +Rb
23e

i2kb2xd

1−Rb
21R

b
23e

i2kb2xd
(7.5.45)

Ta =
4 exp [i(ka2x − k3x)d]

(1 + ka2x/k1x)(1 + k3x/ka2x)(1−Ra
21R

a
23e

i2ka2xd)
(7.5.46)

Tb =
4 exp

[
i(kb2x − k3x)d

]
(1 + kb2x/k1x)(1 + k3x/kb2x)(1−Rb

21R
b
23e

i2kb2xd)
(7.5.47)

Rσ
2j =

kσ2x − kjx
kσ2x + kjx

(7.5.48)

ka2x =
[
(1− 1

2
η)k2

2 −
1
4
K2

]1/2

(7.5.49)

kb2x =
[
(1 +

1
2
η)k2

2 −
1
4
K2

]1/2

(7.5.50)

We see that the zeroth-order reflection and transmission coefficients
are composed of two terms similar to (7.5.38) and (7.5.39); one term
corresponds to the result of reflection and transmission by a slab with
equivalent permittivity (1 − η/2)1/2ε2 and the other term to a slab
with permittivity (1 + η/2)1/2ε2, as seen from (7.5.49) and (7.5.50).
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Notice that the solutions (7.5.44)–(7.5.47) satisfy conservation of
energy, since

|R0|2 + |R−1|2 + (k3x/k1x)(|T0|2 + |T−1|2)

=
1
2

[
|Ra|2 + (k3x/k1x)|Ta|2 + |Rb|2 + (k3x/k1x)|Tb|2

]
= 1 (7.5.51)

This is also observed from (7.5.3), (7.5.6), and (7.5.28) by requiring
that the spatial derivative of the time-average Poynting power density
in the x̂ direction be zero.

C. Far-Field Diffraction of a Gaussian Beam

The electric field intensity of a transmitted Gaussian beam can be de-
termined from Huygens’ principle by using the two-dimensional
Green’s function

Et = ŷ
ωµ

2η

∫ ∞

−∞
dz′Eap(z′)H

(1)
0

{
k3

[
(z − z′)2 + (x− d)2

]}
(7.5.52)

where η is (µ/ε2)1/2, Eap(z′) is the aperture field at x = d represent-
ing either E0 or E−1 , k3 = ω(µε3)1/2 , and H

(1)
0 is the zeroth-order

Hankel function of the first kind. In the radiation zone, the Fraunhofer
approximation leads to

E = ŷ

[
k3

i2π(x− d)

]1/2

eik3x+ik3z2/2x

∫ ∞

−∞
dz′Eap(z′)eik3z′ sin θ

which is essentially the Fourier transform of the aperture field.
We shall calculate the far-field pattern of the zeroth-order beam

as

P0(θ) =
∫ zm

−zm

dz E0(d, z)e−ik3z sin θ (7.5.53)

and the far-field pattern of the Bragg-scattered beam as

P−1(θ) =
∫ zm

−zm

dz E−1(d, z)e−ik3z sin θ (7.5.54)

where θ is the angle of observation measured from the x axis in the
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third medium. The fields E0 and E−1 are

E0(x, z) =
∫ ∞

−∞
dk0z G(k0z)T0(k0z) exp[ika3x(x− d) + ik0zz]

x ≥ d

E−1(x, z) =
∫ ∞

−∞
dk0z G(k0z)T−1(k0z) exp[ikb3x(x− d)− ik−1zz]

x ≥ d
In (7.5.53) and (7.5.54), zm = d tan θB + w0, where w0 is the beam
width projected along the z axis. This limit is taken because E0(d, z; t)
and E−1(d, z; t) are confined to the region |z| < d tan θB + w0 = zm
and the fields are negligibly small for |z| > zm. We have

P0(θ) =
∫ zm

−zm

dz

∫ ∞

−∞
dk0z G(k0z)T0(k0z)eik0zz eik3z sin θ

=
∫ ∞

−∞
G(k0z)dk0z T0(k0z)2zm

sin(k0z − k3 sin θ)zm
(k0z − k3 sin θ)zm

(7.5.55)

P−1(θ) =
∫ zm

−zm

dz

∫ ∞

−∞
dk0z G(k0z)T−1(k0z)eik−1zz eik3z sin θ

=
∫ ∞

−∞
dk0zG(k0z)T−1(k0z)2zm

sin {(k3 sin θ − [k0z −K]} zm
{k3 sin θ − [k0z −K]} zm

(7.5.56)

The factor
2zm

sin(k0z − k3 sin θ)zm
(k0z − k3 sin θ)zm

effectively confines the far-field pattern P0(θ) into a small angular
range centered at the first Bragg angle θ = θB = sin−1(λ/2Λ

√
ε3).

Similarly, the factor

2zm
sin {k3 sin θ − [k0z −K]} zm
{k3 sin θ − [k0z −K]} zm

effectively confines the far-field pattern P−1(θ) into a small angular
range centered at the negative first Bragg angle θ = −θB. It should
be noted that both factors reduce to Dirac delta functions as zm →∞
and the results in (7.5.55) and (7.5.56) become simply 2πGT0 and
2πGT−1.
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D. Two-Dimensional Photonic Crystals

Consider a photonic crystal with permittivity

ε/εo = 1 + ΓP exp(iP · r)

where P is the periodicity. We write the electric field as

E =
∑
P

EP e
iP ·reiK·re−iωt =

∑
P

EP e
iKP ·re−iωt

and a similar expression for D and H , where KP = K + P . Noting
that KP ′ +P = KP ′+P , and

∑
j

∑
k AjBkCj+k =

∑
1

∑
k A1−kBkC1 ,

we find ∑
P

DP e
iKP ·r = εo

[
1 +

∑
P ′

ΓP ′eiP
′·r

]∑
P

EP e
iKP ·r

= εo
∑
P

EP e
iKP ·r + εo

∑
P ′

∑
N

ΓP ′ENe
iKN+P ′ ·r

= εo
∑
P

EP e
iKP ·r + εo

∑
P

∑
N

ΓP−NENe
iKP ·r

which gives

DP = εoEP + εo
∑
N

ΓP−NEN

= εo(1 + Γ0)EP + εo
∑
N 
=P

ΓP−NEN

Maxwell equations give

KM×(KM × EM ) = ωµo(KM ×HM ) = −ω2µoDM

= −ω2µoεo[(1 + Γ0)EM +
∑
N 
=M

ΓM−NEN ]

[k2(1 + Γ0)−KM ·KM ]EM +KM (KM · EM )=−k2
∑
M 
=N

ΓM−NEN

Consider TE polarization,

[k2(1 + Γ0)−K0 ·K0]E0 = −k2Γ−PEP (7.5.57a)
[k2(1 + Γ0)−KP ·KP ]EP = −k2ΓPE0 (7.5.57b)
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We write the left hand sides of (7.5.57) as

[k2(1 + Γ0)−K0 ·K0] =[k
√

1 + Γ0 + (K0 ·K0)1/2]

[k
√

1 + Γ0 − (K0 ·K0)1/2] ≈ [2k
√

1 + Γ0]κ0

[k2(1 + Γ0)−KP ·KP ] =[k
√

1 + Γ0 + (KP ·KP )1/2]

[k
√

1 + Γ0−(KP ·KP )1/2]≈ [2k
√

1 + Γ0]κP

where

[k
√

1 + Γ0 + (K0 ·K0)1/2] ≈ [k
√

1 + Γ0 + (KP ·KP )1/2]

≈ [2k
√

1 + Γ0]

κ0 is the difference between K0 in the crystal and k corrected by
the average value of the dielectric constant

√
1 + Γ0 . From (7.5.57),

we obtain

kx

kz

KP

K

P

E

κκ
P

Figure 7.5.2 TE waves.

κ0κP =
k2

4
ΓPΓ−P

1 + Γ0
(7.5.58)

The product of κ0 and κP is a constant, thus the locus is a hyperbola
as shown in Figure 7.5.2.
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E. Band Gaps in One-Dimensional Periodical Media

Consider a medium with constitutive relation

εoE = κD, κ = κ0 + 2κ1 cos
2π
a
z

From Maxwell Equations

κ∇×H = −iωεoE (7.5.59)

∇× E = iωµoH (7.5.60)

we obtain

ω2

c2
E = κ∇×∇× E (7.5.61)

which yields
ω2

c2
Ey = −κ ∂

2

∂z2
Ey (7.5.62)

We write Ey in the following form:

Ey =
∞∑

m=−∞
Em exp{i(k +

2mπ
a

)z} (7.5.63)

Substituting into (7.5.62), we find

ω2

c2
Ey = κ(k +

2mπ
a

)2
∞∑

m=−∞
Em exp{i(k +

2mπ
a

)z} (7.5.64)

We thus find

{ω
2

c2
− κ0(k +

2mπ
a

)2}Em

= κ1(k +
2(m− 1)π

a
)2Em−1 + κ1(k +

2(m+ 1)π
a

)2Em+1 (7.5.65)

Let m = −1, 0, 1 , we obtain

{ω
2

c2
−κ0(k −

2π
a

)2}E−1 = κ1(k −
4π
a

)2E−2 + κ1k
2E0 (7.5.66)

{ω
2

c2
−κ0k

2}E0 = κ1(k −
2π
a

)2E−1 + κ1(k +
2π
a

)2E1 (7.5.67)

{ω
2

c2
−κ0(k +

2π
a

)2}E1 = κ1k
2E0 + κ1(k +

4π
a

)2E2 (7.5.68)
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Consider the interaction of E0 and E−1 by retaining only two terms:

Ey = E0e
ikz + E−1e

i(k− 2π
a

)z (7.5.69)

From (7.5.66) and (7.5.67), we find

{ω
2

c2
−κ0(k −

2π
a

)2}E−1 = κ1k
2E0 (7.5.70)

{ω
2

c2
−κ0k

2}E0 = κ1(k −
2π
a

)2E−1 (7.5.71)

For k = π/a

[
ω2

c2
− κ0(

π

a
)2]E−1 = κ1(

π

a
)2E0

[
ω2

c2
− κ0(

π

a
)2]E0 = κ1(

π

a
)2E−1

π
a

ω

stop
band

k

0π
a

Figure 7.5.3 Bandgap formation.

We find ω =
√
κ0 ± κ1 cπ/a and a stop band gap is formed [Fig. 7.5.3].

Thus E−1 = ±E0 and

Ey = E0[ei
π
a
z ± e−iπ

a
z]e−i

√
κ0±κ πct/a (7.5.72)

The two standing waves are peaked at z = 0 and z = a/2 .
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Problems

P7.5.1
Consider TM wave propagation in a crystal with permittivity

ε/εo = 1− ω2
p/ω

2 = 1− e2ρ(r)/mεoω2 = 1− Γ
∑
H

FH exp(−2πiH · r)

where Γ = e2/mεoω
2V and the electron density

ρ(r) = (1/V )
∑
H

FH exp(−2πiH · r)

where

FH =
∑
n

fn exp(2πiH · rn)

Find an expression similar to (7.5.58).

θ θ

kx

kz

KPK

P

E

θ

E

Figure P7.5.1.1 TM waves.

P7.5.2
Consider diffraction by a slab of photonic crystal at the Bragg angle of

incidence. The two diffracted rays at the exit plan depends on the thickness
of the slab and determined by K0 and KP . The phenomenon is known as
pendellösung. Make use of (7.5.58)

κ0κP =
k2

4
ΓPΓ−P

1 + Γ0
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K KP

θθ
κPκ

K

La

Lo

Figure P7.5.2.1 Pendellösung.

and Figure P7.5.2.1, determine the unit of the thickness of the slab such that
the ray varies between K0 and KP .

P7.5.3
Consider a medium with constitutive relation

E = κD, κ = κ0 + 2κ cos
2π
a
z

From Maxwell Equations, show that

∇× κ∇×H =
ω2

c2
H

Write Hy in the following form:

Hy =
∞∑

m=−∞
Hm exp{i[(k +

2mπ
a

)z − ωt]}

determine wave behavior at k = π/a .
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7.6 Scattering by Random Media

In the remote sensing of earth terrain media such as snow, ice, and
vegetation canopy, the model of a layered medium is often used. In
order to account for the scattering from such layered media, its volume-
scattering effects are characterized by a permittivity with a randomly
fluctuating part. We write

ε1(r) = ε1 + ε1f (r) (7.6.1)

where ε1f is the randomly fluctuating part of the permittivity and ε1
is the mean permittivity such that the ensemble average < ε1(r) >=
ε1 . In region 1, the equation governing E1 can be written as

∇×∇× E1(r)− k2
1E1(r) = Q(r)E1(r) (7.6.2)

where k2
1 = ω2µε1 and Q(r) = ω2µε1f . Thus the random variable

Q(r)E1(r) serves as the distributed volume source.
From (7.6.2), the electric field E1 in region 1 can be solved in

terms of the dyadic Green’s function G11(r, r′)

E1 = E
(0)
1 +

∫∫∫
V1

d3r1 G11(r, r1) ·Q(r1)E1(r1) (7.6.3)

where V1 is the volume for region 1 containing ε1f , G11(r, r1) is the

dyadic Green’s function, and E
(0)
1 the zeroth-order solution in the

absence of ε1f , namely, ε1f = 0 .
The solution for the electric field in region 0 is

E0 = E
(0)
0 +

∫∫∫
V1

d3r1 G01(r, r1) ·Q(r1)E1(r1) (7.6.4)

The first term in (7.6.4) is the zeroth-order solution E0 in the ab-
sence of ε1f , representing the specularly reflected wave, which is also
called the coherent component of the total field. The second term is
the scattered field Es

Es(r) =
∫∫∫

V1

d3r1 G01(r, r1) ·Q(r1)E1(r1) (7.6.5)
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Equation (7.6.5) can be solved with an iterative approach. We assume
that the total field can be expanded in terms of a Born series

El =
∞∑
n=0

E
(n)
l l = 0, 1 (7.6.6)

Substituting in (7.6.4), we find that the n th-order E field is deter-
mined by the (n− 1) th-order field,

E
(n)
s =

∫∫∫
V1

d3r1 G01(r, r1) ·Q(r1)E
(n−1)
1 (r1) (7.6.7)

Notice that E(n)
l with n �= 0 are all randomly fluctuating fields.

Forming the absolute square of E(1)
s and taking ensemble average,

we obtain the first-order scattered intensity

< |E(1)
s (r)|2 > =

∫∫∫
V1

d3r1

∫∫∫
V1

d3r2 G01(r, r1) · E(0)
1 (r1)

·G
∗
01(r, r2) · E

(0)∗
1 (r2) < Q(r1)Q∗(r2) > (7.6.8)

where < Q(r1)Q∗(r2) > is a two-point correlation function. For a
statistically homogeneous medium, the correlation function depends
only upon the separation of the points r1 and r2 , that is,

< Q(r1)Q∗(r2) >= C(r1 − r2) (7.6.9)

Consider the correlation function

C(r1 − r2) = δ|k1|4e−|r1−r2|/r0 (7.6.10)

where δ is the variance and r0 the correlation length of the permittiv-
ity fluctuations. The variance is related to the strength of fluctuations
and the correlation length corresponds roughly to the sizes of the scat-
terers. We see that major contributions to the scattered-field intensity
come from fluctuations separated by no more than a correlation length.
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A. Dyadic Green’s Function for Layered Media

Consider a layered medium with a source located in region 0. In the
absence of the layered medium, the dyadic Green’s function is governed
by

∇×∇×G(r, r′)− k2G(r, r′) = Iδ(r − r′) (7.6.11)

where we have determined in unbounded space

G(r, r′) =
[
I +

1
k2
∇∇

]
g(r, r′) (7.6.12)

g(r, r′) =
eik(r−r′)

4π|r − r′| (7.6.13)

Let the source be placed at the origin, r′ = 0 . We have

(∇2 + k2)g(r) = −δ(r) (7.6.14)

Fourier transformation gives

δ(r) =
1

(2π)3

∫∫∫
dkx dky dkz e

ik·r (7.6.15)

g(r) =
1

(2π)3

∫∫∫
dkx dky dkz e

ik·r g(k) (7.6.16)

with

g(k) =
1

k2
x + k2

y + k2
z − k2

(7.6.17)

as derived from (7.6.14).
For the triple integral in (7.6.16), we integrate over kz by noting

from (7.6.17) that poles occur at k2
z = k2 − k2

x − k2
y . For z > 0 , we

deform the contour upward such that Im{kz} > 0 . For z < 0 , we
deform the contour downward. We obtain

g(r) =




i

(2π)2

∫∫
dkx dky

1
2k0z

eikxx+ikyy+ik0zz z > 0

i

(2π)2

∫∫
dkx dky

1
2k0z

eikxx+ikyy−ik0zz z < 0
(7.6.18)

where
k0z =

√
k2 − k2

x − k2
y (7.6.19)
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To find the expression for G(r) , we make use of (7.6.12) and notice
that there is a discontinuity in ∂g(r)/∂z at z = 0 , which gives

∂2

∂z2
g(r) = −δ(r)−




i

(2π)2

∫∫
dkx dky

k0z

2
eikxx+ikyy+ik0zz z > 0

i

(2π)2

∫∫
dkx dky

k0z

2
eikxx+ikyy−ik0zz z < 0

(7.6.20)
We find the expression for G(r) to be

G(r) = −ẑẑ 1
k2
δ(r) +




i

8π2

∫∫
dkx dky

1
k0z

[
I − k k

k2

]
eik·r z > 0

i

8π2

∫∫
dkx dky

1
k0z

[
I − KK

k2

]
eiK·r z < 0

(7.6.21)
where

k = x̂kx + ŷky + ẑk0z (7.6.22)
K = x̂kx + ŷky − ẑk0z (7.6.23)

Recognizing that k̂ = k/k , we form an orthonormal system consisting
of unit vectors k̂, ĥ(k0z) , and ê(k0z) as follows:

ê(k0z) =
k̂ × ẑ
|k̂ × ẑ|

=
(x̂ky − ŷkx)√
k2
x + k2

y

(7.6.24)

ĥ(k0z) =
1
k
ê× k =

−k0z

k
√
k2
x + k2

y

(x̂kx + ŷky) + ẑ

√
k2
x + k2

y

k
(7.6.25)

As I = k̂k̂ + êê+ ĥĥ , we have I − k̂k̂ = êê+ ĥĥ . The dyadic Green’s
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function G(r, r′) , after translating the origin to r′ , becomes

G(r, r′) = −ẑẑ 1
k2
δ(r − r′)

+




i

8π2

∫∫
dkx dky

1
k0z

{[
ê(k0z)eik·r

]
ê(k0z)e−ik·r′

+
[
ĥ(k0z)eik·r

]
ĥ(k0z)e−ik·r′

}
z > z′

i

8π2

∫∫
dkx dky

1
k0z

{[
ê(−k0z)eiK·r

]
ê(−k0z)e−iK·r′

+
[
ĥ(−k0z)eiK·r

]
ĥ(−k0z)e−iK·r′

}
z < z′

(7.6.26)
where K̂ = K/k, ê(−k0z) = ê(k0z), and ĥ(−k0z) = ê × K/k form
another orthonormal set of unit vectors about the wave vector K .

To derive the dyadic Green’s function Gl0(r, r′) for a layered
medium, we use the first subscript l to denote the region of the ob-
servation point and the second subscript 0 to indicate that the source
is in region 0 . To facilitate the matching of the boundary conditions,
we consider, for the Green’s function G(r, r′) , only z < z′ and thus
neglect the delta function term. We write

G00(r, r′) =
i

8π2

∫∫
dkx dky

1
k0z

{[
ê(−k0z)eiK·r

+ RTEê(k0z)eik·r
]
ê(−k0z)e−iK·r′ +

[
RTMĥ(k0z)eik·r

+ ĥ(−k0z)eiK·r
]
ĥ(−k0z)e−iK·r′

}
for z < z′ (7.6.27)

Gl0(r, r′) =
i

8π2

∫∫
dkx dky

1
k0z{[

Blêl(−klz)eiKl·r +Alêl(klz)eikl·r
]
ê(−k0z)e−iK·r′

+
[
Clĥl(klz)eikl·r +Dlĥl(−klz)eiKl·r

]
ĥ(−k0z)e−iK·r′

}
(7.6.28)

Gt0(r, r′) =
i

8π2

∫∫
dkx dky

1
k0z

{
TTE êt(−ktz)eiKt·r ê(−k0z)e−iK·r′

+ TTM ĥt(−ktz)eiKt·r ĥ(−k0z)e−iK·r′
}

(7.6.29)

where

klz =
√
k2
l − k2

x − k2
y (7.6.30)
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kl = x̂kx + ŷky + ẑklz (7.6.31)
K l = x̂kx + ŷky − ẑklz (7.6.32)

The coefficients Al, Bl, Cl and Dl are then determined by the bound-
ary conditions.

To simplify the algebra, we consider a two-layer medium where
t = 2 . The procedure will be easily generalized to that for a general
layered medium. With boundaries at z = 0 and z = −d , we impose
the boundary conditions of continuity of ẑ × G and ẑ × ∇ × G/µ
corresponding to continuity of the tangential E and H fields. We
find

RTE + 1 = A1 +B1 (7.6.33)
k0z

k
(RTM − 1) =

k1z

k1
(C1 −D1) (7.6.34)

k0z(RTE − 1) = k1z(A1 −B1) (7.6.35)
k(RTM + 1) = k1(C1 +D1) (7.6.36)

and

A1e
−ik1zd +B1e

ik1zd = TTEeik2zd (7.6.37)
k1z

k1
(C1e

−ik1zd −D1e
ik1zd) = −k2z

k2
TTMeik2zd (7.6.38)

k1z(A1e
−ik1zd −B1e

ik1zd) = −k2z T
TEeik2zd (7.6.39)

k1(C1e
−ik1zd +D1e

ik1zd) = k2 T
TMeik2zd (7.6.40)

Solving (7.6.33)–(7.6.40), we obtain all eight unknown wave ampli-
tudes. In particular,

G10(r, r′) =
i

8π

∫∫
dkx dky

1
k1z{

TTE
10

D2(k⊥)

[
RTE

12 e
i2k1zdê1(k1z)eik1·r + ê1(−k1z)eiK1·r

]
ê(−k0z)e−iK·r′

+
k1

k

TTM
10

F2(k⊥)

[
RTM

12 e
i2k1zdĥ1(k1z)eik1·r+ĥ1(−k1z)eiK1·r

]
ĥ(−k0z)e−iK·r′

}

(7.6.41)
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where

TTE
10 = 1 +RTE

10 =
2k1z

kz + k1z
(7.6.42)

TTM
10 = 1 +RTM

10 =
2εk1z

ε1kz + εk1z
(7.6.43)

D2(k⊥) = 1 +RTE
01 R

TE
12 e

i2k1zd (7.6.44)

F2(k⊥) = 1 +RTM
01 R

TM
12 e

i2k1zd (7.6.45)

RTE
12 =

k1z − k2z

k1z + k2z
(7.6.46)

RTM
12 =

ε2k1z − ε1k2z

ε2k1z + ε1k2z
(7.6.47)

For latter applications we shall be interested in G01(r, r′) for observa-
tion point in region 0 and source in region 1. The symmetric property
for dyadic Green’s functions calls for [Tai, 1971]

G01(r, r′) = G
T

10(r
′, r) (7.6.48)

We transpose G10 and change kx → −kx , and ky = −ky . From
(7.6.24)–(7.6.25) we also have ê(k0z)→ ê(−k0z) and ĥ(k0z)→ ĥ(−k0z) .
Equation (7.6.41) then gives

G01(r, r′) =
∫∫

dk⊥ g01(k⊥, z, z
′)eik⊥·(r⊥−r′⊥) (7.6.49)

where

g01(k⊥, z, z
′) =

i

8π2

eikzz

k1z{
TTE

10

D2(k⊥)
ê(k0z)

[
RTE

12 e
i2k1zd ê1(−k1z)eik1zz′ + ê1(k1z)e−ik1zz′

]

+
k1

k

TTM
10

F2(k⊥)
ĥ(k0z)

[
RTM

12 e
i2k1zd ĥ1(−k1z)eik1zz′ +ĥ1(k1z)e−ik1zz′

]}
(7.6.50)

The integration in (7.6.49) can be evaluated for the radiation field with
a two-dimensional stationary-phase method [Born and Wolf, 1970]. As
kr →∞ , the dominant term in (7.6.49) is

eik·r = exp
[
i(kxx+ kyy +

√
k2 − k2

x − k2
y z)

]
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With the observation point at x = r sin θ cosφ , y = r sin θ sinφ , and
z = r cos θ , the stationary-phase points are found to be

kx = k sin θ cosφ
ky = k sin θ sinφ

The dyadic Green’s function G01(r, r′) is then determined. We obtain

G01(r, r′) =
eikr

4πr

{[
TTE

01

D2
ê(k0z)ê1(k1z) +

k

k1

TTM
01

F2
ĥ(k0z)ĥ1(k1z)

]
e−ik1·r′

+
[
TTE

01

D2
RTE

12 ê(k0z)ê1(−k1z) +
k

k1

TTM
01

F2
RTM

12 ĥ(k0z)ĥ1(−k1z)
]

· ei2k1zde−iK1·r′
}

(7.6.51)

with all kx and ky equal to the values at the stationary-phase point.

B. Scattering by a Half-Space Random Medium

To illustrate with a half-space random medium, we consider scattered
fields in the far-field zone. Let an incident wave be horizontally polar-
ized with

E0i = ê(−k0zi)E0 e
−ik0zizeik⊥i·r

where k0zi = k cos θi . The unperturbed field in region 1 is

E
(0)
1 (r) = E0 T

TE
01i ê1i(k1zi)eik1i·r

where k1zi = (k2
1 − k2 sin2 θi)1/2 and k1i = k⊥i− ẑk1zi . The subscript

i in TTE
01i signifies the fact that the kz values are those in the incident

direction. Making use of the far-field dyadic Green’s function derived
in the last section and simplify to that for a half-space medium, we
have

G01(r, r′) =
eikr

4πr

{
TTE

01s ê(k0zs)ê1(k1zs)+
k

k1
TTM

01s ĥ(k0zs)ĥ1(k1zs)
}
e−ik1s·r′

with
k0zs =

√
k2 − k2

xs − k2
ys

k1zs =
√
k2

1 − k2
xs − k2

ys

k1s = k⊥s + ẑk1zs
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The first-order scattered field intensity is obtained as follows:

< |E(1)
s (r)|2> =

|E0|2
16π2r2

∣∣∣∣
[
TTE

01s ê(k0zs)ê1(k1zs)

+
k

k1
TTM

01s ĥ(k0zs)ĥ1(k1zs)
]
· TTE

01i ê1i(k1zi)
∣∣∣∣
2

W (7.6.52)

where

W =
∫∫∫

V1

d3r1

∫∫∫
V1

d3r2 C(r1 − r2)ei(k1i−k1s)·r1−i(k
∗
1i−k

∗
1s)·r2

(7.6.53)
The correlation function may be expressed as the Fourier transform of
a spectral intensity function Φ

C(r1 − r2) = δ|k1|4
∫∫∫ ∞

−∞
dk Φ(k)e−ik·(r1−r2) (7.6.54)

For the correlation function in (7.6.10), for instance, we choose the
coordinates with the z axis along k without loss of generality and
find

Φ(k) =
1

8π3

∫∫∫
d3r e−r/r0eik·r

=
1

4π2

∫ ∞

0
dr r2e−r/r0

∫ π

0
dθ sin θ eikr cos θ

=
r30

π2(1 + k2r20)2

Substitution of (7.6.54) into (7.6.53) yields

W = 4π2δ|k1|4
∫∫∫ ∞

−∞
d3k

∫∫∫
dx1dy1dz1 exp(i(k1zi − k1zs − kz) · z1)

· exp(i(k∗1zi + k∗1zs + kz)z2) · Φ(k)δ(k1xi − k1xs − kx, k1yi − k1ys − ky)

= 4π2δ|k1|4
∫ ∞

−∞
dkz

∫ 0

−∞
dz1

∫ 0

−∞
dz2 Φ(kxi − kxs, kyi − kys, kz)

· exp(−i(k1zi + k1zs + kz)z1) exp(i(k∗1zi + k∗1zs + kz)z2)

= δ|k1|4A
∫ ∞

−∞
dkz

Φ(kxi − kxs, kyi − kys, kz)
(k1zi + k1zs + kz)(k∗1zi + k∗1zs + kz)
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where A is the illuminated area resulting from the integration over
dx1 dy1 . Consider low absorption with k1I � k1R . We apply contour
integration and recognize that most of the contribution of the integral
comes from the residue of the pole at kz = −k∗1zi − k∗1zs . We find

W ≈ 4π3δ|k1|4A
Φ(kxi − kxs, kyi − kys,−k∗1zi − k∗1zs)

k1ziI + k1zsI

The bistatic scattering coefficients γµν(k̂s, k̂i) are defined as

γµν =
4πr2 < |Es|2 >ν

A cos θi|E0|2µ

where µ denotes the incident polarization and ν the scattered polar-
ization. We obtain, for the case φi = 0 ,



γhh
γvh
γhv
γvv


 =

δ|k1|4π2Φ
cos θi(k1ziI + k1zsI)

·




|TTE
01s T

TE
01i |2 cos2 φs

|k1zs
k

k1
TTM

01s T
TE
01i |2 sin2 φs

|k1zi
k

k1
TTE

01s T
TM
01i |2 sin2 φs

|TTM
01s T

TM
01i |2

k6 sin2 θs
k8

1

|kxi −
kxsk1zsk1zi

k2
xs + k2

ys

|2




For the backscattering coefficient

σµν = γµν(θs = θi, φs = π + φi) cos θi

We see that σµν = σhν = 0 for the first-order solution from the Born
series. To determine the cross-polarized backscattering intensities, we
must carry out the Born approximation to the second-order from the
iterative procedure.

The above results are obtained with the Born approximation that
makes use of the unperturbed field values for the background medium
in the absence of the inhomogeneities. In the distorted Born approxi-
mation, which often yields better numerical results as compared with
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experimental measurements, the unperturbed field values in the back-
ground medium with the effective permittivity are used. The Born ap-
proximations are valid only for weak permittivity fluctuations. When
the variance of the randomly fluctuating part is large, we must resort
to the strong fluctuation theory in which the singularities of the dyadic
Green’s functions are properly taken care of and a new small param-
eter such as ξ in Section 6.7 can be utilized to affect approximations
similar to the Born series.

Problems

P7.6.1
Let f(x) be a stationary Gaussian random process with variance σ2

and < f(x) > = 0. Show that

< eiαf(x) > = e−σ2α2/2
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7.7 Effective Permittivity for a Volume Scattering
Medium

Electromagnetic waves are scattered upon entering a medium contain-
ing scatterers or inhomogeneities, which is referred to as a volume
scattering medium. A homogeneous dielectric medium is characterized
by a permittivity. For a volume scattering medium containing dielectric
scatterers, we can account for its scattering effects by characterizing it
with an effective permittivity.

Ein

z

P εs

Ee

ε

a

Figure 7.7.1 Sphere of radius a in a field Ee.

Consider a homogeneous medium with permittivity ε containing
small spheres of permittivity εs and radius a [Fig. 7.7.1]. Assume the
electric field in the absence of the scatterers to be

Ee = ẑEe = Ee(r̂ cos θ − θ̂ sin θ) (7.7.1)

In the static limit, the total field inside and outside the sphere is

E =


Ee + Es(

a

r
)3(r̂2 cos θ + θ̂ sin θ) z ≥ a

Ein (r̂ cos θ − θ̂ sin θ) z ≤ a
(7.7.2)

At r = a , the boundary conditions give{
−Ee + Es = −Ein

2εEe + εEs = εsEin
(7.7.3)
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which yields the solution

Ein =
3ε

εs + 2ε
Ee (7.7.4)

Es =
εs − ε
εs + 2ε

Ee (7.7.5)

The polarization vector for the sphere is

P = (εs − ε)Ein = 3ε
εs − ε
εs + 2ε

Ee (7.7.6)

The polarizability of the sphere is seen to be

α = 3ε
εs − ε
εs + 2ε

(
4πa3

3

)
(7.7.7)

The difference between the total fields inside and outside the sphere can
be attributed to the polarization vector P . From (7.7.4) and (7.7.6)
we find

Ee − Ein =
1
3ε
P (7.7.8)

Notice that Ee is the field in the absence of the sphere and constitutes
only part of the total field outside the sphere as is evident from (7.7.2).
We refer to Ee as the exciting field.

For a volume scattering medium containing n0 spheres per unit
volume, the polarization vector is related to the exciting field by

P = n0αEe (7.7.9)

We relate the exciting field Ee and the macroscopic field E in the
same manner as (7.7.8)

E = Ee −
1
3ε
P (7.7.10)

In terms of the macroscopic field E , we find from (7.7.9) and (7.7.10)

P =
n0α

1− n0α/3ε
E (7.7.11)
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The electric displacement vector D is

D = εE + P =
1 + 2n0α/3ε
1− n0α/3ε

εE

It follows that the effective permittivity εeff is

εeff = ε

[
1 + 2n0α/3ε
1− n0α/3ε

]
(7.7.12)

The fractional volume occupied by the spheres is

fs = n0

(
4πa3

3

)

which gives

n0α = 3ε
εs − ε
εs + 2ε

fs = 3εSfs (7.7.13)

where
S =

εs − ε
εs + 2ε

(7.7.14)

In view of (7.7.7), we write (7.7.12) in terms of the fractional volume
fs as follows:

εeff = ε

[
1 + 2fsS
1− fsS

]
(7.7.15)

Casting (7.7.12) in a more symmetric form, we obtain

εeff − ε
εeff + 2ε

= fsS = fs
εs − ε
εs + 2ε

(7.7.16)

Equation (7.7.12) is known as the Clausius-Mossotti formula or the
Lorenz-Lorentz formula. Equation (7.7.15) is known as the Maxwell-
Garnett mixing formula and (7.7.16) as the Rayleigh mixing formula.

It is important to notice from (7.7.15) that as fs = 0 , εeff = ε
and as fs = 1 , εeff = εs . However, if both εs and ε are real, εeff is
also real. This is because εeff as calculated above does not account for
the scattering effect by the scatterers, which gives rise to an imaginary
part for the effective permittivity.
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A. Random Discrete Scatterers

In the low frequency limit, the scattered power can be attributed to
the scattered power of the induced dipoles of the small spheres. From
(7.7.7), (7.7.9), and (7.7.10), we find the relation between the excited
field Ee and the macroscopic field E to be

E = [1− fsS]Ee (7.7.17)

Therefore the induced dipole moment for a small sphere is

p = αEe =
4πa3εS

1− fsS
E (7.7.18)

Assuming that the attenuation is small on the wavelength scale, we
can approximate E by

E = êE0 e
iKR·r

where KR is the real part of the wavenumber

K = ω(µoεeff )1/2 = KR + iKI

The complex effective permittivity is related to KR and KI as follows:

εeffR + iεeffI =
1

ω2µo
(K2

R + i2KIKR −K2
I )

≈ 1
ω2µo

(K2
R + i2KIKR)

In order to determine εeffI , we now calculate KI from scattered
power by the induced dipoles.

The induced dipole moment pi of the i th scatterer centered at
ri is

pi = ê
4πa3εS

1− fsS
E0 e

iKR·ri (7.7.19)

The scattered field of the i th dipole is

Esi(r) =
ω2µo e

ikRi

4πRi

(
R̂i × pi

)
× R̂i (7.7.20)
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where Ri = r − ri is the vector pointing from the i th dipole to the
observation point. For r 
 ri , we approximate Ri ≈ r− r̂ ·ri , R̂i = r̂
and r̂k = k . Thus (7.7.20) becomes

Esi(r) ≈ Aei(KR−k)·ri

where

A =
ω2µoe

ikr

4πr
(r̂ × ê)× r̂ 4πa3εS

1− fsS
E0 (7.7.21)

The total scattered field Es(r) is the sum of that due to all the dipoles,

Es(r) =
N∑
i=1

Aei(KR−k)·ri (7.7.22)

where N is the total number of scatterers.
The total scattered intensity is determined to be

Is =
|Es|2
2η

=
|A|2
2η


N +

N∑
i=1

∑
j 
=i

2Re
{
eiK·(ri−rj)

}
 (7.7.23)

where K = KR − k .
Notice that the position vectors ri and rj are random variables

in space. Let PN (r1, . . . , rN ) be the N -particle probability density
function for the scatterers center at r1, . . . , rN . Taking the configura-
tion average of (7.7.23) and assuming that all scatterers are identical,
we find

<Is> =
|A|2
2η
{N + L} (7.7.24)

where

L =
N∑
i=1

∑
j 
=i

2 Re
{∫

dr1 . . .

∫
drN PN (r1, . . . , rN )eiK·(ri−rj)

}

= N(N − 1) Re
{∫

dri

∫
drj P2(ri, rj)eiK·(ri−rj)

}

The two-scatterer probability density function is, by Bayes’ rule,
P2(ri, rj) = P (ri|rj)P (rj) where P (ri|rj) is the conditional probabil-
ity of the i th scatterer at ri given the j th scatterer at rj . We assume
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uniform distribution with P (rj) = 1/V and P (ri|rj) = g2(ri, rj)/V
where V is the volume containing the scatterers, and g2(ri, rj) is
the two-point distribution function. For radially symmetric problems
g2(ri, rj) = g(ri− rj) where g is called the pair-distribution function.
We find

L = n0NRe
{∫∫∫

dr g(r)eiK·r
}

(7.7.25)

where n0 = N/V .
The total scattered power is determined by integrating (7.7.24)

over a 4π solid angle. Without loss of generality we let ê = ẑ and
obtain

Ps =
E2

0

2η
8π
3
k4a6

∣∣∣∣ (εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

∣∣∣∣
2

{N + L} (7.7.26)

Consider a cylindrical volume of area A and length l containing n0

scatterers per unit volume. The input power is Pin =A(E2
0/2)

√
εeff/µo

≈ AKRE
2
0/2ηk with εeff denoting the effective permittivity. The

scattered power is given by (7.7.26) with N = n0Al . The scattering
induced attenuation rate is given by

2KI =
Ps
lPin

= 2fs
k5a3

KR

∣∣∣∣ (εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

∣∣∣∣
2

{1+L/N} (7.7.27)

For KI � KR , we have K2 = ω2µo(εeffR + iεeffI) ≈ K2
R + i2KRKI .

The real part is obtained from (7.7.15) and the imaginary part from
(7.7.27). We find the new complex effective permittivity to be

εeff = ε

{[
1 + 2fs(εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

]

+ i2fsk3a3

∣∣∣∣ (εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

∣∣∣∣
2

{1 + L/N}
}

(7.7.28)

The imaginary part of the complex wavenumber K = KR + iKI now
accounts for the scattering effects. As K2 = ω2µo(εeffR + iεeffI) , the
imaginary part of the complex effective permittivity εeffI is dependent
on the pair distribution function g(r) as seen from (7.7.25).

For independent scattering, the pair distribution function g(r) = 1
and (7.7.25) can be converted into a surface integral at infinity bound-
ing all the scatterers. As the wave solution satisfies the wave equation
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and the radiation condition, the result of the integral is zero,∫∫∫
dr eiK·r = 0 (7.7.29)

We find from (7.7.28), since L = 0,

εeff = ε

{[
1 + 2fs(εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

]

+ i2fsk3a3

∣∣∣∣ (εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

∣∣∣∣
2
}

(7.7.30)

The real part is the Maxwell-Garnett result and the imaginary part is
identical to that obtained from the Rayleigh scattering result.

The hole-correction approximation is often used for impenetrable
scatterers that are sparsely distributed (i.e., fs � 1) . The approxima-
tion requires that

g(r) = 0 for r < b

g(r) = 1 for r > b
(7.7.31)

where b = 2a is the distance separating the centers of two spheres, so
that when the position of one sphere is given, the probability of another
sphere being positioned within the distance b from its center is zero.
But outside this exclusion volume of radius b , other spheres can be
positioned anywhere else with equal probability as they are sparsely
distributed. With this approximation, (7.7.25) becomes

L = n0NRe




∫∫∫
r>b

dr eiK·r




The integral can be evaluated by converting it into a surface integral
and neglecting the surface at infinity bounding the volume containing
all the scatterers. We find

L = n0N Re
{

1
K2

∫∫
ds · ∇(eiK·r)

}

= −n0N

K
2πb2

∫ π

0
dθ sin θ cos θ sin(Kb cos θ)

= −n0N
4π
3
b3 = −8Nfs (7.7.32)
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In obtaining the above result, we take the low frequency limit so that
Kb� 1 and that sin(Kb cos θ) ≈ Kb cos θ .

The hole-correction result can also be obtained by making use of
(7.7.29) in (7.7.25) which becomes

L = n0N Re
∫∫∫

dr [g(r)− 1]eiK·r

≈ n0N Re
∫∫∫

dr [g(r)− 1]
(7.7.33)

where we again assume at low frequencies, the exponential term is
approximately equal to one since for large distance r, g(r) ≈ 1 .
Making use of the hole-correction approximation in (7.7.31), we find
L = −n0N(4πb3/3) = −8Nfs which is the result in (7.7.32).

Substituting (7.7.32) into (7.7.28) we find the effective permittivity
under the hole-correction (H-C) approximation to be

εeff = ε

{[
1 + 2fs(εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

]

+ i2fsk3a3

∣∣∣∣ (εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

∣∣∣∣
2

(1− 8fs)

}
(7.7.34)

Clearly the H-C result is only valid for small fractional volumes. For
f > 1/8 , we observe from (7.7.34) that the imaginary part will be
negative, a physically unacceptable result.

The Percus-Yevick pair distribution function [Wertheim, 1963] is
a more realistic approximation which, when applied to (7.7.33), gives

L = N

[
(1− fs)4
(1 + 2fs)2

− 1
]

(7.7.35)

Substituting (7.7.35) into (7.7.28) yields

εeff = ε

{[
1 + 2fs(εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

]

+ i2fsk3a3

∣∣∣∣ (εs − ε)/(εs + 2ε)
1− fs(εs − ε)/(εs + 2ε)

∣∣∣∣
2 (1− fs)4

(1 + 2fs)2

}
(7.7.36)

Notice that (7.7.36) reduces to (7.7.34) for fs � 1 . Even more ap-
pealingly, we find from (7.7.36), that εeff = ε as fs = 0 and that
εeff = εs as fs = 1 .
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B. Effective Permittivity for a Continuous Random Medium

Consider a random medium with permittivity ε(r) . Introducing an
auxiliary permittivity εg , we write the vector wave equation as

∇×∇× E − k2
gE = k2

o

(
ε(r)− εg
εo

)
E (7.7.37)

where k2
g = ω2µoεg and k2

o = ω2µoεo . Let Gg(r, r′) be the dyadic
Green’s function that satisfies

∇×∇×Gg(r, r′)− k2
gGg(r, r′) = Iδ(r − r′) (7.7.38)

The singularity of the dyadic Green’s function depends on the shape
of the infinitesimal exclusion volume. We assume the correlation func-
tion for the random medium to be spherically symmetric and choose a
spherically-shaped exclusion volume. The dyadic Green’s function can
be decomposed into [Tsang et al., 1985]

Gg(r, r′) = PVGg(r, r′)− I
1

3k2
g

δ(r − r′) (7.7.39)

where PV stands for principal value.
Let E0(r) denote the field solution for the homogeneous wave

equation with wavenumber kg in (7.7.37). Notice that the field point
r and the source point r′ may coincide and we must account for the
singularities of the dyadic Green’s functions. It follows that

E(r) = E0(r) + k2
o

∫∫∫
d3r′ Gg(r, r′)

ε(r′)− εg
εo

· E(r′) (7.7.40)

= E0(r)−
ε(r)− εg

3εg
E(r) + k2

o

∫∫∫
d3r′ PVGg(r, r′) · ξ(r′)Ee(r′)

(7.7.41)

We thus obtain

Ee(r) = E0(r) + k2
o

∫∫∫
d3r′ PVGg(r, r′) · ξ(r′)Ee(r′) (7.7.42)

where

Ee(r) =
ε(r) + 2εg

3εg
E(r) =

1
3εg
D(r) +

2
3
E(r) (7.7.43)
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and

ξ(r) = 3
εg
εo

[
ε(r)− εg
ε(r) + 2εg

]
(7.7.44)

Equation (7.7.43) represents the relation for the uniform electric field
E inside a dielectric sphere when it is placed in an external static field
Ee . Multiplication of (7.7.43) and (7.7.44) yields

ξ(r)Ee(r) = 3
εg
εo

[
ε(r)− εg
ε(r) + 2εg

]
ε(r) + 2εg

3εg
E(r) =

ε(r)− εg
εo

E(r)

which yields
D(r) = εgE(r) + εoξ(r)Ee(r) (7.7.45)

Applying ensemble averaging to the above equation gives

< D(r) > = εg < E(r) > + εo < ξ(r)Ee(r) > (7.7.46)

Thus < ξ(r)Ee(r) > plays the role of a polarization vector in a back-
ground medium of εg .

In the strong fluctuation theory, we impose the condition

< ξ(r) > = 0 (7.7.47)

By virtue of (7.7.44), we require

<
ε(r)− εg
ε(r) + 2εg

> = 0 (7.7.48)

Suppose there are n constituents in a mixture constituting the random
medium with permittivity εp and fractional volume fp , where p =
1, 2, . . . , n . We have

n∑
p=1

fp = 1 (7.7.49)

Equation (7.7.48) gives

n∑
p=1

εp − εg
εp + 2εg

fp = 0 (7.7.50)
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In light of (7.7.49), algebraic manipulation of (7.7.50) multiplied by
(εo + 2εg)/3εg leads directly to the Polder-van Santen mixing formula

n∑
p=1

εp − εo
εp + 2εg

fp =
εg − εo

3εg
(7.7.51)

which was originally derived [Polder and van Santen, 1946] by regard-
ing the inhomogeneities as dipoles. We have thus established that εg
is the effective permittivity in the low-frequency limit.

As frequency increases, the multiple scattering gives rise to an
imaginary part in the effective permittivity to account for the wave
attenuation. Taking ensemble average of (7.7.42), we obtain by the
bilocal approximation

<Ee(r) > = E0(r) + k2
o

∫∫∫
d3r′ PVGg(r, r′)· < ξ(r′)Ee(r′) >

≈E0(r)+k2
o

∫∫∫
d3r′ PVGg(r, r′)·

∫∫∫
d3r′′ξeff (r

′−r′′)·< Ee(r′′) >

(7.7.52)

where

< ξ(r′)Ee(r′) > =
∫∫∫

d3r′′ ξeff (r
′ − r′′)· < Ee(r′′) > (7.7.53)

ξeff (r
′ − r′′) = k2

o PVGg(r′, r′′)Rξ(|r′ − r′′|) (7.7.54)
Rξ(|r′ − r′′|) = < ξ(r′)ξ(r′′) > (7.7.55)

We find from (7.7.46), in view of (7.7.53) and (7.7.43)

< D(r) > = εg < E(r) > + εo < ξ(r)Ee(r) >

= εg < E(r) > +
εo
3εg

∫∫∫
d3r′ ξeff (r − r′)· < D(r′) >

+
2εo
3

∫∫∫
d3r′ ξeff (r − r′)· < E(r′) > (7.7.56)

We define the effective permittivity εeff such that

< D(r) > =
∫∫∫

d3r′ εeff (r − r′)· < E(r′) > (7.7.57)



7.7 Effective Permittivity for a Volume Scattering Medium 863

Fourier transforming D, εeff , E , ξeff , and Ee , e.g.,

D(k) =
∫∫∫

d3r D(r)e−ik·r

we find from (7.7.57) and (7.7.56),[
I − εo

3εg
ξeff (k)

]
< D(k) > = εg < E(k) > +

2εo
3
ξeff (k) < E(k) >

(7.7.58)
Thus

εeff (k) = εgI + εo

[
I − εo

3εg
ξeff (k)

]−1

ξeff (k) (7.7.59)

The second term is the correction provided by the bilocal approxima-
tion the validity of which is substantiated by

|ξeff (k)| � 1 (7.7.60)

We obtain from (7.7.59)

εeff ≈ εgI + εoξ
(0)

eff (7.7.61)

where
ξ
(0)

eff = k2
o

∫∫∫
d3r PVGg(r)Rξ(|r|)

follows from the Fourier transform of (7.7.54) in which we let eikr ≈
1 , assuming low frequency and small r . For spherical scatterers, we
calculate

PVGg(r) = (I +
1
k2
g

∇∇)
eikgr

4πr
= (I +

1
k2
g

∇r̂[ikg −
1
r
])
eikgr

4πr

= (I +
1
k2
g

(∇r)[ ikg
r
− 1
r2

] + r̂r̂
r

k2
g

∂

∂r
[
ikg
r
− 1
r2

])
eikgr

4πr

= I(−1 + ikgr + k2
gr

2)
eikgr

4πk2
gr

3
+ r̂r̂(3− i3kgr − k2

gr
2)
eikgr

4πk2
gr

3

where r̂r̂ = (x̂x/r + ŷy/r + ẑz/r)(x̂x/r + ŷy/r + ẑz/r) and ∇r =
x̂x̂+ ŷŷ + ẑẑ = I . We find
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ξ
(0)

eff = Ik2
o

∫
dr (−1 + ikgr + k2

gr
2)
eikgr

k2
gr
Rξ(|r|)

+ k2
o

∫
dr

∫ π

0
dθ

∫ 2π

0
dφ r2 sin θ r̂r̂(3− i3kgr − k2

gr
2)
eikgr

4πk2
gr

3
Rξ(|r|)

= Ik2
o

∫
dr (−1 + ikgr + k2

gr
2)
eikgr

k2
gr
Rξ(|r|)

+ Ik2
o

∫
dr (3− i3kgr − k2

gr
2)
eikgr

3k2
gr
Rξ(|r|)

= I
2
3
k2
o

∫
dr r Rξ(|r|) eikgr

In the low-frequency limit we approximate eikgr ≈ 1 + ikgr . Thus we
obtain

εeff (k) = εgI + εoξ
(0)

eff (k) ≈ εg + i
2εo
3
k2
okg

∫ a

0
dr r2Rξ(r)

For two species with fractional volumes f and fs for permittivities ε
and εs , respectively,

Rξ(r) = < ξ2 > = fs

[
3
εg
εo

(
εs − εg
εs + 2εg

)]2

+ (1− fs)
[
3
εg
εo

(
ε− εg
ε+ 2εg

)]2

In the low-frequency limit, we obtain the effective permittivity

εeff = εg

{
1 + i2k3

ga
3

[
fs

(
εs − εg
εs + 2εg

)2

+ (1− fs)
(
ε− εg
ε+ 2εg

)2
]}

(7.7.62)
Remarkably this formula also yields the limiting values of εeff = εs as
fs = 1 and εeff = ε as fs = 0 .

For small fractional volume, we let fs � 1 and εg ≈ ε+ δ , with
δ denoting a small number. The above result reduces to

εg ≈ ε[1 + 3fs(εs − εg)/(εs + 2εg)]

εeff ≈ ε
{

1 + 3fs

(
εs − εg
εs + 2εg

)
+ i2fsk3a3

(
εs − εg
εs + 2εg

)2
}

This is the same as that obtained with the random discrete scatterer
model.
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Problems

P7.7.1
The constitutive relation D = ε · E can also be expressed in terms

of a “free-space” part εoE and a polarization vector P characterizing the
properties of the material. We write

D = εoE + P

In the case of induced dipole moments, the polarization P is proportional to
the polarizability per unit volume Nα, where N is the number of dipoles
per unit volume, and α is the polarizability for each dipole

P = NαEloc

The local electric field Eloc at the place of the induced dipole comprises the
applied field E and the field caused by the surrounding dipoles. Under the
quasi-static approximation, the local electrical field is shown to be

Eloc = E +
P

3εo

Prove that

ε

εo
=

1 + (2Nα/3εo)
1− (Nα/3εo)

This is the well-known Clausius-Mossotti (or Lorenz-Lorentz formula).
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Answers

P7.1.1

(a) E = p
4πεr3

(
θ̂ sin θ + r̂ 2 cos θ

)
(b) p = 4πεa3

(
εp−εo
εp+2εo

)
Eo

(c) Ps = 1
2

∫ π

0
r2 sin θdθ

∫ 2π

0
dφEoH

∗
φ = 4π

3η

(
εp−εo
εp+2εo

)2

k4a6E2
0

Scattering cross section 2ηPs/E2
o = 8π

3

(
εp−εo
εp+2εo

)2

k4a6

(d) The scattered power from each particle is

Pscatt =
4π
3η

[
εp − εo
εp + 2εo

]2

k4a6E2
o =

π

12η
k4a6E2

o

The total power loss of a control-volume with area A and unit length
dl is, with particle density approximately 3/4πa3 per m3 ,

dP =
π

12η
k4a6E2

o ×
3

4πa3
×AdM

The power flow in fiber through a area A is P = 1
2ηE

2
oA . Therefore

1
P

dP

dM
=

1
8
k4a3 ≈ 2× 10−4 m−1 = 0.2 (km)−1

which gives rise to a loss of 6.99 dB/km.

(e) Pscatt = 4π
3η

∣∣∣( ε+iσ/ω−εo
ε+iσ/ω+2εo

)∣∣∣2 k4a6|Eo|2 3
4πa3AdM ≈ 1

ηk
4a3|Eo|2AdM

Pdiss = 1
2

∫
dV σ|Eo|2 ≈ 1

2 |Eo|2ωεAdM = 1
2ωε|Eo|2AdM = k

2η |Eo|2AdM
Pscatt
Pdiss

= 2k3a3 = 2(2π)3 a3

λ3 � 1 as a� λ so absorption loss is primary.

P7.2.1

The electric field of the incident wave is

E
i
= − 1

iωεo
∇×Hi

= − Ho

iωεo

∞∑
n=−∞

{
ρ̂i
n

ρ
Jn(kρ)− φ̂kJ ′

n(kρ)
}
einφ−inπ/2

The electric field of the scattered wave is

E
s

= − 1
iωεo

∞∑
n=−∞

An

{
ρ̂i
n

ρ
H(1)

n (kρ)− φ̂kH(1)
n

′
(kρ)

}
einφ−inπ/2
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In the far field kρ
 1

H
s ≈ −ẑHo

∞∑
n=−∞

√
2
πkρ

J ′
n(ka)

H
(1)
n

′
(ka)

eikρ+in(φ−π)−iπ/4

≈ ẑiHo

√
π

2kρ

[
(ka)2 cosφ− (ka)4

8
cos 2φ+ · · ·

]
eikρ−iπ/4

For magnetic field parallel to the axis the scattered wave is no longer isotropic.

P7.3.1

[Q±
Di]mn =

−1
P
√
kizm

∫
p

dxe−i[(m−n)kx±kizmf(x)]

[Q±
Ni]mn = ∓k

2 − kizmkizn
zizmP

√
kizm

∫
p

dxe−i[(m−n)kx±kizmf(x)]

f(x) =
{
h/2 0 ≤ x < P/2
−h/2 P/2 ≤ x < P k =

2π
P

i = 0, 1

∫ P

0

dxe−i[(m−n)kx±kizmf(x)]

=
∫ P/2

0

dxe
−i

[
(m−n)kx±kizmh

2

]
+

∫ P

P/2

dxe
−i

[
(m−n)kx∓kizmh

2

]

= e∓i
kizmh

2

i
[
e−i(m−n)Pk2 − 1

]
(m− n)k + e±i

kizmh
2

i
[
e−i(m−n)Pk − e−i(m−n)Pk2

]
(m− n)k

= e∓i
kizmh

2
i
[
e−i(m−n)π − 1

]
(m− n)k + e±i

kizmh
2

i
[
e−i(m−n)2π − e−i(m−n)π

]
(m− n)k

=
i[1− (−1)m−n]

(m− n)k 2i sin
±kizmh

2
=

{
∓4

(m−n)k sin kizmh
2 m− n: odd

0 m− n: even

P7.4.1

< |E|2 >=
k2|E0|2
16π2r2

∣∣∣(I − k̂s · k̂s) · F (α0, β0)
∣∣∣2 < II∗ >

From equation (7.4.50)

< lim
k→∞

II∗ >=
4π2A0

k2
dz

P

(
−kdx
kdz

, −kky
kdz

)
For incident polarization b , the scattered intensity for polarization a is

< |Es(r)|2 >=
k2|E0|2
16π2r2

|â · F b(α0, β0)|2
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where F b(α0, β0) = F (α0, β0)|êi=b and

F (α0, β0) = (1 + α2
0 + β2

0)1/2




− (êi · q̂i)(n̂ · k̂i)q̂i(1−RTE)

+ (êi · p̂i)(n̂× q̂i)(1 +RTM)

+ (êi · q̂i)([k̂s × (n̂× q̂i)](1 +RTE)

+ (êi · p̂i)(n̂ · k̂i)(k̂s × ẑi)(1−RTM)




Using n̂ =
−kd
|kd|

=
ks − ki
|kd|

q̂i =
k̂i × n̂
|k̂i × n̂|

=
k̂i × k̂s
|k̂i × k̂s|

p̂i = q̂i × ĥi

v̂ = ĥ× k̂i ĥ = k̂ × v̂ we can have

|âs · F b(α0, β0)|2 =
|kd|2

k2|k̂i × k̂s|4k2
dz

fba

fvv = |(ĥs · k̂i)(ĥi · k̂s)RTE + (v̂s · k̂i)(v̂i · k̂s)RTM|2

fhv = |(v̂s · k̂i)(ĥi · k̂s)RTE − (ĥs · k̂i)(v̂i · k̂s)RTM|2

fvh = |(ĥs · k̂i)(v̂i · k̂s)RTE − (v̂s · k̂i)(ĥi · k̂s)RTM|2

fhh = |(v̂s · k̂i)(v̂i · k̂s)RTE + (ĥs · k̂i)(ĥi · k̂s)RTM|2

< |Es|2 > =
|E0|2|kd|4fab

16π2r2k2|k̂i × k̂s|4k2
dz

< II∗ >

=
A0|kd|4fab|E0|2

4πr2k2|k̂i × k̂s|4k2
dz

P

(
−kdx
kdz

, −kdy
kdz

)

γab =
4πr2 < |Es|2 > a
A cos θi|E0|2b

=
k2|â · F b(0, 0)|2| < II∗ > |2

4πA0 cos θi

γab =
fab|kd|4

cos θi|k̂i × k̂s|4k4
dz

P

(
−kdx
kdz

, −kdy
kdz

)

Note:
∫
γabdΩ =

∫
γab
k2 d

2k.

P7.4.2

From equation (7.4.58)

σhh(θi) = σvv(θi) =
|R|2e− tan2 θi/(2σ

2|C′′(0)|)

cos4 θi2σ2|C ′′(0)|
σ2|C ′′(0)| = 2

σ2

ρ2
= 0.02 , |R|2 ≈ 1
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σhh = σvv =
|R|2e− tan2 θi/0.04

cos4 θi(0.04)
= 25

e−25 tan2 θi

cos4 θi

at θi = π/2,
e−25 tan2 θi

cos4 θi
= 0 , using L’Hôpital Rule.

P7.5.1

DP = εoEP − εoΓ
∑

N FP−NEN , and Maxwell equations give

KM×(KM × EM ) = ωµo(KM ×HM ) = −ω2µoDM

= −ω2µoεo(EM − Γ
∑
N

FM−NEN )

k2EM − (KM ·KM )EM +KM (KM · EM ) = k2Γ
∑
N

FM−NEN

[k2(1− ΓF0)−KM ·KM ]EM +KM (KM · EM ) = k2Γ
∑
M 	=N

FM−NEN

Consider TM polarization, we find

[k2(1− ΓF0)−K0 ·K0]E0 ≈ [2k
√

1− Γ0]κ0 = k2ΓF−PEP cos 2θ

[k2(1− ΓF0)−KP ·KP ]EP ≈ [2k
√

1− Γ0]κP = k2ΓFPE0 cos 2θ

κ0κP =
k2

4
Γ2FPF−P

1− Γ0
cos2 2θ

P7.5.2

Referring to Figure P7.5.2.1, we see that κ0 = κP and K = 2κ0/ cos θ =
2π/Λ0 , where Λ0 is the unit of the slab thickness. We thus have κp = κ0 =
π cos θ/Λ0 and Λ0 = λ cos θ

√
(1 + Γ0)/ΓPΓ−P and λ is the wavelength.

P7.5.3

Retain only two terms

Hy = H0e
i[kz−ωt] +H−1e

i[(k− 2π
a )z−ωt]

= H0e
i[πa z−ωt] +H−1e

i[−π
a z−ωt]

ω2

c2
Hy = −iπ

a

∂

∂z
κ{H0e

i[kz−ωt] −H−1e
i[(k− 2π

a )z−ωt]}

= −iπ
a
e−iωt ∂

∂z
{H0[κ0e

i[kz] + κei[(k+ 2π
a )z] + κei[(k−

2π
a )z]]

−H−1[κ0e
i[(k− 2π

a )z] + κei[kz] + κei[(k−
4π
a )z]]}

= (
π

a
)2e−iωt{H0[κ0e

i[πa z] + 3κei[
3π
a z] − κei[−πa z]]

+H−1[κ0e
i[−πa z] − κei[πa z] + 3κei[

−3π
a z]]}
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Comparing coefficients of the same z dependence, we find

[
ω2

c2
− κ0(

π

a
)2]H0 = −κ(π

a
)2H−1

[
ω2

c2
− κ0(

π

a
)2]H−1 = −κ(π

a
)2H0

We thus find ω =
√
κ0 ± κ πc/a and a stop band gap is formed [Fig. 7.5.3],

H−1/H0 = ±1 . Thus

Hy = H0[ei
π
a z ± e−iπa z]e−i

√
κ0±κ πct/a

P7.6.1

P (f(x) = ξ) = 1
2
√
σπ
e−ξ2/2σ2

< eiαf(x) > =
1

2
√
σπ

∫ ∞

−∞
dξeiαξe−ξ2/2σ2

dξ

=
1

2
√
σπ

∫ ∞

−∞
dξe

− 1
2σ2 [ξ2−i2σ2αξ−σ4α2]−σ2α2

2

=
e−

σ2α2
2

√
σπ

∫ ∞

−∞
dξe

− 1
2σ2 [ξ − iσα 1

2 ] = e−
σ2α2

2

P7.7.1

Let ESD be the field caused by the surrounding dipoles, we write

Eloc = E + ESD

Where E is the field in the dielectric in the absence of the hole, and ESD

can be calculated from the polarization charges. Let

σP = n̂ · P = Polarization surface charge at the spherical surface.

Using spherical coordinates, we have

σP = −r̂ · P = −P cos θ

Making electroquasistatic assumptions we write the electric field as

ESD =

{
−E0

(
a

r

)3 (
r̂2 cos θ + θ̂ sin θ

)
for r > a

E0(r̂ cos θ − θ̂ sin θ) for r < a

The continuity of the tangential ESD can be checked by taking the cross
product of r̂ with ESD . It is seen that the tangential ESD is continues at
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r = a and the constant E0 is evaluated using the discontinuity relation for
the normal D field:

ε0
[
ESD(r = a+)− ESD(r = a−)

]
· r̂ = σP = −P cos θ

We find E0 =
P

3ε0
and

ESD =



− P

3ε0

(
a

r

)3

(2r̂ cos θ + θ̂ sin θ) for r > a

+
P

3ε0
(r̂ cos θ − θ̂ sin θ) = ẑ

P

3ε0
for r < a

Thus, at the place of the induced dipole, Eloc = E +
P

3ε0
.

P = NαEloc = Nα

(
E +

P

3ε0

)

P =
Nα

1−Nα/3ε0
E = (ε− ε0)E

ε

ε0
=

1 + 2Nα/3ε0
1−Nα/3ε0
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8.1 Maxwell-Minkowski Theory

For the principle of special relativity, we can state the postulate as
follows: physical laws are form-invariant among uniformly moving ob-
servers whose space and time coordinates obey the Lorentz transfor-
mation laws. Thus, the Maxwell equations will have the same form
independent of the frames of reference of all observers, although the
numerical value of all field quantities will be different. On the basis of
this postulate, the constancy of the velocity of light is a direct con-
sequence of the form invariance of the Maxwell equations in vacuum.
The form invariance of physical laws under the Lorentz transforma-
tion of space and time is called Lorentz covariance. In 1908 Minkowski
formally stated that the macroscopic Maxwell equations in material
are Lorentz covariant. With his postulate and the Lorentz transforma-
tion for space and time coordinates, we can obtain the transformation
formulas for electromagnetic field vectors, from which the constitutive
relations for various moving media can be derived.

Suppose that, from the point of view of an observer S , macro-
scopic electrodynamics is described by the Maxwell equations:

∇× E +
∂B

∂t
= 0 (8.1.1a)

∇ ·B = 0 (8.1.1b)

∇×H − ∂D

∂t
= J (8.1.1c)

∇ ·D = ρ (8.1.1d)

∇ · J +
∂ρ

∂t
= 0 (8.1.1e)

Then, from the point of view of an observer S′ moving with respect
to S , the Maxwell equations take the same form:

∇′ × E
′ +

∂B
′

∂t′
= 0 (8.1.2a)

∇′ ·B′ = 0 (8.1.2b)

∇′ ×H
′ − ∂D

′

∂t′
= J

′ (8.1.2c)

∇′ ·D′ = ρ′ (8.1.2d)

∇′ · J ′ +
∂ρ′

∂t′
= 0 (8.1.2e)
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where primes denote quantities associated with S′ . The fundamental
field quantities are E , B , D , and H . If E and B are regarded as
pure field quantities, then D and H contain information about the
material media. Following Sommerfeld, we refer to E and B as the
entity of intensity, and D and H as the entity of quantity. In four-
dimensional Minkowski space the entity of intensity forms a field tensor
of second rank, and the entity of quantity forms an excitation tensor of
second rank. By Minkowski’s postulate, we can find the transformation
laws for all field variables from the Lorentz transformation of space and
time.

The formulation that we just described is called the Minkowski
formulation. The concept that all material media can be regarded as
source terms in the Maxwell equations and that only two electromag-
netic field vectors are fundamental quantities has led to alternative
formulations for macroscopic electromagnetic theory.

Example 8.1.1 Amperian formulation.
In the Amperian formulation, the Maxwell equations take the form

∇× EA = −∂BA

∂t

∇×
[

1
µo

BA

]
=

∂

∂t

(
εoEA + PA −

1
c2

MA × v
)

+∇×
(
MA + PA × v

)
+ JA

∇ · (εo EA) = −∇ ·
(

PA −
1
c2

MA × v
)

+ ρA

∇ ·BA = 0
where the subscript A signifies the Amperian formulation. The two funda-
mental field vectors are EA and BA , while the polarization vector PA and
the magnetization MA characterize the material media moving with velocity
v . The variables are related to those in the Minkowski formulation by

E = EA; B = BA

H =
1
µo

BA −MA − PA × v

D = εoEA + PA −
1
c2

MA × v

J = JA; ρ = ρA

End of Example 8.1.1
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Example 8.1.2 Chu formulation.
In the Chu formulation, the Maxwell equations take the form

∇× EC = − ∂

∂t

(
µoHC + µoMC

)
−∇×

(
µoMC × v

)
∇×HC =

∂

∂t

(
εoEC + PC

)
+∇×

(
PC × v

)
+ JC

∇ · εoEC = −∇ · PC + ρC

∇ · µoHC = −∇ · µoMC

where the subscript C signifies the Chu formulation. The variables are related
to those in the Minkowski formulation by

E = EC + µoMC × v

B = µoHC + µoMC

H = HC − PC × v

D = εoEC + PC

J = JC ; ρ = ρC

End of Example 8.1.2

The Maxwell equations as presented in the various formulations are
in indefinite form; constitutive relations for material media have to be
supplied. Once the constitutive relations are given, it has been shown
by Tai [1964] that all formulations are equivalent. In the Amperian
and the Chu formulations, models of the constituents of media are
elaborated with kinematic approaches. In the Amperian formulation
[Panofsky and Phillips, 1962], constituents of a dipolar medium are
visualized as two basic elements, an electric dipole and a current loop.
The Amperian model is closely related to the atomic structure, where
spinning and orbiting electrons act as current loops.

In the Chu formulation [Fano, Chu, and Adler, 1960], a dipolar
medium is visualized as containing electric and magnetic dipoles. The
Chu formulation is useful because there are no inherently moving parts
in a magnetic dipole, as opposed to a current loop. When moments
of higher order than the dipole moment are significant in a medium,
the task of modeling becomes much more involved. From the point
of view of electromagnetic wave theory, we are not interested in the
reaction of a medium under the action of a field where a model of the
medium constituents may be helpful, but we are interested in the way



878 8. Relativity

the electromagnetic wave behaves. We favor the Maxwell-Minkowski
theory not only because of its simplicity and elegance but also because
of its practical applicability.

Problems

P8.1.1
In the Boffi formulation, the Maxwell equations take the form

∇× EB = −∂BB

∂t

∇×
(

1
µo

BB

)
=

∂

∂t

(
εoEB + PB

)
+∇×MB + JB

∇ · εo EB = −∇ · PB + ρB

∇ ·BB = 0

where the subscript B signifies the Boffi formulation. Determine the variables
related to those in the Minkowski formulation.
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8.2 Lorentz Transformation

A. Lorentz Transformation of Space and Time

The principle of relativity, which requires that all physical laws be
form-invariant as described by all observers, is basic in formulating the
laws of nature. Space and time constitute the coordinates for descrip-
tions of physical phenomena. The Galilean transformation of space and
time was used to provide a basis for deriving transformation laws be-
tween observers in relative motion. The principle of relativity that is
based on the Galilean transformation is referred to as Galilean rela-
tivity. Under the Galilean transformation, the laws of Newtonian me-
chanics are form-invariant, but the laws of electromagnetism change
their form. In 1904, Lorentz examined the conditions for form invari-
ance of the Maxwell equations in vacuum between observers moving
with constant velocities relative to each other. In 1905, Einstein de-
duced Lorentz transformation laws from the single postulate that the
velocity of light in vacuum is a universal constant, and the assumption
that vacuum is linear, isotropic, and homogeneous. Einstein’s princi-
ple of relativity that is based on the Lorentz transformation is special
relativity. The laws of Newtonian mechanics, since they were not form-
invariant under the Lorentz transformation, have been revised. Physi-
cal laws that are form-invariant under the Lorentz transformation are
Lorentz-covariant.

S S′

v

Figure 8.2.1 Observer S′ moves with velocity v relative to observer S.
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Consider the simple case in which the coordinate axes of observers
S and S′ are parallel, with their origins coinciding at time t = 0 .
Observer S′ moves uniformly with velocity v relative to S [Fig. 8.2.1].
The Lorentz transformation of space-time coordinates between these
two moving observers, with the use of dyadic notation, is given by

LT

{
ct′ = γct− γβ · r

r′ = α · r − γβct

(8.2.1a)

(8.2.1b)

where

α = I + (γ − 1)
β β

β2
(8.2.2)

γ =
1√

1− β2
(8.2.3)

β2 = β · β β =
v

c
(8.2.4)

and c = 3 × 108 m/s is the velocity of light in vacuum. In matrix
notation, the unit dyad I is a diagonal matrix

I =


 1 0 0

0 1 0
0 0 1


 (8.2.5)

and

α =




1 + (γ − 1)βx βx
β2 (γ − 1)βx βy

β2 (γ − 1)βx βz
β2

(γ − 1)βy βx
β2 1 + (γ − 1)βy βy

β2 (γ − 1)βy βz
β2

(γ − 1)βz βx
β2 (γ − 1)βz βy

β2 1 + (γ − 1)βz βz
β2




(8.2.6)

where βx , βy , and βz are the x, y, and z components of β . Clearly,
because α is symmetrical, the position vector r = x̂x+ ŷy+ ẑz can be
viewed as a column matrix operated on by α , giving rise to another
column matrix.
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Example 8.2.1 Velocity along the z axis.
When v is along the z axis, β = ẑβ , βx = βy = 0, and βz = β. The

α matrix is simplified to

α =

[
1 0 0
0 1 0
0 0 γ

]

We find from (8.2.1)

ct′ = γ(ct− βz) (E8.2.1.1a)

x′ = x (E8.2.1.1b)

y′ = y (E8.2.1.1c)

z′ = γ(z − βct) (E8.2.1.1d)

We observe that the time coordinate is not a universal constant; two physical
events that are simultaneous in S′ will no longer be simultaneous in S .

End of Example 8.2.1

Example 8.2.2 Time dilation.
To consider transformation of time intervals, let a clock be in S′ , which

moves along the ẑ direction of S . The time interval of the clock as read by
S′ is ∆t′ = t′2− t′1 and is called the proper time interval. The corresponding
time interval of the clock as read by S is t = t2 = t1 and is called the
coordinate time interval. By Lorentz transformation of space and time,

c∆t′ = γ(c∆t− β∆z)

∆z′ = γ(∆z − βc∆t)

The clock is stationary in S′ , and hence ∆z′ = 0 . The proper time is ∆t′

and the coordinate time is ∆t . We find

∆t = γ∆t′

Observe that the coordinate time interval is always larger than the proper
time interval. This phenomenon is known as time dilation.

End of Example 8.2.2
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Example 8.2.3 Four-dimensional length.
An important identity can be derived from the LT (8.2.1). Forming the

difference of magnitude squares of r′ and ct′ , and using (8.2.1), we find

|r′|2 − |ct′|2 = |r|2 − |ct|2 (E8.2.3.1)

Equation (E8.2.3.1) is important because it is independent of the relative ve-
locity v between S and S′ . It is a numerical constant that is invariant under
the Lorentz transformation. Its square root can be regarded as expressing the
length of a four-dimensional vector representing the space and time coordi-
nates of a physical event. Evidently, in this four-dimensional space, called
Minkowski space, the length of a vector can be imaginary as well as real.

End of Example 8.2.3

Example 8.2.4 First-order Lorentz transformation.
When v is so small that only terms of the order of v/c are significant,

we have α = I, γ = 1, and LT (1) becomes

FOLT

{
ct′ = ct− β · r

r′ = r − βct

(E8.2.4.1a)

(E8.2.4.1b)

We call (E8.2.4.1) the First-Order Lorentz Transformation (FOLT). As seen
from FOLT, the space term β · r in the time transformation may not be
negligible, since r and r′ can be large, while β is small.

End of Example 8.2.4

Example 8.2.5 Galilean transformation.
Before 1905, time was regarded as a universal quantity. For two observers

in relative uniform motion, the space coordinate changed because of motion,
but the time coordinate remained the same:

GT
{

t′ = t

r′ = r − vt

This transformation law of space and time is the Galilean transformation
(GT). We note also that the Galilean transformation is not a limiting case of
the LT when velocity v is small. Rather, LT reduces to GT when v is small
and when r is small compared with ct/β , as seen from FOLT (E8.2.4.1a).
Mathematically, LT reduces to GT when c→∞ .

End of Example 8.2.5
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B. Lorentz Transformation of Field Vectors

Transformation formulas for field vectors are direct consequences of the
Lorentz transformation for space and time and Minkowski’s postulate
of the Lorentz covariance of the Maxwell equations. From the LT given
in (8.2.1), the following transformation formulas can be derived.

LT
[

cD
′

H
′

]
= γ

[
α
−1

β

−β α
−1

]
·
[

cD
H

]
(8.2.7)

LT
[

E
′

cB
′

]
= γ

[
α
−1

β

−β α
−1

]
·
[

E
cB

]
(8.2.8)

where α
−1 is the inverse of α

α
−1 = I +

(
1
γ
− 1

)
β β

β2

=




1 + (
1
γ
− 1)

βx βx

β2 (
1
γ
− 1)

βx βy

β2 (
1
γ
− 1)

βx βz

β2

(
1
γ
− 1)

βy βx

β2 1 + (
1
γ
− 1)

βy βy

β2 (
1
γ
− 1)

βy βz

β2

(
1
γ
− 1)

βz βx

β2 (
1
γ
− 1)

βz βy

β2 1 + (
1
γ
− 1)

βz βz

β2




= α− γβ β

The 3× 3 matrix β is defined such that for any vector A

β ·A ≡ β ×A (8.2.9)

In explicit matrix form,

β =


 0 −βz βy

βz 0 −βx
−βy βx 0


 (8.2.10)

From (β)2 ·A = β × (β ×A) = β β ·A− β2A it follows that

β
2

= β β − β2I (8.2.11)

Although both α and α
−1 are symmetric, β is skew-symmetric.

Transformation formulas (8.2.7) and (8.2.8) express the fact that
H and D fields transform as an entity (entity of quantity), and so do
E and B (entity of intensity).
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Example 8.2.6 Derivation of electromagnetic field transformation.
From the LT given in (8.2.1) we obtain Lorentz transformation for space-

time derivatives. We make use of the chain rule in differentiation,

∂

∂ct
=

[
∂ct′

∂ct

]
∂

∂ct′
+

[
∂x′

i

∂ct

]
∂

∂x′
i

and

∂

∂xi
=

[
∂ct′

∂xi

]
∂

∂ct′
+

[
∂x′

j

∂xi

]
∂

∂x′
j

Substituting the LT (8.2.1) and noting the fact that α is symmetrical, we
find

∂

∂ct
= γ

∂

∂ct′
− γβ · ∇′ (E8.2.6.1a)

∇ = α · ∇′ − γβ
∂

∂ct′
(E8.2.6.1b)

To derive transformation laws for all field vectors, we substitute (E8.2.6.1)
into the Maxwell equations in the S frame and require them to have the
same forms in the S′ frame. First, consider the charge conservation equation.
Transformation from S to S′ gives[

α · ∇′ − γβ
∂

∂ct′

]
· J + γ

[
∂

∂ct′
− β · ∇′

]
cρ = 0

Thus the charge conservation equation is Lorentz-covariant if

cρ′ = γ(cρ− β · J) (E8.2.6.2a)

J
′
= α · J − γβcρ (E8.2.6.2b)

Note that a charge distribution stationary in S certainly produces a current
in S′ , but from (E8.2.6.2b) a uniform current element in S also generates
a charge distribution in S′ , which is a relativistic effect and cannot be seen
under GT.

Next, we introduce (E8.2.6.1) into Ampère’s law and Gauss’ electric field
law: [

α · ∇′ − γ
∂

∂ct′
β

]
×H −

[
γ

∂

∂ct′
− γβ · ∇′

]
cD = J (E8.2.6.3a)[

α · ∇′ − γ
∂

∂ct′
β

]
· cD = cρ (E8.2.6.3b)
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To find transformation laws for D
′

and H
′
, we wish to cast (E8.2.6.3) into

the form

∇′ ·D′
= ρ′ (E8.2.6.4a)

∇′ ×H
′ − ∂

∂t′
D

′
= J

′
(E8.2.6.4b)

In view of (E8.2.6.2a), we have γ(E8.2.6.3b)− γβ · (E8.2.6.3a) = cρ′, which
gives

γ
[
(α · ∇′) · cD − β · (α · ∇′)×H − γ(β · ∇′)(β · cD)

]
= cρ′

Using

β ·
[
(α · ∇′)×H

]
= β ·

{[
∇′ + (γ − 1)

(β · ∇′)
β2

β

]
×H

}

= β · ∇′ ×H = −∇′ · (β ×H)

we find

∇′ ·
{

γ
[
α− γβ β

]
· cD + γβ ×H

}
= cρ′ (E8.2.6.5a)

By the same token, we use (E8.2.6.2b) to calculate α · (E8.2.6.3a) − γβ ·
(E8.2.6.3b) = J

′
which gives

α · (α · ∇′)×H + γα · (β · ∇′)cD − γβ(α · ∇′)cD

+
∂

∂ct′
[
−γα · (β ×H)− γ(α · cD) + γ2β β · cD

]
= J

′

Using the fact that

α·
[
(α · ∇′)×H

]
= ∇×H +

γ − 1
β2

·
[
(β · ∇′)β ×H − β∇′ · (β ×H)

]
= ∇′ ×

{
H − γ − 1

β2

[
β × (β ×H)

]}
= ∇′ ×

{
γ

[
I +

(
1
γ
− 1

)
β β

β2

]
·H

}

and

α·(β · ∇′)cD − β
[
(α · ∇′)cD

]
=(β ×∇′)cD − β(∇′ · cD) =−∇′ × (β × cD)

We find

∇′ ×
{

γ

[
I +

(
1
γ
− 1

)
β β

β2

]
·H − γβ × cD

}

− ∂

∂ct′
{

γ
[
α− γβ β

]
· cD + γβ ×H

}
= J

′
(E8.2.6.5b)
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Comparing (E8.2.6.4) and (E8.2.6.5), we obtain the transformation formulas
for D and H :

cD
′
= γ

[
α− γβ β

]
· cD + γβ ×H (E8.2.6.6a)

H
′
= γ

[
I +

(
1
γ
− 1

)
β β

β2

]
·H − γβ × cD (E8.2.6.6b)

It is easily shown that the dyadic quantities in the square brackets of
(E8.2.6.6a) and (E8.2.6.6b) are equal to the inverse of α

α
−1

= I +
(

1
γ
− 1

)
β β

β2
= α− γβ β (E8.2.6.7)

This is verified by showing that

α · α−1
=

[
I + (γ − 1)

β β

β2

]
·
[

I +
(

1
γ
− 1

)
β β

β2

]
= I

also α
−1 · α = I and

α
−1

= I +
(

1
γ
− 1

)
β β

β2
= α− γβ β

in view of the fact that 1/γ2 = 1−β2 . We can further define a 3× 3 matrix
β such that for any vector A

β ·A ≡ β ×A (E8.2.6.8)

In explicit matrix form,

β =

[
0 −βz βy
βz 0 −βx
−βy βx 0

]
(E8.2.6.9)

From (β)2 ·A = β × (β ×A) = β β ·A− β2A it follows that

β
2

= β β − β2I (E8.2.6.10)

Although both α and α
−1

are symmetric, β is skew-symmetric.
We now write the Lorentz transformation formulas for cD and H in

(8.2.7). In a similar way, we can show that the forms of Faraday’s emf law
and Gauss’ magnetic field law are preserved under LT, provided that E and
B transform as (8.2.8), which is identical in form to (8.2.7).

End of Example 8.2.6
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For the transformation of E and cB in (8.2.8), we decompose the
field vectors into components parallel and perpendicular to the velocity
v . It is interesting to see that field components parallel to the velocity
are left unchanged:

E
′
|| = E|| (8.2.12a)

B
′
|| = B|| (8.2.12b)

D
′
|| = D|| (8.2.12c)

H
′
|| = H || (8.2.12d)

and the perpendicular components transform as

E
′
⊥ = γ(E⊥ + β × cB⊥) (8.2.13a)

cB
′
⊥ = γ(cB⊥ − β × E⊥) (8.2.13b)

cD
′
⊥ = γ(cD⊥ + β ×H⊥) (8.2.13c)

H
′
⊥ = γ(H⊥ − β × cD⊥) (8.2.13d)

This is in contrast to the transformation of space coordinates, where
the perpendicular components are left unchanged.

Example 8.2.7 Galilean transformation.
For GT, let c→∞ ;

GT




E
′
= E + v ×B

B
′
= B

D
′
= D

H
′
= H − v ×D

(E8.2.7.1a)

(E8.2.7.1b)

(E8.2.7.1c)

(E8.2.7.1d)

The inverses of all of these transformation formulas can be written with β
replaced by −β .

End of Example 8.2.7
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C. Lorentz Invariants

According to both LT (8.2.13a) and GT (E8.2.7.1a), a pure B field
in S produces an electric field E

′ in S′ . Thus a voltage is induced in a
moving conductor when its velocity has a component perpendicular to
the B -field lines. According to LT (8.2.13b), for a pure E field in S ,
a magnetic field is witnessed from a moving frame. Thus a stationary
electron, when viewed from a moving frame, exhibits a magnetic field.
But according to GT (E8.2.7.1b), B

′ is equal to B and a stationary
electron in S exhibits no magnetic field in S′ .

Making use of (8.2.12) and (8.2.13), we find

E
′ · cB

′ = [E|| + γ(E⊥ + β × cB⊥)] · [cB|| + γ(cB⊥ − β × E⊥)]

= E · cB (8.2.14)

|E′|2 − |cB
′|2 = |E|| + γ(E⊥ + β × cB⊥)|2 − |cB|| + γ(cB⊥ − β × E⊥)|2

= |E|2 − |cB|2 (8.2.15)

The two quantities E · cB
′ and |E|2 − |cB|2 in (8.2.14) and (8.2.15)

are invariant under Lorentz transformation and are called Lorentz in-
variants.

Example 8.2.8
We denote the 6× 6 matrix in (8.2.7) and (8.2.8) by L6 :

L6(β) = γ

[
α
−1

β

−β α
−1

]
(E8.2.8.1)

When the velocity is along the z axis, the LT matrix L6 becomes

L6 = γ




1 0 0 0 −β 0
0 1 0 β 0 0
0 0 1/γ 0 0 0
0 β 0 1 0 0
−β 0 0 0 1 0

0 0 0 0 0 1/γ


 . (E8.2.8.2)

The inverse transformation is determined by the inverse of L6(β) . It can be
verified that

L
−1

6 (β) = L6(−β) = γ

[
α
−1 −β

β α
−1

]
(E8.2.8.3)
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By physical reasoning, the inverse of a pure Lorentz transformation is equiv-
alent to changing the direction of velocity.

Let us explore further some properties of the L6 matrix. Since α is
symmetric and β skew-symmetric, we have

L
T

6 = γ

[
(α

−1
)T (−β)T

β
T

(α
−1

)T

]
= L6 (E8.2.8.4)

where the superscript T denotes the transpose of the matrix. Thus L6 is a
symmetric 6× 6 matrix. We can also show that

L
T

6 ·
[

I 0
0 −I

]
· L6 =

[
I 0
0 −I

]
(E8.2.8.5)

L
T

6 ·
[

0 I

I 0

]
· L6 =

[
0 I

I 0

]
(E8.2.8.6)

Numerous other identities can also be derived for the L6 and α matrices.
Equation (E8.2.8.5) can be used to find relations that are invariant under

the Lorentz transformation. Using LT for the entity of intensity (8.2.8), we
have[

E
′
, cB

′
]
·
[

I 0
0 −I

]
·
[

E
′

cB
′

]
=

[
E , cB

]
· L

T

6 ·
[

I 0
0 −I

]
· L6 ·

[
E
cB

]
(E8.2.8.7)

In view of (E8.2.8.4), (E8.2.8.7) gives∣∣∣E′
∣∣∣2 − ∣∣∣cB

′
∣∣∣2 =

∣∣E∣∣2 − ∣∣cB
∣∣2 (E8.2.8.8)

It can be seen that the relative velocity between observers S and S′ does not
appear in (E8.2.8.8). The difference between the magnitude squared of E and
the magnitude squared of cB is therefore a numerical constant independent of
motion. Any quantity that is invariant under LT is called a Lorentz invariant.
Note the difference between Lorentz invariance and Lorentz covariance: the
former refers to a scalar number, the latter to a physical law. Another Lorentz
invariant is obtained by using (8.2.8) and (E8.2.8.6)[

E
′
, cB

′
]
·
[

0 I

I 0

]
·
[

E
′

cB
′

]
=

[
E, cB

]
· L

T

6 ·
[

0 I

I 0

]
· L6 ·

[
E
cB

]
The result is

E
′ ·B′

= E ·B (E8.2.8.9)

According to (E8.2.8.8) and (E8.2.8.9), the electromagnetic fields can be clas-
sified.

End of Example 8.2.8
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D. Electromagnetic Field Classification

According to (E8.2.8.8) and (E8.2.8.9), the electromagnetic fields can
be classified into the following categories:

Free-Space Wave Fields: E ·B = 0 and
∣∣E∣∣ =

∣∣cB
∣∣

The field vectors E and cB are always perpendicular in direc-
tion and equal in magnitude. The magnitude changes from observer
to observer, as is characteristic of a plane wave in free space. Consider
the case E = x̂E and B = ŷB and assume that an observer S′ is
moving along the z axis of S . Then by (8.2.13a) and (8.2.13b) we
immediately obtain

E′ = E

[
1− β

1 + β

]1/2

B′ = B

[
1− β

1 + β

]1/2

v ‖ E

cB
′

S′

S

E

E
′α

cB

Figure 8.2.2 S′ moves in the direction of E.

The amplitude of the wave field decreases as the velocity along
the ẑ direction increases. When it reaches c , namely, β = 1 , the
amplitude is zero. Thus an observer moving in the E × B direction
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at the velocity of light sees no field at all. An observer moving in a
direction opposite to that of E × B at the velocity of light sees the
amplitude approaching infinity. We can consider another simple case
in which S′ moves along the E -field direction; the situation is shown
in Figure 8.2.2. As the velocity becomes larger, the E

′ -field vector
tilts its direction so that (−E

′ × cB
′) tends to be parallel to v . We

find cB = ŷγE and E = x̂E + ẑγβE . The angle of tilt of E
′ is

α = sin−1 β , which increases as β increases.

Electric Fields: E ·B = 0 and
∣∣E∣∣ >

∣∣cB
∣∣

From (8.2.13b) by letting cB−β×E = 0 , we see that there exists
an observer moving in the E × B direction who experiences only an
electric field and no magnetic field. The velocity of this observer is
given by β =

∣∣cB
∣∣ /

∣∣E∣∣ . Apparently |v| is smaller than c or β < 1 .
It is interesting to note that this observer, called S′ , is not the only one
who does not experience a magnetic field. All observers moving along
the E

′ -field vector relative to S′ also do not experience a magnetic
field.

Magnetic Fields: E ·B = 0 and
∣∣E∣∣ <

∣∣cB
∣∣

This is the dual of the case above. Observer S′ moving with a
speed β = |E|/|cB| along the E × B direction relative to S, and
all other observers moving in the B

′ direction with respect to S′

experience only a magnetic field and no electric field.

Wrench Fields: E ·B 
= 0

For E · B 
= 0 , it is clear that there are frames where E and B
fields are parallel or antiparallel. When they are parallel, E · B > 0 ,
we have a positive wrench field. When they are antiparallel, E ·B < 0 ,
we have a negative wrench field. There are six cases in this category:

i) E ·B > 0 ,
∣∣E∣∣ =

∣∣cB
∣∣

ii) E ·B > 0 ,
∣∣E∣∣ <

∣∣cB
∣∣ which is magnetic

iii) E ·B > 0 ,
∣∣E∣∣ >

∣∣cB
∣∣ which is electric

iv) E ·B < 0 ,
∣∣E∣∣ =

∣∣cB
∣∣

v) E ·B < 0 ,
∣∣E∣∣ <

∣∣cB
∣∣ which is magnetic

vi) E ·B < 0 ,
∣∣E∣∣ >

∣∣cB
∣∣ which is electric
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E. Transformation of Frequency and Wave Vector

Consider a receiver and a transmitter in relative motion, and assume
that the receiver receives a plane wave from the transmitter. According
to the transmitter, the plane wave is described by[

E(r, t)
cB(r, t)

]
=

[
E0

cB0

]
cos(k · r − ωt) (8.2.16)

According to the receiver S′ , the plane wave is described by[
E

′(r′, t
′)

cB
′(r′, t

′)

]
=

[
E

′
0

cB
′
0

]
cos(k′ · r′ − ωt′) (8.2.17)

Let the receiver S′ move with uniform velocity v with respect to the
transmitter S , and let primes denote quantities associated with S′ .
According to the Lorentz transformation formulas, we have[

E0

cB0

]
=

[
α
−1 −β

β α
−1

]
·
[

E
′
0

cB
′
0

]
(8.2.18)

and

r = α · r′ + γβct′ (8.2.19a)
ct = γ(ct′ + β · r′) (8.2.19b)

The phase factor in (8.2.16) becomes

k · r − ω

c
ct =

(
k · α− γβ

ω

c

)
· r′ − γ

[ω

c
− β · k

]
ct′

Comparing with (8.2.17), this is equal to

k
′ = α · k − γβ

ω

c
(8.2.20a)

ω′

c
= γ

[ω

c
− β · k

]
(8.2.20b)

The transformation formula is identical to that for space and time co-
ordinates with r replaced by k and ct replaced by ω/c . With trans-
formation formula (8.2.20), the phase of the plane wave in both frames
is an invariant quantity. This invariance of phase, which enables us to
deduce transformation formula (8.2.20), is referred to as the principle
of phase invariance.
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Topic 8.2A Aberration Effect

The aberration effect is a consequence of (8.2.20). The perpendicular
component of k

′ is equal to that of k , while the parallel component
is changed by the motion. Consider an observer on Earth looking at a
star at the zenith. Since the Earth is moving with respect to the star, a
k
′ component antiparallel to β is generated. Thus the observer must

tilt his telescope in the direction of the Earth’s motion, just as, on
a windless rainy day, a bicycle rider always tilts his umbrella in the
forward direction. It is straightforward to determine from (8.2.20a) a
relation for the angles between β and k

′ and between β and k . Let
θ denote the angle between k and β , and θ′ the angle between k

′

and β . Recall that α is defined by α = I + (γ − 1)(β β/β2) . Cross
and dot multiplying (8.2.20a) by β , we obtain

k′ sin θ′ = k sin θ

k′ cos θ′ = γk cos θ − γβ
ω

c

In an isotropic medium, k = nω/c , elimination of k′ and k from
these two equations gives

tan θ′ =
tan θ

γ[1− (β sec θ)/n]
(8.2A.1)

This is the relativistic formula for aberration.

Topic 8.2B Doppler Effect

The Doppler effect is a consequence of (8.2.20b). Using the dispersion
relation for isotropic media and letting the angle between k and β be
θ , we find from (8.2.20b) that

ω′ = γω(1− nβ cos θ) (8.2B.1)

When the receiver is receiving from the transmitter, β and k are in
the same direction. The frequency is shifted downward or red-shifted.
When the receiver is approaching the transmitter, the frequency is
shifted upward or blue-shifted. When the receiver is moving perpen-
dicularly to k , we have the transverse Doppler shift ω′ = γω , which
is a purely relativistic effect.
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Problems

P8.2.1
In the early stages of special relativity, the sudden disappearance of an

absolute time scalar led to the well-known “twin paradox.” The paradox as
stated was that one of a pair of twins left home, traveled at a uniform (high)
speed in some direction for a certain period of time, and then returned home
to find himself younger than his brother. By the symmetry argument that
motion is relative, it was argued that neither twin should have grown older
than the other, and the validity of special relativity was challenged. In the
following discussion we show that both of the twins agree that one is older
than the other and the problem is not symmetric.

Let both A and B be at the origin in frame S ; B starts to move at
t = 0 with speed v in the positive ẑ direction of S. As A reads time t,
B moves back with speed v. Consider the following events:
Event 1: Twin B is at z = vt when A reads time t. In frame S, this event
is described by (ct, vt) where ct is the time coordinate of the event with the
dimension length, and vt is the space coordinate of the event.
Event 2: As A reads time 2t, both A and B are at z = 0. In frame S,
this event is described by (2ct, 0).

Consider two other frames of reference, S′ and S′′. Frame S′ moves
with velocity v in the positive direction of the z axis, and S′′ moves with
velocity v in the negative direction of the z axis. All three frames have their
origins coincided at t = 0. From Lorentz transformation

ct′ = γ(ct− βz) (P8.2.1.1a)
z′ = γ(z − βct) (P8.2.1.1b)

ct′′ = γ(ct + βz) (P8.2.1.1c)
z′′ = γ(z + βct) (P8.2.1.1d)

The coordinates for event 1 in S is ct(1, β) , and, for event 2 is ct(2, 0) .
Show that the space-time coordinates for the two events in frames S′ and
S′′ are as listed in Table P8.2.1.1.

Event Observer
S S′ S′′

1 ct(1, β) ct(1/γ, 0) ct[γ(1 + β2), 2γβ]

2 ct(2, 0) ct(2γ,−2γβ) ct(2γ, 2γβ)

Table P8.2.1.1 Space-time coordinates of the two events in the three
frames of reference. The first part in parentheses denotes time coordi-
nates multiplied by c, and the second part denotes space coordinates.
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(a) During the initial period before turning around, B is in S′, and the
elapsed time according to B is t/γ. Show that, according to B, the
elapsed time during the final period after turning around is also t/γ by
taking the coordinate time difference between events 2 and 1. Thus twin
B agrees with twin A that his time space is 2t/γ, while that of A is
2t.

(b) The problem is inherently asymmetrical; one twin has to turn, and it is
this twin that experiences less proper time, 2t/γ . If B does not turn,
then, as A reads proper time 2t, the coordinate time reading for B
at two different locations, z = 0 and z = 2vt , is 2γt because of the
dilation of time. After turning around and meeting A again at z = 0 ,
the proper time reading of B has been shown to be 2t/γ . The effect of
turning around causes a time difference of 2t(γ − 1/γ) = 2γβ2t . Show
that this “lost time” is equal to the time coordinate difference between
S′ and S′′ for Event 1 in Table P8.2.1.1.

(c) All observers moving uniformly relative to A, including A and those
in frames S′ and S′′, must conclude that the proper elapsed time of
B is less than that of A by a factor of 1/γ . By time dilation, twin
A agrees that the total proper time interval for twin B is 2t/γ, while
his own coordinate time interval is 2t. Consider S′ , whose space-time
coordinate transformation is obtained from (P8.2.1.1),

ct′′ = γ2((1 + β2)ct′ + 2βz′)
z′′ = γ2((1 + β2)z′ + 2βct′)

During the initial period before turning around, B is in S′, and the
elapsed time according to B is t/γ. In the final period, since B is in
S′′ , ∆ctB according to S′ is

∆ctB = γ2(c∆t′ +
2β

1 + β2
∆z′)

From Table P8.2.1.1,

∆t′ = 2γt− t/γ

∆z′ = −2γβct

Therefore,

∆ctB = γ2

(
2cγt− ct

γ
+

2β

1 + β2
(−2γβct)

)
=

ct

γ

Thus the total time elapsed for B, according to S′ , is 2t/γ . Following
the same reasoning process, show that the total time elapsed for B,
according to S′′, is also 2t/γ .

(d) It is interesting to imagine how B experiences the period of losing time
during his turning around. Consider a third event, occurring when A
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reads time t at z = 0 in S . Find the space-time coordinates for Event
3 in S′ and S′′. Show that, according to S, Events 1 and 3 are simul-
taneous; according to S′, Event 1 is earlier than Event 3; and according
to S′′, Event 3 is earlier than Event 1. At the turning time, twin B
changes his frame from S′ to S′′. Show that B loses track of anything
that happens at z = 0 during a time period 2γβ2t.

(e) Suppose that twin B started his journey right after his birth and traveled
with a speed v = 0.8c . If he comes back at 30 years of age, how old is
his twin A ?

P8.2.2

Assume that S′ moves with velocity v1 relative to S and S′′ moves
with velocity v2 relative to S , both along the z axis of S . The LT between
S′′ and S , and between S and S′ ,

z′′ = γ2(z − β2ct)
ct′′ = γ2(ct− β2z)

z = z′ + γ1β1ct′

ct = γ1(ct′ + β1z′)

Show that in terms of S′ coordinate quantities,

ct′′ = γ2γ1(1− β2β1)
{

ct′ − z′
[

(β2 − β1)
1− β1β2

]}
.

Therefore, the velocity of S′′ w.r.t. S′ is

β21 =
β2 − β1

1− β1β2

and
γ21 = γ1γ2(1− β1β2)

This is an additive law for two velocities along the same direction. Generalize
this procedure and deduce an additive law for two vector velocities in different
directions.

P8.2.3

The star Alpha Centauri is 4.3 light-years from Earth. Observer B leaves
Earth in a rocket ship that travels toward this star at acceleration g . Halfway
(2.15 light-years from Earth) from α Cen, B turns off the forward accelera-
tion and accelerates backward toward Earth at g , so that the rocket arrives
at α Cen with zero speed and turns back. On the return trip, at the halfway
point, B again changes the direction of acceleration. Observer B arrives at
Earth with zero speed.

Suppose there is an initial frame S′ which moves with uniform speed v
with respect to Earth, and suppose at time t = t0 , corresponding to t′ = t′0 ,
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this inertial frame has its speed coinciding with that of B. Thus, at t′ = t′0 ,
U ′
B = 0 and dU ′

B/dt′ = g , where U ′
B is the velocity of B with rest to S′ .

By Lorentz transformation, we have

dt

dt′
= γ

(
1 +

v

c2

dz′

dt′

)
= γ

(
1 +

vU ′
B

c2

)

By velocity addition, we have

UB =
U ′
B + v

1 +
U ′
Bv

c2

where UB is B ’s velocity w.r.t. Earth. In the limit t′ → t′0

dU ′
B

dt′
→ g; U ′

B → 0; v → UB ; γ → 1/
√

1− U2
B/c2,

Show that

dUB
dt

= g

(
1− U2

B

c2

)3/2

The above equation is true in general because S′ was chosen arbitrarily. (For
deceleration, we replace g by −g .)

Integrate the above equation and show that for acceleration,

UB =
c(gt + k1)√

c2 + (gt + k1)2

and, for deceleration

UB =
c(−gt + k2)√

c2 + (−gt + k2)2

where k1 and k2 are arbitrary constants. Note that UB never exceeds c .
As t→∞, UB → c . To determine k1 and k2 , we use our initial conditions.
Initially, at t = 0, UB = 0 , therefore k1 = 0 . Thus,

dz

dt
= UB =

gct√
c2 + (gt)2

Since at t = 0, z = 0 , show that

z =
c2

g

{√
1 +

(
gt

c

)2

− 1

}
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The distance from Alpha Centauri to earth is 0.452c2 meters. Determine the
total time elapsed for the entire journey according to twin A on Earth.

For the traveling twin B , use proper time c2dτ2 = c2dt2 − dz2 to show
that

τ =
∫ 0.31c

0

dt√
1 +

(
gt

c

)2
+

∫ 0.62c

0.31c

dt√
1 +

(
k2 − gt

c

)2

Calculate the total time elapsed for the entire journey according to twin
B . The star Vega is 26 light-years from Earth, calculate the time elapsed
according to twins A and B.

P8.2.4
Show that a rigid rod moving along its longitudinal direction with ve-

locity v appears to be shortened. This phenomenon is known as the Lorentz
contraction. Let the rod be at rest in S′ . Its two end points are z′ = 0
and z′ = l′ . In the laboratory frame S , the rod is moving along z with
velocity v . Its length is measured by recording the positions of its end points
simultaneously, t2 = t1 = 0 .

Show that the time-space coordinates of the two end points at the mea-
surement time in frame S are

Event Observer
S S′

1 [0, 0] [0, 0]

2 [0, l′/γ] [−βl′, l′)]

Table P8.2.4.1 Space-time coordinates of two end points.

What is the rod length l as measured in S . Note that from the point of
view of observer S′ , who moves with the rod, the laboratory observer is not
measuring the two end points simultaneously. For the rod moving from left
to right, while S measures the two ends at the same time t = 0 , show
that, according to S′ , S measures the right end first at ct′ = −βl′ before
measuring the left end at ct′ = 0 . Thus S′ expects that S will claim a
shorter length.

P8.2.5
Consider the transformation from observer S′ to observer S of the

length of a rod that may or may not be rigid. From the point of view of S ,
the length of the rod at time t0 is defined as the difference between space
positions of the two end points as measured simultaneously at t0 in his frame
of reference

l(t0) = Q(t0)− P (t0)
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where Q(t0) and P (t0) denote position readings of the two end points. But
a simultaneous measurement at two space points in S is not simultaneous in
S′ . Consider the general case when the length of the rod is time-variant, and
let the measurement performed be represented by two events. Their space-
time coordinates are listed in Table P8.2.5.1.

By using the space-time Lorentz transformation formulas,

ct′ = γ(ct0 − β ·Q(t0))

ct′0 = γ(ct0 − β · P (t0))

Q
′
(t′) = α ·Q(t0)− γβct0

P
′
(t′0) = α · P (t0)− γβct0

show that

X = Q
′
(t′)− P

′
(t′0)

t′ − t′0 = −β ·X
l = Q(t0)− P (t0) = α

−1 ·X

Note that, when the rod is not rigid and stationary in S′, X is not the
result of a length measurement performed in S′ because the two end points
are not measured simultaneously and hence do not conform to the definition
of length.

Event Observer
S S′

1 [t0, P (t0)] [t′0, P
′
(t′0)]

2 [t0, Q(t0)] [t′, Q
′
(t′)]

Table P8.2.5.1 Space-time coordinates of two end points.

(a) Show that, when the rod is rigid and stationary in S′, l
′

= Q
′
(t′) −

P
′
(t′0) = X the rod as viewed from S has length

l = α
−1 · l′ =

1
γ

l|| + l
′
⊥

where subscripts || and ⊥ denote components of a vector parallel and
perpendicular, respectively, to the velocity. Thus the parallel component
is unchanged. The rod appears to be shortened and rotated by an angle.

(b) When the rod is rigid and is moving uniformly with velocity v′ in S′,
the length of the rod in S′ at t′0 is

l
′
(t′0) = Q

′
(t′0)− P (t′0)
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We can write X in terms of l′ and v′ :

X = v′(t′ − t′0) + l
′

Show that, in terms of l
′
,

l = α
−1 ·

[
l
′ − β

′ β · l′

1 + β · β

]

where β
′
= v′/c . Thus, together with the Lorentz contraction, there is

another change of length in the rigid rod because of its motion in S′.

(c) The rod is short and is time-variant. Since it is short, we can expand
t′ − t0 to

t′ − t′0 =
n∑
l=1

Alδ
l

where δ = β · l′ denotes a small quantity. Expand X to the n th order
in δ , and show that

X = l
′
+

∞∑
k=1

Q
′(k)

(t′0)
k!

(t′ − t′0)
k = l

′
+

N∑
k=1

Q
′(k)

k!

[
n∑
l=1

Alδ
l

]k

where Q
′(k)

(t0) is the k th derivative of Q
′
(t′) relative to t′ at t′ = t′0 .

Comparing coefficients for δk, k = 1, 2, . . . , n , determine the coeffi-
cients A1 , A2 , and A3 .
Show that, to the second order in δ, l reads as

l = α−1 ·
(

I + A1D
′−

)[
I +

1
2

A2
1δ

(
1−A2

1δβ ·Q′(2)
)

Q
′(2)

β
]
· l−1

and, to the third order in δ ,

l = α−1 ·
(

I + A1D
′−

β
)

·
[
I +

1
2

A2
1δ

(
1−A2

1δβ ·Q′(2)
+

1
3

A3
1δ2β ·Q′

)
Q

′(2)
β
]
· l−1

P8.2.6
Show that a moving current loop generates an electric dipole moment.

For simplicity, consider a square loop with corners labeled as A, B, C, and
D. Current J ′

0 flows from A to B to C to D. The square moves with velocity
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parallel to the current direction along side AB in the ẑ direction. In which
direction is the electric dipole moment?

P8.2.7

In a certain reference frame, a static uniform electric field E0 is parallel
to the z axis and a static uniform magnetic field cB0 = 2E0 forms a 30◦
angle with respect to ẑ . Determine the relative velocity of a reference frame
in which the electric and magnetic fields are parallel.

P8.2.8

An observer S observes a uniform electric field in the x̂ direction, E =
x̂E0 , and a uniform magnetic field in the ŷ direction, B = ŷB0 . Let E0 >
cB0 . Find an observer S′ moving relative to S with velocity v in the ẑ
direction, so that he observes only an electric field. Determine the electric
field strength and the velocity v. Can you find an observer moving with a
velocity less than c , who observes only a magnetic field?

P8.2.9

(a) Show that the electric and magnetic fields of a charge q1 moving along
ẑ direction with the velocity v1 = ẑv1 are

E =
q1

4πεo
· (1− β2

1)r[
(1− β2

1)r2 + (β1 · r)2
]3/2

B =
1
c

β1 × E =
q1

4πcεo
· (1− β2

1)β1 × r[
(1− β2

1)r2 + (β1 · r)2
]3/2

(b) Determine the force acting on a charge q2 moving with velocity v2 .
(c) When charge q2 is moving with v2 = v1 = v and situated at x = z = 0

and y = d , the force is

F 12 =
(1− β2)q2

4πεod2
ŷ

P8.2.10

Consider two negative line charges moving with same velocity v = ẑv .
Let line b situated at x = y = 0 and line a at x = 0 and y = −d .

(a) Regard the moving charge as the combination of a static charge and a
current source, then calculate F e produced by the static charge and F c

produced by the current source. The sum of F e and F c is the total
force the line a acts on the segment of line b .

(b) Find the force in frame S by using relativistic transformation of force
γF⊥ = F ′

⊥ . Here we define the frame in the problem to be S and the
frame moving along x̂ in which the line charge is static to be S′ . (Hint:
Total charge is conserved and the relativistic transformation of length is
l‖ = l′‖/γ ).
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(c) Find the force by using relativistic transformation of electromagnetic
fields. Calculate E

′
and H

′
in frame S′ , then get E and H in frame

S . Finally, Lorentz force law gives the total force.

P8.2.11
This problem shows that two parallel current-carrying wires attract each

other. Consider two negative line charges moving with same velocity v = ẑv .
Let line b situated at x = y = 0 and line a at x = 0 and y = −d . We now
calculate the force wire a acts on a segment of wire b . The wire is modeled
as a combination of a static positive line charge and a moving negative line
charge with velocity v = ẑv , the charge density of both lines being λ . The
segment is modeled as a combination of a static positive charge (+ q ) and a
moving negative charge (- q ) with the velocity v , where q = λl . The force
on the segment is F seg = F (+λ)(+q) + F (−λ)(+q) + F (+λ)(−q) + F (−λ)(−q) .
Calculate F seg in the following way:

Discretize the infinite line charge into point charges, calculate the force
each point charge acts on the segment of the other wire, and integrate each
force to obtain the total force the line charge acts on the segment. Write
the expression for F (+λ)(+q) , F (−λ)(+q) , F (+λ)(−q) and F (−λ)(−q) , and
show the sum of them is equal to J × (µoH) , where J = −(−qv)ẑ and
H =

(
− λv

2πdo

)
x̂ .

P8.2.12
Two parallel wires with current in the same direction will attract each

other according to Lorentz force law. Think in the following way: if the current
is regarded as the flow of negative charges, the two negative charges moving
with the same velocity, thus being static to each other, will repel each other.
How to explain the above discrepancy?

I I

(−q)v(−q)v

F F

F F

Wire a Wrie b

Figure P8.2.12.1 Observer S′ moves with v relative to observer S.
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8.3 Waves in Moving Media

A. Transformation of Constitutive Relations

We have seen that, in the transformation of electromagnetic field vec-
tors, E and cB transform together, forming the entity of quantity,
which is a four-dimensional second-rank tensor in the Minkowski space.
The electromagnetic field vectors H and cD transform together and
form the entity of excitation, which is also a four-dimensional second-
rank tensor. Thus we write the constitutive relations in the E B rep-
resentation: [

cD
H

]
= C ·

[
E
cB

]
(8.3.1)

where

C =

[
P L

M Q

]
(8.3.2)

is the constitutive matrix the elements of which are constitutive pa-
rameters. This representation provides a Lorentz covariant description
of the constitutive relations.

The Lorentz transformation formulas for the electromagnetic field
vectors can now be used to derive transformation laws for the consti-
tutive relations. A medium at rest in one frame becomes a medium in
motion when viewed from another frame. The derivation of equivalent
constitutive relations for a moving medium in the laboratory frame is
useful conceptually and practically. It is indeed true that a problem
involving one moving medium can always be solved in its rest frame
and the results can be transformed back to the laboratory frame. In
practice, the Lorentz transformation method cannot be applied when
more than two relatively moving media are involved because, in the
rest frame of one medium, all others are in motion. Thus constitutive
relations for moving media have to be determined.

Moving Isotropic Media

Consider two reference frames in relative uniform motion. In the
reference frame S′ there is an isotropic medium with permittivity ε′

and permeability µ′ . The constitutive matrix takes the form

C
′
=


 cε′ I 0

0
1

cµ′ I


 (8.3.3)
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In the laboratory frame S we obtain the constitutive matrix for the
moving isotropic medium

C = L
−1

6 · C
′
· L6

=
γ2

cµ′

[
(n2 − β2)I − (n2 − 1)β β (n2 − 1)β

(n2 − 1)β (1− n2β2)I + (n2 − 1)β β

]

(8.3.4)
where n2 = c2µ′ε′ is the squared refractive index of the moving medi-
um in its rest frame of reference. Clearly (8.3.4) reduces to (8.3.3) when
β = 0 . In vacuum when n = 1, C reduces to (8.3.3) with µ = µo . For
an isotropic medium in motion, it becomes bianisotropic.

When the velocity is along the ẑ direction, (8.3.1) becomes

C =
γ2

cµ′




n2−β2 0 0 0 −(n2−1)β 0
0 n2−β2 0 (n2−1)β 0 0
0 0 n2(1−β2) 0 0 0
0 −(n2−1)β 0 1−n2β2 0 0

(n2−1)β 0 0 0 1−n2β2 0
0 0 0 0 0 1/γ2




(8.3.5)
Note that, although we assume µ′ and ε′ to be scalar numbers, the
derivation remains valid even if they are not scalar. We have to remem-
ber that µ′ and ε′ are measured in the rest frame of the medium.
If they are dependent on parameters pertaining to their rest frame,
these parameters must be properly transformed. For instance, when
the medium in its rest frame is a plasma we need to transform the
plasma frequency to the laboratory frame.

The constitutive relations for a moving isotropic medium can be
written in the form of B and D expressed in terms of E and H .
The result is

B = µ′A ·H − Ω× E (8.3.6a)

D = ε′A · E + Ω×H (8.3.6b)

where

A =
1− β2

1− n2β2

[
I − n2 − 1

1− β2
β β

]
(8.3.7)

Ω =
n2 − 1

1− n2β2
β/c (8.3.8)

When v is in the ẑ direction, A becomes a diagonal matrix.
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Moving Bianisotropic Media

We now consider the general case in which a bianisotropic medium
with constitutive relations (8.3.1) is in motion. We assume that the
velocity is in the ẑ direction. By application of the Lorentz transfor-
mation laws for electromagnetic field vectors, the constitutive matrix
is determined to be

P =


 γ2

[
pxx − β(lxy −myx)− β2qyy

]
γ2

[
pyx + β(lyy + mxx) + β2qxy

]
γ(pzx − βlzy)

γ2
[
pxy − β(lxx + myy) + β2qyx

]
γ(pxz + βmyz)

γ2
[
pyy + β(lyx −myx)− β2qxx

]
γ(pyz − βmxz)

γ(pzy + βlzx) pzz


(8.3.9a)

Q =


 γ2

[
qxx + β(mxy − lyx)− β2pyy

]
γ2

[
qyx + β(myy + lxx) + β2pxy

]
γ(qzx + βmzy)

γ2
[
qxy − β(mxx + lyy) + β2pyx

]
γ(qxz − βlyz)

γ2
[
qyy − β(myx − lxy)− β2pxx

]
γ(qyz + βlxz)

γ(qzy − βmzx) qzz


 (8.3.9b)

L =


 γ2

[
lxx + β(pxy + qyx) + β2myy

]
γ2

[
lyx + β(pyy − qxx)− β2mxy

]
γ(lzx + βpzy)

γ2
[
lxy − β(pxx − qyy)− β2myx

]
γ(lxz + βqyz)

γ2
[
lyy − β(pyx + qyx) + β2qxx

]
γ(lyz − βqxz)

γ(lzy − βpzx) lzz


 (8.3.9c)

M =


 γ2

[
mxx − β(qxy + pyx) + β2lyy

]
γ2

[
myx − β(qyy − pxx)− β2lxy

]
γ(mzx − βqzy)

γ2
[
mxy + β(qxx − pyy)− β2lyx

]
γ(mxz − βpyz)

γ2
[
myy + β(qyx + pxy) + β2lxx

]
γ(myz + βpxz)

γ(mzy + βqzx) mzz


(8.3.9d)

It is noted that if a bianisotropic medium satisfies the symmetry con-
ditions in its rest frame, then the moving bianisotropic medium also
satisfies the symmetry conditions. We conclude that for moving non-
absorbing bianisotropic media, the 6 × 6 constitutive matrix C can
contain only up to 21 independent complex elements.



906 8. Relativity

Moving Uniaxial Media
Constitutive relations for a moving uniaxial medium are also de-

rived from the general formulas (8.3.9). We assume that in the rest
frame of the moving medium the constitutive relations are as follows:

ε =


 ε′ 0 0

0 ε′ 0
0 0 ε′z


 (8.3.10a)

µ =


 µ′ 0 0

0 µ′ 0
0 0 µ′

z


 (8.3.10b)

where the z axis coincides with the optic axis. Note that isotropic
media and electric or magnetic uniaxial media are all special cases
of (8.3.10). The primes indicate that these quantities are associated
with the rest frame of the medium. In the laboratory frame, where the
media appear to be moving uniformly with the velocity v along the ẑ
direction, the constitutive matrix of the medium is determined to be

C =




p 0 0 0 −l 0
0 p 0 l 0 0
0 0 pz 0 0 0
0 −l 0 q 0 0
l 0 0 0 q 0
0 0 0 0 0 qz


 (8.3.11)

The constitutive matrix can be transformed into the E H and the
D B representations. We obtain

CEH =




ε 0 0 0 ξ 0
0 ε 0 −ξ 0 0
0 0 εz 0 0 0
0 −ξ 0 µ 0 0
ξ 0 0 0 µ 0
0 0 0 0 0 µz


 (8.3.12)

CDB =




κ 0 0 0 χ 0
0 κ 0 −χ 0 0
0 0 κz 0 0 0
0 −χ 0 ν 0 0
χ 0 0 0 ν 0
0 0 0 0 0 νz


 (8.3.13)
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E B Representation

p =
n2 − β2

cµ′(1− β2)
, pz = cε′z,

q =
1− n2β2

cµ′(1− β2)
, qz =

1
cµ′

z

,

l =
β(n2 − 1)

cµ′(1− β2)

E H Representation

ε =
(qp + l2)

q
=

ε′(1− β2)
(1− n2β2)

, εz = ε′z

µ =
1
cq

=
µ′(1− β2)
(1− n2β2)

, µz = µ′
z

ξ =
−l

cq
=
−β(n2 − 1)
c(1− n2β2)

D B Representation

κ =
c

p
=

c2µ′(1− β2)
(n2 − β2)

, κz =
1
ε′z

ν =
cµ′(qp + l2)

p
=

c2ε′(1− β2)
(n2 − β2)

, νz =
1
µ′
z

χ =
cl

p
=

cβ(n2 − 1)
(n2 − β2)

Table 8.3.1 Constitutive parameters for moving media.

The element values of the constitutive matrices in different represen-
tations are summarized in Table 8.3.1. The primed quantities are mea-
sured in the rest frame of the media. From Table 8.3.1 we see that
the constitutive matrices will become diagonal if µ′ε′ = 1/c2 (n = 1) ,
which can be achieved for an anisotropic plasma subject to a strong
magnetic field in the ẑ direction, and for a Veselago [1968] medium
with ε′ = −εo and µ′ = −µo . These are examples of moving me-
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dia that are not bianisotropic. Constitutive relations of other moving
media take the forms (8.3.11)–(8.3.13).

Moving Gyrotropic Media
Formulas (8.3.9) enable an observer to characterize a bianisotropic

medium moving along the ẑ direction. We observe that when a me-
dium is in motion, it becomes bianisotropic. For a moving electrically
gyrotropic medium with scalar permeability µ and permittivity tensor

ε =


 ε iεg 0
−iεg ε 0

0 0 εz


 (8.3.14)

we obtain

C =
γ2

cµ




n2−β2 in2
g 0 iβn2

g −(n2−1)β 0
−in2

g n2−β2 0 (n2−1)β iβn2
g 0

0 0 n2
z/γ

2 0 0 0
iβn2

g −(n2−1)β 0 1−n2β2 −iβn2
g 0

(n2−1)β iβn2
g 0 iβn2

g 1−n2β2 0
0 0 0 0 0 1/γ2




(8.3.15)
where n2

g = c2µεg and n2
z = c2µεz . The parameters that govern the

gyrotropic nature of the medium must be carefully transformed. For
example [Chawla and Unz, 1971], the plasma frequency is a Lorentz-
invariant ω′

p = ωp , while the cyclotron frequency transforms as ω′
c =

γωc . Remember that the static magnetic field is in the direction of
motion. If the magnetic field were perpendicular to the direction of
motion, we would have ω′

c = γ2ωc instead. The applied frequency ω
must also be properly transformed.

Accelerated Media
The constitutive relations of an accelerated medium are also bian-

isotropic in form. They are space dependent and can be viewed as inho-
mogeneous. General formulations in arbitrary accelerating frames have
been considered by some authors, and explicit forms for the constitu-
tive relations have been proposed for rotating and linearly accelerated
media. Not only relative motion but also absolute motion of both ob-
server and medium plays a crucial role in determining the constitutive
relations.
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B. Waves in Moving Uniaxial Media

We make use of the kDB system to study propagation of plane waves
in unbounded moving uniaxial media. The constitutive relations in the
D B representation take the form

E = κ ·D + χ ·B (8.3.16a)
H = γ ·D + ν ·B (8.3.16b)

where

κ =


 κ 0 0

0 κ 0
0 0 κz


 (8.3.17a)

ν =


 ν 0 0

0 ν 0
0 0 νz


 (8.3.17b)

χ = γ
+ =


 0 χ 0
−χ 0 0
0 0 0


 (8.3.17c)

With constitutive parameters κ, κz, ν, νz and χ listed in Table 8.3.1.

In the kDB system, the constitutive matrices become

κk =


 κ 0 0

0 κ cos2 θ + κz sin2 θ (κ− κz) sin θ cos θ
0 (κ− κz) sin θ cos θ κ sin2 θ + κz cos2 θ


 (8.3.18a)

νk =


 ν 0 0

0 ν cos2 θ + νz sin2 θ (ν − νz) sin θ cos θ
0 (ν − νz) sin θ cos θ ν sin2 θ + νz cos2 θ


 (8.3.18b)

χk = γ
+
k =


 0 χ cos θ χ sin θ
−χ cos θ 0 0
−χ sin θ 0 0


 (8.3.18c)

Substituting into Maxwell Equations the kDB system

 κ11 κ12

κ21 κ22

 D1

D2

 = −
 χ11 χ12 − u

χ21 + u χ22

 B1

B2

 (8.3.19a)
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modes
wave Type I wave Type II wave
character

Dk

(
1

0

0

) (
0

1

0

)

Bk

(
0

κ/(u−χ cos θ)

0

) (
−(u−χ cos θ)/ν

0

0

)

Ek

(
κu/(ν−χ cos θ)

0

0

) (
0

(u−χ cos θ)/ν

[χν (u−χ cos θ)+(κz−κ) cos θ] sin θ

)

Hk

(
0

u

−χ+
κ(νz−ν) cos θ
u−χ cos θ sin θ

) (
−u
0

0

)

u χ cos θ±
√
κ(ν cos2 θ+νz sin2 θ) χ cos θ±

√
ν(κ cos2 θ+κz sin2 θ)

Dispersion

Relation
k2x+k2y+ ν

νz
k2z− 1

κνz
(ω−χkz)2=0 k2x+k2y+ κ

κz
k2z− 1

νκz
(ω−χkz)2=0

Table 8.3.2 Characteristic waves in moving uniaxial medium.

 ν11 ν12

ν21 ν22

  B1

B2

 = −
 γ11 γ12 + u

γ21 − u γ22

 D1

D2

 (8.3.19b)

and eliminating B , we obtain the following equation for D :[
1− (u− χ cos θ)2/[κ(ν cos2 θ + νz sin2 θ)]

0

0
1− (u− χ cos θ)2/[ν(κ cos2 θ + κz sin2 θ)]

] [
D1

D2

]
= 0 (8.3.20)

The phase velocities of the two characteristic waves are easily obtained.
Other field components are found from (8.3.18b) and the constitutive
relations. The results are listed in Table 8.3.2. Writing explicitly in
terms of components of the k vector and noting that k2

z = k2 cos2 θ
and k2

x+k2
y = k2 sin2 θ , we find the dispersion relation for Type I wave

k2
x + k2

y +
νk2

z

νz
− (ω − χkz)2

κνz
= 0 (8.3.21)
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which propagates with velocity

u = χ cos θ ±
√

κ(ν cos2 θ + νz sin2 θ) (8.3.22)

The dispersion relation for Type II wave is

k2
x + k2

y +
κk2

z

κz
− (ω − χkz)2

νκz
= 0 (8.3.23)

which propagates with velocity

u = χ cos θ ±
√

ν(κ cos2 θ + κz sin2 θ) (8.3.24)

The plus sign in (8.3.22) and (8.3.24) corresponds to waves propagating
in the direction of medium motion, and the negative sign to waves
propagating opposite to the direction of medium motion.

It is interesting to note the ± signs in (8.3.22) and (8.3.24). The
plus sign corresponds to waves propagating in the direction of medium
motion; the negative sign, to waves propagating opposite to the direc-
tion of medium motion. For the same type of wave, the magnitude of
the velocity in opposite directions are now different, as opposed to all
previous cases, in which they are the same. In Figure 8.3.1, we plot the
k surfaces for a moving isotropic medium with n = 2 in its rest frame
and for a moving uniaxial medium with n = 2 and a = b = 2 . For
1− n2β2 > 0 , the surface is an ellipse rotated about the kz axis; this
is the non-relativistic case. For 1− n2β2 < 0 , the k surface becomes
a hyperbola rotated about the kz axis; this is the relativistic case. We
call this high-velocity region the Čerenkov zone. The velocity that sep-
arates the non-relativistic zone and the Čerenkov zone is β = ±1/n ,
which is equal to the velocity of light in the rest frame of the moving
medium.

To facilitate further discussion, we make use of Table 8.3.2 and
write (8.3.21) and (8.3.23) explicitly in terms of β dependence. After
some manipulations, we obtain

k2
x + k2

y + b
1− n2β2

1− β2

[
kz −

n + β

nβ + 1
ω

c

]
·
[
kz −

n− β

nβ − 1
ω

c

]
= 0 (8.3.25)

k2
x + k2

y + a
1− n2β2

1− β2

[
kz −

n + β

nβ + 1
ω

c

]
·
[
kz −

n− β

nβ − 1
ω

c

]
= 0 (8.3.26)
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kz kz

β=0 β=0.75 β=0.75 β=0

−2.0 −2.0

2.0 2.0

−2.0 2.0 −2.0 2.0

β=0.1 β=0.1

a. b.

Figure 8.3.1 k surfaces for moving medium.

where b = µ′
z/µ′ and a = ε′z/ε′ . As 1 − n2β2 > 0 or β < 1/n , the

dispersion relations are ellipsoids and they become hyperboloids when
β > 1/n .

We examine two cases. First, consider a wave propagating in the x̂
direction perpendicular to the medium velocity, kz = 0 . The k vectors
become

k = x̂kx = ±x̂
ω

c

[
b
n2 − β2

1− β2

]1/2

(8.3.27)

k = x̂kx = ±x̂
ω

c

[
a

n2 − β2

1− β2

]1/2

(8.3.28)

The ± sign distinguishes waves propagating in the positive and the
negative x̂ directions. As β increase from 0 to 1, k increases from
anω/c or from bnω/c to infinity. Thus the velocity along the ẑ direc-
tion is zero when the medium velocity approaches the velocity of light
in vacuum.

Second, consider a wave propagating in the direction of medium
motion, kx = ky = 0 . The two types of waves degenerate into one, and
the k vectors become

k = ẑ
n + β

nβ + 1
ω

c
(8.3.29)

k = ẑ
n− β

nβ − 1
ω

c
(8.3.30)
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Equation (8.3.29) corresponds to waves propagating in the positive ẑ
direction, and (8.3.30) to waves propagating in the negative ẑ direc-
tion. For the wave propagating in the positive ẑ direction, we observe
that, as β increases from 0 to 1, k decreases from nω/c to ω/c .
The corresponding velocity of the wave increases from c/n to c . For
the wave propagating in the negative ẑ direction, we observe that, as
β increases from 0 to 1/n, k changes from −nω/c to −∞ , and the
velocity changes from −c/n to 0 . As β further increases from 1/n to
1, k reverses sign and decreases from infinity to ω/c . In the Čerenkov
zone the negatively propagating wave now propagates in the positive ẑ
direction. As β approaches 1 , the velocity approaches c . In all cases,
the wave appears to be dragged by the motion of the medium. This
phenomenon is referred to as the Fizeau-Fresnel drag.

C. Moving Boundary Conditions

Consider an interface separating regions 1 and 2 [Fig. 8.3.2]. As-
sume a small pillbox volume across the interface. Integrating Maxwell
equations over the volume, we obtain

©
∫∫

dS ŝ× E = −
∫∫∫

dV
∂

∂t
B (8.3.31)

©
∫∫

dS ŝ×H =
∫∫∫

dV
∂

∂t
D +

∫∫∫
dV J (8.3.32)

©
∫∫

dS ŝ ·B = 0 (8.3.33)

©
∫∫

dS ŝ ·D =
∫∫∫

dV ρ (8.3.34)

To derive the boundary conditions at moving boundaries, we let the
pillbox move with the boundary surface. In accordance with kinematic
theory, for a moving volume with velocity v ,

d

dt

∫∫∫
dV A= lim

∆t→0

1
∆t

{∫∫∫
t+∆t

dV A(t + ∆t)−
∫∫∫

t
dV A(t)

}

= lim
∆t→0

1
∆t

{[∫∫∫
t
dV+©

∫∫
dS(ŝ · v∆t)

][
A(t)+

∂A

∂t
∆t

]
−

∫∫∫
t
dV A(t)

}

=
∫∫∫

dV
∂

∂t
A +©

∫∫
dS (ŝ · v) A (8.3.35)
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δ

region 1

region 2

ŝ

ŝ

ŝ

a

ˆ

ˆ

ˆ

Figure 8.3.2 Pillbox for derivation of boundary conditions.

where A denotes any vector field. The surface integration term ac-
counts for the motion of the boundary. We see that for moving bound-
aries, the Maxwell equations in integral form (8.3.31)–(8.3.34) become

©
∫∫

dS
[
ŝ× E − (ŝ · v)B

]
= − d

dt

∫∫∫
V

dV B (8.3.36)

©
∫∫

dS
[
ŝ×H + (ŝ · v)D

]
=

d

dt

∫∫∫
V

dV D +
∫∫∫

V
dV J (8.3.37)

©
∫∫

dS
(
ŝ ·B

)
= 0 (8.3.38)

©
∫∫

dS
(
ŝ ·D

)
=

∫∫∫
dV ρ (8.3.39)

We shrink the pillbox in the same manner as before such that terms of
the order of δ are disposed of. The boundary conditions now become

n̂×
(
E1 − E2

)
− (n̂ · v)

(
B1 −B2

)
= 0 (8.3.40)

n̂×
(
H1 −H2

)
+ (n̂ · v)

(
D1 −D2

)
= Js (8.3.41)

n̂ ·
(
B1 −B2

)
= 0 (8.3.42)

n̂ ·
(
D1 −D2

)
= ρs (8.3.43)

Notice that (n̂ · v)(D1 −D2) = −n̂× v× (D1 −D2) + vn̂ · (D1 −D2) ,
thus (8.3.41) can be written as

n̂×
[
(H1 −H2)− v × (D1 −D2)

]
= Js − vρs

When the velocity is parallel to the interface, n̂ · v̂ = 0 , the bound-
ary conditions of such a moving boundary are identical to those of a
stationary boundary.
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Example 8.3.1
Consider at time t a surface S1 bounded by the contour C1 [Fig.

E8.3.1.1]. Let v be the instantaneous velocity of the element dS of the
surface. The surface S1 together with the contour C1 may change shape
with time, as v need not be a constant for all elements of S1. At time
t + ∆t, S1 and C1 become S2 and C2 [Fig. E8.3.1.1].

C2

C1

S2
S1

dl v∆t

C

Figure E8.3.1.1

(a) Applying the divergence theorem to the volume bounded by S1, S2,

and the differential ribbon area dl × v∆t between C1 and C2∫∫
S

(dS · v∆t)(∇ ·A) =
∫∫

S2

dS2 ·A−
∫∫

S1

dS1 ·A +
∮
C

(dl × v∆t) ·A

show that the total time derivative of a vector field A integrated over
the surface is

d

dt

∫∫
S

dS ·A =
∫∫

S

dS ·
[

∂A

∂t
+∇× (A× v) + v∇ ·A

]

The rate at which the flux of A through S changes is seen to depend on
three processes. The first term is due to the time rate of change of A for
a stationary contour. The second term accounts for the contribution due
to the flux crossing the surface generated by the motion of the contour
C . The last term arises when the surface moves through the regions
of the sources for the flux A. When A is identified as the magnetic
induction B, the last term will be zero.

(b) Identifying A with B and D field vectors and employing Faraday’s law
and Ampère’s law to obtain∮

dl ·
(
E + v ×B

)
= − d

dt

∫∫
dS ŝ ·B∮

dl ·
(
H − v ×D

)
=

d

dt

∫∫
dS ŝ ·D +

∫∫
dS ŝ ·

(
J − vρ

)



916 8. Relativity

Applying the integrals to a ribbon-like area , which is now moving with
the boundary surface, determine the relationship between E1, H1 in
region 1 and E2, H2 in region 2.

Solution:
(a)

d

dt

∫∫
S

dS ·A

= lim
∆t→0

1
∆t

{∫∫
S2

dS2 ·A(r, t + ∆t)−
∫∫

S1

dS1 ·A(r, t)
}

= lim
∆t→0

1
∆t

{∫∫
S2

dS2 ·
[

A(r, t) + ∆t
∂

∂t
A(r, t)

]
−

∫∫
S1

dS1 ·A(r, t)
}

=
∫∫

S

dS · ∂

∂t
A(r, t) +

∫∫
S

dS · v∇ ·A−
∮
C

(dl × v) ·A

=
∫∫

S

dS · ∂

∂t
A +

∮
C

dl ·A× v +
∫∫

S

dS · v∇ ·A

=
∫∫

dS ·
[

∂A

∂t
+∇× (A× v) + v∇ ·A

]

The last equality is obtained by using Stokes’ Theorem.

(b) Identifying B with A and using the identity in (a)∫∫
S

dS · ∂B

∂t
=

d

dt

∫∫
S

dS ·B +
∮
C

dl · v ×B −
∫∫

S

dS · v∇ ·B

Since ∇ ·B = 0, the last integral vanishes. From ∇×E = −∂B

∂t
we obtain∮

C

dl · (E + v ×B) = − d

dt

∫∫
S

dS ·B

Taking the integral over the shaded region which moves together with the
boundary and letting δ → 0, we obtain(

E1 + v ×B1

)
· dl −

(
E2 + v ×B2

)
· dl = 0

since dl is tangential to the surface but otherwise arbitrary,{(
E1 + v ×B1

)
−

(
E2 + v ×B2

)}
Tangential

Components

= 0

or equivalently,

n̂×
{(

E1 + v ×B1

)
−

(
E2 + v ×B2

)}
= 0 .
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This boundary condition is equivalent to (8.3.40), because

0 = n̂× (E1 − E2) + n̂×
{

v × (B1 −B2)
}

= n̂× (E1 − E2)− (n̂ · v)(B1 −B2) + vn̂ · (B1 −B2)

0 = n̂× (E1 − E2)− (n̂ · v)(B1 −B2)

Identifying D with A and using the identity in (a), we have∫∫
S

dS · ∂D

∂t
=

d

dt

∫∫
S

dS ·D +
∮
C

dl · v ×D −
∫∫

S

dS · v∇ ·D

=
d

dt

∫∫
S

dS ·D +
∮
C

dl · v ×D −
∫∫

S

dS · vρ

Applying Ampère’s law ∇×H = ∂D
∂t + J , we obtain∮

C

dl · (H − v ×D) =
d

dt

∫∫
S

ds ·D +
∫∫

S

ds · (J − vρ)

By a similar argument,{
(H1 − v ×D1) − (H2 − v ×D2) + n̂× (Js − vρs)

}
Tangential

Components

= 0

or equivalently,

n× (H1 −H2)− n̂×
[
v × (D1 −D2)

]
= Js − vρs

End of Example 8.3.1

Example 8.3.2
The jump conditions for moving boundaries have been derived by as-

suming that the pillbox moves with the boundary. If the pillbox is stationary
while the boundary is moving, then v = 0 in (8.3.36) and (8.3.37) as v refers
to the velocity of the pillbox:

©
∫∫

dSŝ× E = − d

dt

∫∫∫
V

dV B

©
∫∫

dSŝ×H =
d

dt

∫∫∫
V

dV D +
∫∫∫

V

dV J

t + ∆t

t
δ δ0

v∆t

Figure E8.3.2.1
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Refer to Fig. E8.3.2.1. The boundary surface has been moved a distance
v∆t from time t to time t + ∆t. Show that for a vector field A∫∫∫

t

dV A = a

∫ δ0

0

dz A + a

∫ δ

δ0

dz A = A2aδ0 + A1a(δ − δ0)

and that ∫∫∫
t+∆t

dV A = a

∫ δ0+v∆t

0

dz A + a

∫ δ

δ0+v∆t

dz A

= A2a(δ0 + v∆t) + A1a(δ − δ0 − v∆t)

∫∫∫
t+∆t

dV A−
∫∫∫

t

dV A = A2 av∆t−A1av∆t

where a is the area of the top side or the bottom side of the pillbox and
A1 and A2 denote the A field in medium 1 and medium 2, respectively.
Identifying A with B and D , determine the relationship between E1, H1

in region 1 and E2, H2 in region 2.
End of Example 8.3.2

Example 8.3.3
Derive the boundary conditions associated with Maxwell’s two curl equa-

tions by using a) a pillbox, and b) a ribbon contour. When the boundary is
moving, determine the boundary conditions and discuss the difference from
the stationary ones.

Solution:
Integrating Maxwell equations over a volume, we get (for V = 0)

∫∫
Σ

⊂⊃ dS
(
ŝ× E

)
= −

∫∫∫
V

∂B

∂t
dv (E8.3.3.1)

∫∫
Σ

⊂⊃ dS
(
ŝ×H

)
=

∫∫∫
V

Jdv +
∫∫∫
V

∂D

∂t
dv (E8.3.3.2)

To find the boundary conditions we apply these equations to a pillbox
with area A and thickness δ . First we let δ → 0 . Since B and D and their
time derivatives are finite and the volume of the volume integral goes to zero.
So we get ∫∫∫

V

∂B

∂t
dv =

∫∫∫
V

∂D

∂t
dv = 0
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From the definition of surface current, we also have

lim
δ→0

∫∫∫
V

Jdv =
∫∫
A

Jsda

By letting δ → 0 our total surface integral (over Σ) reduces to integral over
the circular contours at A+ and A− (i.e., from both sides). So we now have


∫∫
A+

+
∫∫
A−


 ŝ× E ds = 0 (E8.3.3.3)


∫∫
A+

+
∫∫
A−


(

ŝ×H
)

ds =
∫∫
A

Jsda (E8.3.3.4)

Now as we let δ → 0 , take A → 0 in such a way that δ/A → 0 . This
ensures that the pillbox will always enclose the boundary. When A→ 0 , we
get ŝ → n̂ over A+ and ŝ → −n̂ over A− . (We also have A = A+ = A−
for a cylinder.) So the boundary conditions become

n̂×
(
E1 − E2

)
= 0

n̂×
(
H1 −H2

)
= Js

If the boundary is moving we would have

d

dt

∫∫∫
V

Bdv =
∫∫∫
V

∂B

∂t
dv +

∫∫
Σ

(
ŝ · V

)
B

and

d

dt

∫∫∫
V

Ddv =
∫∫∫
V

∂D

∂t
dv +

∫∫
Σ

(
ŝ · V

)
Dds

Taking δ → 0 , the volume integral terms are treated as before and the surface
integral terms may be grouped together with the surface integral terms on
the RHS (of say, Eqs. (E8.3.3.1) and (E8.3.3.2)). We then have, analogous
to Eqs. (E8.3.3.3) and (E8.3.3.4)

∫∫
A+

+
∫∫
A−


[

ŝ× E −
(
ŝ · V

)
B

]
ds = 0


∫∫
A+

+
∫∫
A−


[

ŝ×H +
(
ŝ · V

)
D

]
ds =

∫∫
Jsda
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And as A→ 0 we get in the same fashion

n̂× (E1 − E2)−
(
n̂ · V

) (
B1 −B2

)
= 0

n̂× (H1 −H2) +
(
n̂ · V

) (
D1 −D2

)
= Js

We integrated Maxwell’s equations over a volume in order to use the pillbox
geometry. If we wish to use the ribbon contour geometry, we will find it useful
to integrate Maxwell’s equations over a surface and (using Stoke’s theorem)
we get Maxwell’s equations in the form (for V = 0) .∮

c

E · d? = − d

dt

∫
s

B · nda (E8.3.3.5)

∮
c

H · d? =
d

dt

∫
s

D · nda +
∫
s

J · nda (E8.3.3.6)

We now apply a rectangular “ribbon” to the boundary in such a way
that the normal to the plane of the ribbon is tangential to the boundary at
the point that we are interested in.

δ

n̂

ĉs

ĉn

I

II

Figure E8.3.3.1

As δ → 0 , the area enclosed by the ribbon goes to zero and so all the
surface integrals over ∂B

∂t or ∂D
∂t vanish since these quantities are finite. The

integral over J becomes a surface current as before. We then have as the
length of the ribbon goes to zero(

E1 − E2

)
· ĉs = 0(

H1 −H2

)
· ĉs = Js · ĉn
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where ĉs is the unit vector defining the intersection of the plane of the ribbon
and the plane of the boundary and ĉn is the unit normal to the plane of the
ribbon.

Now note that the orientation of the ribbon plane is arbitrary. Since ĉs
is arbitrary on the plane parallel to the boundary, we have

n̂×
(
E1 − E2

)
= 0

where n is the unit vector perpendicular to the boundary, also by orienting,
ĉn such that ĉn‖Js, we get

Js= ĉn
(
Js · ĉn

)
= ĉn

(
H1−H2

)
· ĉs=(ĉs × ĉn)×(H1−H2)−[(H1−H2) · ĉn] ĉs

where we used the vector identity A(B ·C) = −B× (A×C)× (A ·B)C . We
know that (H1 −H2) · ĉn = 0 since ĉn⊥ĉs (in other words we would then
have from above (H1 − H2) · ĉn = Js · ĉs but since Js‖ĉn⊥ĉs our results
follow). Note also that

ĉs × ĉn = n̂

So we can write

n× (H1 −H2) = Js

Now to solve for the moving boundary conditions, let us transform to a ref-
erence frame stationary in the boundary frame. We then have

E
′
= E + V ×B

H
′
= H − V ×B

J
′
= J − ρV

Now we can apply the stationary boundary conditions

[n× E′]12 = 0

[n×H ′]12 = Js

where [A]12 means A1 −A2 . We find

[n× E + n× (V ×B)]12 = 0

[n×H − n× (V ×D)]12 = Js − σV

Now use vector identity

n× (V ×B) ≡ V (n ·B)− (n · V )B

n× (V ×D) ≡ V (n ·D)− (n · V )D
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So we get

n× (E1 − E2)− (n̂ · V )(B1 −B2) + V n̂ · (B1 −B2) = 0

n× (H1 −H2) + (n̂ · V )(D1 −D2)− V n̂ · (D1 −D2) = Js − σV

Now from the 1st set of boundary conditions we had

n · (B1 −B2) = 0

n · (D1 −D2) = σ

So we get

n× (E1 − E2)− (n̂ · V )(B1 −B2) = 0

n× (H1 −H2) + (n · V )(D1 −D2) = Js

The important thing to notice is now tangential E, H discontinuous because
surface moves in a direction normal to its surface.

End of Example 8.3.3

D. Phase Matching at Moving Boundaries

Previously, we have studied phase-matching conditions for a stationary
boundary surface. When the boundary is moving, we let its velocity be

v = x̂vx + ŷvy + ẑvz (8.3.44)

At t = 0 , the surface is at x = 0 . At other times, the boundary
surface is at x = vxt . The incident, the reflected, and the transmitted
waves now have space-time dependence as follows:

incident : eikxx+ikyy+ikzz−iωt

reflected : eikrxx+ikryy+ikrzz−iωrt

transmitted : eiktxx+iktyy+iktzz−iωtt

where we distinguish between the angular frequencies ω, ωr and ωt .
We require that the moving boundary conditions (8.3.40)–(8.3.43) be
satisfied, which gives

kx(vxt) + ky(y + vyt) + kz(z − vzt)− ωt

= kx(vxt) + kry(t + vyt) + krz(z + vzt)− ωrt

= ktz(vxt) + kty(y + vyt) + ktz(z + vzt)− ωtt (8.3.45)
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Since these equalities must hold for all y, z and t , we conclude that

ky = kry = kty (8.3.46)

kz = krz = ktz (8.3.47)

kxvx − ω = krxvx − ωr = ktxvx − ωt (8.3.48)

Thus the phase-matching conditions are the same as for the case of a
stationary boundary; tangential components of the wave vectors are
continuous. The frequencies of the three waves are now different; they
are determined only by the normal component of the velocity.

Consider the simple case of a wave normally incident from an
isotropic medium upon another isotropic medium moving in the x̂
direction toward the wave. The incident wave vector is

k = x̂kx = −x̂n
ω

c
(8.3.49)

and the reflected vector is

kr = x̂krx = x̂n
ωr
c

(8.3.50)

Substituting (8.3.49)–(8.3.50) into (8.3.48) we find

ωr = ω
1 + nβ

1− nβ
(8.3.51)

kr = −k
1 + nβ

1− nβ
= n

ω

c

1 + nβ

1− nβ
(8.3.52)

where β = vx/c . The reflected wave is seen to be Doppler-shifted
toward the high-frequency side. Its wavenumber is also increased by
the same amount. In order to determine the transmitted wavenumber
and angular frequencies, we must know the dispersion relations for a
moving medium.
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E. Force on a Moving Dielectric Half-Space

Consider a plane wave normally incident upon a dielectric medium
( µ′ = µo ) moving toward the wave. Let the boundary be moving
in the ẑ direction with velocity v , and the electric field be linearly
polarized in the x̂ direction. Write

Ei = x̂E0eikz−iωt, k = −ω

c
The fields for the reflected and transmitted waves are

Er = x̂RE0eikrz−iωrt, kr =
ωr
c

Et = x̂TE0eiktz−iωtt, kt = − n− β

1− nβ

ωt
c

cBr = ŷ
ckr
ωr

Er = ŷEr

cBt = ŷ
ckt
ωt

Et = −ŷ
n− β

1− nβ
Et

cDr = x̂cεoEr

cDt = x̂
1

cµo

[
p− l

ckt
ωt

]
Et = x̂

1
cµo

n(n− β)
1− nβ

Et

Hr = ŷ
1

cµo
Er

Ht = ŷ
1

cµo

[
l + q

ckt
ωt

]
Et = −ŷ

1
cµo

nEt

where n = c
√

µoεt and β = ν/c .
To calculate amplitudes for the reflected and transmitted waves,

we apply the moving boundary conditions (8.3.40) and (8.3.41), which
require that Ex − βcBy and Hy − βcDx be continuous across the
boundary. We find

1 + R− β(−1 + R) = T + β
n− β

1− nβ
T

−1 + R− β(1 + R) = −nT − β
n(n− β)
1− nβ

T

The reflection and transmission coefficients are found to be

R = −1 + β

1− β

n− 1
n + 1

T =
1− nβ

1− β

2
n + 1
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The reflectivity and transmissivity are

r =
ẑ · (Er ×Hr)
−ẑ · (Ei ×H i)

= |R|2

t =
−ẑ · (Et ×Ht)
−ẑ · (Ei ×H i)

= n |T |2

It is seen that r + t 
= 1 when β 
= 0 . Is power conservation being
violated?

To answer this question [Daly and Gruenberg, 1967], conceive a
cylinder of unit cross-section erected across the boundary with its axis
parallel to the z axis and containing a portion of the interface. The
sum of the incident, reflected, and transmitted waves gives the total
time-average electromagnetic power flow into the cylinder:

< Pelec >=
1

2cµo
(E2

i − E2
r − nE2

t ) = 4cU0β
(n− 1)(1− nβ)
(n + 1)(1− β)2

where
U0 =

1
2c2µo

|E0|2

Inside the cylinder, there is an increase in the time-average electromag-
netic energy, Re(E ·D∗ + H ·B∗)/4 as the moving dielectric occupies
more free space. The rate of this increase in the stored energy is given
by the velocity times the difference between the electromagnetic energy
in the dielectric and that in the vacuum. We find

< Pstored >=
cβ

2
{Et ·D∗

t − Er ·D∗
i − Et ·D∗

i }

=
β

2cµo

{
n

[
n− β

1− nβ

]
E2
t − E2

r − E2
i

}
= 2cU0β

(n− 1)(1− 2nβ + β2)
(n + 1)(1− β)2

When the medium is stationary, < Pelec > = < Pstored > = 0 . When
the medium is in motion, this equality does not hold because mechani-
cal power is required to keep the dielectric moving at constant velocity.
The rate at which mechanical work has to be supplied to the system is
given by the difference between < Pstored > and < Pelec > . We find

< Pmech > = < Pstored > − < Pelec > = −2cU0β(n− 1)(1 + β)
(n + 1)(1− β)
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The negative sign indicates that mechanical work has been done to
the system. The force per unit area acting on the dielectric medium is
obtained from F · v = < Pmech > . Thus

Fmech = − ẑ2U0(n− 1)(1 + β)
(n + 1)(1− β)

This mechanical force is needed to maintain the medium at constant
velocity. We note that the force is in the negative ẑ direction; this
means that mechanical force must be applied to stop the medium from
accelerating toward the wave. The electromagnetic force F elec exerted
on the medium by the wave is equal to the negative of Fmech , as
required by the basic laws of mechanics.

We double-check this assertion by using the conservation theorem
to calculate the electromagnetic force F elec . When the force density
is integrated over the volume of the cylinder, the force per unit area
acting on the surface is

F elec = ẑ (< Tzz >i + < Tzz >r − < Tzz >t)
+ v

(
< G >i + < G >r − < G >t

)
=

ẑ2U0(n− 1)(1 + β)
(n + 1)(1− β)

Clearly, F elec and Fmech are indeed in opposite directions. Thus the
radiation pressure exerted on a dielectric half-space by a plane wave
at normal incidence results in a force attracting the medium toward
the wave. This force is there whether the dielectric is stationary or in
motion. A mechanical force counterbalancing F elec is needed either
to keep the dielectric medium stationary or to maintain its constant
velocity when it is in motion.

For a perfect conductor,

< Pmech > =
1

2cµo

[
−(E2

i + E2
r )− (E2

i − E2
r )

]
=

2cU0β(1 + β)
(1− β)

It follows that Fmech = ẑ2U0(1 + β)/(1 − β) . Note in particular the
sign of Fmech which is now in the positive ẑ direction, demonstrating
that the wave is exerting a force to push the conductor away. Thus the
electromagnetic force is attractive when the medium is a dielectric, and
repulsive when the medium is a perfect conductor.
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F. Guided Waves in a Moving Dielectric Slab

Consider TE modes guided by a slab medium moving between two
identical stationary isotropic media. Let the guidance direction be par-
allel to the direction of motion of the slab. We follow the graphical
approach to determine the cutoff wavenumbers and the propagation
constant kz .

The constitutive parameters for a moving medium have been de-
termined. We use subscript 1 to denote the parameters pertaining to
the moving dielectric slab waveguide. The transverse wavenumber k1x

inside the waveguide, by making use of the dispersion relations, may
be cast into the form:

k2
1x = p1k2

o − 2l1kzko − q1k2
z (8.3.53)

where ko = ω/c and kz = ko(n2 + α2
x/k2

o)
1/2 . The guidance condition

becomes

(αxd)2 + (k1xd)2 = (k2
x − k2)d2 + (pk2

o − 2lkokz − qk2
z)d

2

= (kod)2


n2

1 − β2

1− β2
− n2 − 2β

n2
1 − 1

1− β2

√
n2 +

(
αx
ko

)2

+ β2 n2
1 − 1

1− β2

[
n2 +

(
αx
ko

)2
]}

(8.3.54)

The shape of the curve described by this equation is a function of the
slab velocity. At β = 0 , the curve is a circular arc, the expected result
for a stationary slab. When the isotropic medium surrounding the slab
is free space, n = 1 and this equation becomes

(αxd)2 + (k1xd)2 = (kod)2
[

n2
1 − 1

1− β2

]
1− β

√
1 +

(
αx
ko

)2



2

(8.3.55)

a result that can be derived by applying the Lorentz transformation
directly. We observe that at cutoff

kod =
√

(1+ β)/(1− β)mπ
√

n2
1 − 1

the cutoff wavenumber increases as β increases. In general, we see
that as β increases, αx decreases, and so does kx . Thus the guided
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waves possess higher cutoff frequencies and propagate at larger phase
velocities. A parallel analysis results in similar conclusions for the TM
waves.

Next, we consider an isotropic medium moving between two per-
fectly conducting parallel plates. The guidance condition for both TE
and TM modes is

mπ

d
= k1x = γ

√
(n2

1−β2)k2
o−2β(n2

1−1)kokz−(1−n2
1β2)k2

x (8.3.56)

Note that mπ/d is the cutoff wavenumber for the m th mode when
the medium is stationary. Solving for kz , we obtain from this equation

kz =
ko

1− n2
1β2

{
−β(n2

1 − 1)± (1− β2)

√
n2

1 −
(

1− n2
1β2

1− β2

) (
mπ

kod

)2
}

(8.3.57)

Observe that cutoff occurs when kz becomes imaginary. When the
velocity of the medium exceeds the Čerenkov velocity so that n1β >
1 , kz will always be real for real n1 and no cutoff will occur. The
propagation constant kz is always positive when

β(n2
1 − 1) ≥

[
n2

1(1− β2)2 − (1− β2)2(1− n2
1β2)(mπ/kod)

]1/2

or, equivalently, kod ≥ mπ
[
mπ(1− β2)/(n2

1 − β2)
]1/2 .

In the low-velocity regime when n1β < 1 , cutoff occurs for kod ≤
mπ(1 − n2

1β2)/(1 − β2)n2
1 . Comparing this with the stationary case

in which kcd = mπ/n2
1 , we see that motion of the medium always

lowers the cutoff wavenumber. For frequencies above cutoff but with
the square-root term smaller than the first term in the equation, the
phase velocities of the guided waves are all in the negative ẑ direc-
tion. Phase velocities in both directions become possible when kod ≥
mπ

[
(1− β2)/(n2

1 − β2)
]1/2 .

It is of interest to investigate the power flow carried by each mode
in the waveguide. Consider the TE modes with

Ey = Em sin
mπx

d
eikzz
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The magnetic field components are determined from the Maxwell equa-
tions and the constitutive relations for the moving medium:

B =
1
iω
∇× E

=
[
−x̂

kz
ω

Em sin
mπx

d
− ẑi

mπ

ωd
Em cos

mπx

d

]
eikzz

H =
1

cµ′ [x̂(−lEy + qcβx) + ẑ(cβz)]

= x̂
1

cµ′

[
−l − qckz

ω

]
Ey − ẑi

mπ

ωµ′d
Em cos

mπx

d
eikzz

The power flow in the ẑ direction after integrating over the waveguide
cross section is found to be

Pz = −
∫ d

0
dx

1
2
Re(EyH

∗
x) = Re

∞∑
m=1

d

2cµ′

[
l +

qkz
ko

]∗
|Em|2

= Re
∞∑
m=1

d

2cµ′


±

√
n2

1 −
[
1− n2

1β2

1− β2

] [
mπ

kod

]2


∗

|Em|2

Thus each individual mode carries its own power; the total power is
the sum of all individual components. At β = 0 this result reduces
to the case of a stationary medium. Above the Čerenkov velocity, the
square root always gives real values and all modes carry time-average
power. Below the Čerenkov velocity, modes below cutoff will not carry
time-average power. In all cases, the ± sign in front of the square root
indicates that power can propagate in both positive and negative ẑ
directions, as opposed to the phase velocities, which in some cases can
be in only one direction. In this velocity range, guided backward waves
can be generated in the moving medium.

G. Guided Waves in Moving Gyrotropic Media

For guided waves in anisotropic and bianisotropic media the wave equa-
tions for Ez and Hz are usually coupled. We illustrate this with the
general case of a bianisotropic medium realized by a moving gyrotropic
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medium. The gyrotropic medium in its rest frame has the tensor per-
mittivity

ε
′ =


 ε′ −iε′g 0

iε′g ε′ 0
0 0 ε′z


 (8.3.58)

In the laboratory frame the constitutive matrix is given by (8.3.14). We
transform to E H representation and obtain the following constitutive
relations:

D = εs · Es + ε′zEz + ξs ·Hs (8.3.59a)

B = µs · Es + µ′
zEz − ξs ·Hs (8.3.59b)

where

εs = ε′
[

a −iag
iag a

]

=
(1− β2)ε2

n2
[
(1− n2β2)2 − n4

gβ
4
]

·
[

n2(1− n2β2) + n4
gβ

2 −in2
g

in2
g n2(1− n2β2) + n4

gβ
2

]
(8.3.60)

µs = µ′
[

b −ibg
ibg b

]

=
(1− β2)µ′

(1− n2β2)2 − n4
gβ

4

[
1− n2β2 −in2

gβ
2

in2
gβ

2 1− n2β2

]
(8.3.61)

ξs =
1
c

[
−iξg −ξ

ξ −iξg

]

=
(1− β2)/c

(1− n2β2)2 − n4
gβ

4

·
[

−n2
gβ −γ2β[(n2−1)(1−n2β2)+n4

gβ
2]

γ2β[(n2−1)(1−n2β2)+n4
gβ

2] −in2
gβ

]
(8.3.62)

At β = 0 , (8.3.60) reduces to (8.3.58), µs = µ′I, ξs = 0 , and we have
the gyrotropic medium at rest.

We can express the transverse components in terms of the longitu-
dinal components Ez and Hz and derive wave equations for Ez and
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Hz . We find

∇s × Ez = iωµs ·Hs · d · Es (8.3.63a)

∇s ×Hz = −iωεs ·Hs − d ·Hs (8.3.63b)

∇s × Es = iωµ′
zHz (8.3.64a)

∇s ×Hs = −iωε′zEz (8.3.64b)

where

d =
[

dg −id
id dg

]
=

[
ωξg/c −i(kz + ωξ/c)

i(kz + ωξ/c) ωξg/c

]
(8.3.65)

In terms of Ez and Hz , the transverse components are

Es = (I − ω2d
−1
· µs · d

−1
· εs)−1 ·

[
−d

−1
· (∇s × Ez)

− iωd
−1
· µs · d

−1
(∇×Hz)

]
(8.3.66a)

Hs = (I − ω2d
−1
· εs · d

−1
· µs)−1 ·

[
−d

−1
· (∇s ×Hz)

− iωd
−1
· εs · d

−1
(∇× Ez)

]
(8.3.66b)

after considerable algebraic manipulations, the wave equations for the
longitudinal field components are determined to be[

∇2
s +

ε′z
ε′

k2e

]
Ez = iωµ′hgHz (8.3.67a)

[
∇2
s + k2h

]
Hz = −iωε′zegEz (8.3.67b)

where

e =
1
b

[
b2 − b2

g +
(bd− bgdg)2

d2
g − k2ab

]
(8.3.68a)

h =
1
a

[
a2 − a2

g +
(ad− agdg)2

d2
g − k2ab

]
(8.3.68b)
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eg =
1
a

[
abg − agd−

(ad− agdg)(ddg − kabg)
d2
g − k2ab

]
(8.3.68c)

hg =
1
b

[
bbg − bgd−

(bd− bgdg)(ddg − kagb)
d2
g − k2ab

]
(8.3.68d)

The two equations in (8.3.67) for Ez and Hz are coupled. Thus the
guided wave modes are hybrid because the wave equations are coupled.
In the stationary case when β = 0 , the wave equations are decoupled
and the hybrid modes are consequences of boundary conditions.

Obtaining solutions to the coupled equations in (8.3.67) can be fa-
cilitated by transforming them into decoupled homogeneous Helmholtz
equations. We define

ψj = Ez − iαjHz j = 1, 2 (8.3.69)

then multiply (8.3.67b) by iαj , and subtract the result from (8.3.67a).
Using (8.3.69) to eliminate Ez and requiring that the coefficient for
Hz be zero, we obtain the following second-order equation for αj :

ωεzejα
2
j − k2

[
h− ε′z

ε′
e

]
αj − ωµhg = 0 (8.3.70)

The two roots for αj from (8.3.70) are the values for α1 and α2 .
With (8.3.70) satisfied, (8.3.67a) and (8.3.67b) combine to yield a
single second-order, two-dimensional, scalar, homogeneous Helmholtz
equation:

∇2
sψj + q2

jψj = 0 (8.3.71)

where

qj =
ε′z
ε′

k2e + αjωε′zeg

= k2h +
1
αj

ωµhg (8.3.72)

For waveguides of conventional cross section (rectangular or circular),
ψj can be determined from (8.3.71) in an appropriate coordinate sys-
tem. With ψ1 and ψ2 known, we have from (8.3.69),

Ez =
1

α1 − α2
(α2ψ1 − α1ψ2) (8.3.73a)

Hz = − 1
α1 − α2

(ψ1 − ψ2) (8.3.73b)
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The transverse field components can then be derived from (8.3.66)
and be made to satisfy the boundary conditions. It is obvious that for
guided waves in a moving gyrotropic medium the modes are hybrid.
Even when the gyrotropic medium is stationary, the two wave equa-
tions for Ez and Hz are still coupled and the modes are hybrid. The
two wave equations will be decoupled if the medium is uniaxial, re-
gardless of whether it is stationary or in motion, for then εg = 0 and
all parameters with subscript g will vanish.

Problems

P8.3.1
(a) Determine the constitutive relations for a moving biisotropic medium

which has the constitutive relations[
cD′

H ′

]
=

[
p′I ?′I

−?′I q′I

][
E

′

cB
′

]
.

in the rest frame of reference.
(b) Find the constitutive relations a biaxial medium moving along one of its

principal axes.
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8.4 Maxwell Equations in Tensor Form

In tensor notation, Maxwell equations read as

Fαβ,γ + Fβγ,α + Fγα,β = 0 (8.4.1a)
Gαµ
,α = Jµ (8.4.1b)

We summarize the rules for using the indices associated with the tensor
notation as follows:

(i) When an index is denoted by a Greek letter, it ranges from 0 to
3. When an index is denoted by a Roman letter, it ranges from 1
to 3.

(ii) When the index of a tensor is raised or lowered, the zeroth compo-
nent of the vector changes sign, while the other components remain
unchanged.

(iii) When an index is repeated on the same side of an equation, a sum-
mation over the index is implied. Summation is always carried out
over a contravariant index and its corresponding covariant index.

(iv) Free (nonrepeated) indices on one side of an equation must be
balanced by the same indices on the other side of the equation.

(v) Contravariant components of a tensor are denoted by superscripts;
covariant components, by subscripts.

The electromagnetic field tensor Fαβ and an excitation tensor Gµν

are defined in terms of matrix representation as follows:

Fµν =




0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0


 (8.4.2)

Gµν =




0 −cDx −cDy −cDz

cDx 0 −Hz Hy

cDy Hz 0 −Hx

cDz −Hy Hx 0


 (8.4.3)

The three-dimensional field vectors are related to the field tensor
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and the excitation tensor in the following manner:

Ei = F0i

cBi = −1
2

εijkFjk

cDi = −G0i

Hi = −1
2

εijkGjk

We now demonstrate that (8.4.1) is equivalent to the full set of the
Maxwell equations. If none of the three indices α, β, γ in (8.4.1a) is
zero, we find Gauss’ law of magnetism:

∇ ·B = 0

If one of α, β, γ is zero, (8.4.1a) gives Faraday’s law:

∇× E +
∂B

∂t
= 0

If µ = 0 in (8.4.1b), we obtain Gauss’ law of electricity:

∇ ·D = ρ

For µ 
= 0 , (8.4.1b) gives

∇×H − ∂D

∂t
= J

which is Ampère’s law with the Maxwell’s displacement current term
∂D/∂t .

The charge current conservation law states that

Jα,α = 0 (8.4.4)

The charge current density is

Jα = (cρ, J) (8.4.5)

The space-time derivative of Jα

Jα,α =
∂ρ

∂t
+∇ · J (8.4.6)

becomes a scalar.
The conventional exercise of expressing field vectors in terms of

vector and scalar potentials is observed from (8.4.1a). It is quite easy
to show that (8.4.1a) is satisfied if

Fαβ = Aα,β −Aβ,α (8.4.7)
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where Aα is a covariant four-vector, its zeroth contravariant compo-
nent is the scalar potential φ, and its space components are the vector
potential A times c :

Aα =
[−φ

cA

]
, Aα =

[
φ

cA

]
(8.4.8)

Writing (8.4.7) in three-dimensional notation, we have the familiar
expressions

E = −∂A

∂t
−∇φ

B = ∇×A

If we make a gauge transformation from Aα to A′
α so that

Aα = A′
α + ψ,α (8.4.9)

where ψ is any scalar function of space-time by introducing (8.4.9) in
(8.4.1a), we have

Fαβ = Aα,β −Aβ,α = A′
α,β −A′

β,α (8.4.10)

This shows that both Aα and A′
α give rise to the same field tensor.

This arbitrariness is fixed by the gauge condition. The Lorenz gauge
is

Aµ
,µ = 0 (8.4.11)

which takes the same form as the continuity equation for charge current
densities. Unlike the Coulomb gauge, the Lorenz gauge is relativisti-
cally covariant.

A. Contravariant and Covariant Vectors

One can imagine a four-dimensional (4D) space composed of coordi-
nates formed by time and three-dimensional space. Space-time coor-
dinates of a physical event possess properties of a vector in 4D space.
Let us denote the four components of an event by

x0 = ct, x1 = x, x2 = y, x3 = z, (8.4.12)

where we use the superscript 0 to denote the time component, and
1, 2, 3 to denote the space components. A popular convention in spe-
cial relativity is to write the time component with the subscript 4 and
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designate it as imaginary. This should be carefully distinguished from
the imaginary notations used in quantum theory and in wave theory.
The notation that we use does not require an imaginary signature, but
we must distinguish between superscripts and subscripts. This notation
is readily generalized when general relativity is considered.

The transformation of the space-time coordinate vector from one
observer to another is given by the Lorentz transformations. Under the
Lorentz transformation,

x2 + y2 + z2 − c2t2 = x′2 + y′2 + z′2 − c2t′2 (8.4.13)

is an invariant quantity independent of velocity. The square root of
(8.4.13) expresses the magnitude of a 4D vector and in effect defines
the transformation. As numerical values of other physical quantities
change from one frame to another, this number stays unchanged in all
frames. We note that in 4D space the magnitude of a vector can now
be imaginary as well as real. A 4D vector is called a spacelike vector, a
null vector, or a timelike vector, according to whether its magnitude is
real, zero, or imaginary, respectively. The space-time coordinates of two
physical events (ct1, x1, y1, z1) and (ct2, x2, y2, z2) form a four-vector
with magnitude squared

(X1 −X2)2 = −c2(t1 − t2)2 + (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

which is a Lorentz invariant. When the vector is timelike, (X1 −X2)2

is negative. We can always find a moving observer such that, in his
rest frame, the two events occur at the same location but at different
times. He therefore observes the two events in person at times t′1 and
t′2 :

−c(t′1 − t′2)
2 = (X1 −X2)2

When the vector is a null vector, |r1 − r2|2 − c2(t1 − t2)2 = 0 and an
observer has to move at velocity c in order to see the two events in
person. When the vector is spacelike, there exists an observer in whose
frame the two events occur at different locations but simultaneously.
The 4D space with coordinates governed by the Lorentz transformation
laws is called Minkowski space.

To visualize the fourth dimension, imagine that this 4D space is
spanned by four unit base vectors,

êα = (ê0, ê1, ê2, ê3) (8.4.14)
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Any 4D vector X can thus be expressed in terms of êα :

X = xαêα = x0ê0 + x1ê1 + x2ê2 + x3ê3 (8.4.15)

In (8.4.15) we use the Einstein summation convention: the repeated
Greek index α implies summation from 0 to 3. We shall use Greek
letters to indicate 0 to 3, and Roman letters to denote 1 to 3. The
square of the length of X is defined as the scalar product of X with
itself:

X2 = êα · êβ xαxβ (8.4.16)

In view of (8.4.13),

X2 = x2 + y2 + z2 − c2t2 (8.4.17)

Thus we must have

êα · êβ = 0 for α 
= β (8.4.18a)
ê0 · ê0 = −1 (8.4.18b)
ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1 (8.4.18c)

By (8.4.18a), all four base vectors are orthogonal to one another; by
(8.4.18b), the three-space base vectors have unit magnitude as usual;
and, by (8.4.18c), the zeroth (or fourth) base vector describing the
fourth dimension possesses a magnitude squared of −1. It follows that
the length of the zeroth base vector is imaginary. These four base vec-
tors may be called contravariant base vectors which span a contravari-
ant 4D space. A vector expressed in terms of the contravariant base
vectors is called a contravariant vector.

We can define a set of covariant base vectors ê0, ê1, ê2, and ê3

such that

ê0 = −ê0 (8.4.19a)
êi = êi i = 1, 2, 3 (8.4.19b)

The product of ê0 · ê0 = −ê0 · ê0 = 1 in view of (8.4.18c). The vector
ê0 also has a magnitude squared of −1 as ê0 ·ê0 = ê0 ·ê0 by definitions
of (8.4.19a) and (8.4.18c). These four base vectors êα may be called
covariant base vectors which describe a covariant 4D space. A vector
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expressed in terms of the covariant base vectors is called a covariant
vector. We write

X = xαêα (8.4.20)

Components of X in the new base are now denoted as xα, which, in
view of (8.4.19), are related to xα by

x0 = −x0 (8.4.21a)
xi = xi (8.4.21b)

The contravariant components of X are denoted by superscripts, and
its covariant components by subscripts. We define

ηαβ = êαêβ =



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 (8.4.22a)

and

ηαβ = êαêβ =



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 (8.4.22b)

to express the transformation between the two sets of base vectors and
the contravariant and covariant components of a vector:

êα = ηαβ êβ, êα = ηαβ êβ (8.4.23a)

x̂α = ηαβx̂β, x̂α = ηαβx̂β (8.4.23b)

Equation (8.4.23) is equivalent to (8.4.19) and (8.4.21). The scalar
product of two vectors is defined to be the summation over the con-
travariant components of one vector and the corresponding covariant
components of another. Thus the magnitude squared of xα is

x2 = xαxα = ηαβxαxβ (8.4.24)

in view of (8.4.23b). Notice that contravariant components of a vec-
tor are denoted by superscripts; covariant components, by subscripts.
The notation for the base vectors is just the opposite; subscripts de-
note contravariant base vectors, and superscripts denote covariant base
vectors.
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We have discussed the transformation between contravariant and
covariant representations. We shall now consider the transformation of
a contravariant or a covariant vector from one frame of reference to
another. When two frames are in relative uniform motion, the trans-
formation is determined by the Lorentz transformation laws. We can
express the space-time coordinates of a physical event by either a con-
travariant or a covariant vector. The transformation from an unprimed
frame to a primed frame is

x′α = Pα
β xβ (8.4.25a)

or
x′
α = Qβ

αxβ (8.4.25b)

We can view Pα
β as a matrix, denoted by P , operating on column

matrix xβ and giving column matrix x′α. A similar view is applied
to Qβ

α. In view of (8.2.1), the transformation matrices P and Q are
as follows:

P =




γ −γβx −γβy −γβz
−γβx 1+(γ−1)β2

x/β
2 (γ−1)βxβy/β2 (γ−1)βxβz/β2

−γβy (γ−1)βyβx/β2 1+(γ−1)β2
y/β

2 (γ−1)βyβz/β2

−γβz (γ−1)βzβx/β2 (γ−1)βzβy/β2 1+(γ−1)β2
z/β

2


 (8.4.26a)

Q =




γ γβx γβy γβz

γβx 1+(γ−1)β2
x/β

2 (γ−1)βxβy/β2 (γ−1)βxβz/β2

γβy (γ−1)βyβx/β2 1+(γ−1)β2
y/β

2 (γ−1)βyβz/β2

γβz (γ−1)βzβx/β2 (γ−1)βzβy/β2 1+(γ−1)β2
z/β

2


 (8.4.26b)

A few properties of P and Q follow from (8.4.25). The magnitude
squared of xα is a Lorentz invariant. From

x′µx′
µ = Pµ

αQβ
µxαxβ

we learn that
Pµ
αQβ

µ = δβα

The summation is over µ. In matrix form, we have

P
t
·Q = I
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where I is the 4× 4 unit matrix. Obviously, P
t

is the inverse of Q :

P
t
= Q

−1
(8.4.27a)

The inverse of P is then the transpose of Q :

P
−1

= Q
t

(8.4.27b)

With these last two relations, the inverse transformation from primed
to unprimed coordinates is as follows:

xα = Qα
βx′β (8.4.28a)

xα = P β
αx′

β (8.4.28b)

When (8.4.28) is compared with (8.4.25), it can be verified that the
two are equivalent by using (8.4.27).

Conventionally, a contravariant vector is defined as one that trans-
forms with the transformation matrix P as (8.4.25a) ; a covariant vec-
tor transforms with the matrix Q as (8.4.25b). Extending the defini-
tion, an n th-rank contravariant tensor transforms from one Lorentz
frame to another by using the transformation matrix P n times.
An n th-rank covariant tensor transforms from one Lorentz frame to
another by using Q n times. The scalar product of an n th-rank
contravariant tensor with an n th-rank covariant tensor is Lorentz-
invariant. For instance, the space-time derivatives (∂/∂ct,∇) form a
covariant four-vector because, according to (8.4.25), the transforma-
tion is like (8.4.25b) and (8.4.28b). If we denote the derivatives of a
scalar function χ(x) by

χ,α = (∂χ/∂ct,∇χ)

we find
χ′,α = Qβ

αχ,β

The charge current density, written as

Jα = (cρ, J) (8.4.29)

is seen to be a contravariant vector because it transforms as (8.4.25a)
and (8.4.28a). The space-time derivative of Jα

Jα,α =
∂ρ

∂t
+∇ · J (8.4.30)
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becomes a scalar. The charge current conservation law states that

Jα,α = 0 (8.4.31)

From (8.4.22), we can show that ηαβ is a second-rank covariant tensor
and ηαβ is a second-rank contravariant tensor. They are known as
metric tensors.

The transformation matrices Pα
β and Qβ

α are pure Lorentz trans-
formations. A pure Lorentz transformation satisfies two assumptions:
(i) the coordinate axes of S and S′ are parallel, and (ii) the origins
of the two coordinate systems coincide at t = 0. A Lorentz trans-
formation (LT) that satisfies (ii) but does not satisfy (i) is called a
homogeneous LT (HLT). A HLT is a combination of a pure LT plus
a spatial rotation. Mathematically, the whole class of HLTs satisfies
the postulates of a group and is called an HLT group. It is important
to note that the group multiplication of two pure LTs results not in a
pure LT, but in a pure LT plus a spatial rotation. The matrices Pα

β

and Qβ
α in (8.4.25) can be used to represent the HLT group. Although

as represented in (8.4.26) they appear to be symmetrical, symmetry
is not a general property of all elements in the HLT group. For in-
stance, the transformation matrix for a spatial rotation is not sym-
metrical. When assumption (ii) is violated, the LT is inhomogeneous.
An inhomogeneous LT can be made homogeneous by re-choosing the
time-space origins. The whole class of inhomogeneous LTs also forms a
group called an inhomogeneous Lorentz group or simply the Poincaré
group. The HLT group is a subgroup of the Poincaré group because
the identity element is there. Any element in a Poincaré group can
be joined to the identity element continuously by successive LTs. For
completeness, we mention the LTs in which a spatial or space-time
inversion is involved. This group of LTs is called an improper Lorentz
group in which an element cannot continuously join to the identity. In
our treatment, we confine ourselves to pure LTs in the HLT group.

B. Field Tensor and Excitation Tensor

To write the Maxwell equations in compact tensor form, we define a
field tensor Fαβ and an excitation tensor Gαβ . Explicitly in terms of
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matrix representation, we have

Fµν =




0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0


 (8.4.32)

Gµν =




0 cDx cDy cDz

−cDx 0 −Hz Hy

−cDy Hz 0 −Hx

−cDz −Hy Hx 0


 (8.4.33)

The contravariant tensors corresponding to Fαβ and Gαβ can be ob-
tained by using the matrix tensor ηαβ . For instance,

Gµν = ηµαηνβGαβ =




0 −cDx −cDy −cDz

cDx 0 −Hz Hy

cDy Hz 0 −Hx

cDz −Hy Hx 0


 (8.4.34)

The three-dimensional field vectors are related to the field tensor and
the excitation tensor in the following manner:

Ei = F0i = −F 0i (8.4.35a)

cBi = −1
2

εijkFjk = −1
2

εijkF jk (8.4.35b)

cDi = G0i = −G0i (8.4.35c)

Hi = −1
2

εijkGjk = −1
2

εijkGjk (8.4.35d)

This result can be obtained by the convention of raising and lower-
ing indices. The contravariant components G0i are negatives of their
corresponding covariant components because an index 0 is raised.

Both the field and excitation tensors are skew-symmetric:

Fαβ = −Fβα

Gαβ = −Gβα

They are second-rank covariant tensors and transform as

F ′
µν = Qα

µQβ
νFαβ (8.4.36a)

G′
µν = Qα

µQβ
νGαβ (8.4.36b)
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Using matrix notation, we write

F
′
= Q · F ·Q

t

G
′
= Q ·G ·Q

t

Written in explicit matrix form for an observer S′ moving with velocity
β = ẑβ along the ẑ direction with respect to the observer S , we find




0 E′
x E′

y E′
z

−E′
x 0 −cB′

z cB′
y

−E′
y cB′

z 0 −cB′
x

−E′
z −cB′

y cB′
x 0


 = Q · F ·Q

t

=




γ 0 0 βγ
0 1 0 0
0 0 1 0

βγ 0 0 γ







0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0







γ 0 0 βγ
0 1 0 0
0 0 1 0

βγ 0 0 γ




=




0 γ(Ex − βcBy) γ(Ey + βcBx) Ez

−γ(Ex − βcBy) 0 −cBz γ(cBy − βEx)
−γ(Ey + βcBx) cBz 0 −γ(cBx + βEy)

−Ez −γ(cBy − βEx) γ(cBx + βEy) 0




(8.4.37)

The result of this transformation is seen to be identical to the Lorentz
transformation which is obtained with three-dimensional notation.

Example 8.4.1 Lorentz invariants of the field tensor.
The covariant field tensor is

Fαβ =




0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0


 (E8.4.1.1)
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The contravariant field tensor is

Fαβ = ηαµηβνFµν =




0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0


 (E8.4.1.2)

A contravariant dual tensor is defined as

F ∗αβ =
1
2

ηαβρσFρσ =




0 cBx cBy cBz

−cBx 0 −Ez Ey

−cBy Ez 0 −Ex

−cBz −Ey Ex 0


 (E8.4.1.3)

where ηαβρσ = 1 when α, β, ρ, σ is even permutation of 0, 1, 2, 3 , ηαβρσ =
−1 when α, β, ρ, σ is odd permutation of 0, 1, 2, 3 , and ηαβρσ = 0 when
any two of α, β, ρ, σ is equal. The covariant dual tensor is seen to be ob-
tained from Fαβ by replacing E with cB and cB with −E .

F ∗
µν =




0 cBx cBy cBz

−cBx 0 Ez −Ey

−cBy −Ez 0 Ex

−cBz Ey −Ex 0


 (E8.4.1.4)

There are two Lorentz invariants of the second rank tensor Fαβ . They are
determined from

FαβFαβ = 2(|cB|2 − |E|2)

F ∗
αβFαβ = −4cB · E

The electromagnetic fields have been classified according to the above two
Lorentz invariants.

End of Example 8.4.1

Example 8.4.2 Eigenvectors and eigenvalues of the field tensor Fαβ .
Write

Fαβ ξβ = λ ηαβ ξβ

in matrix form, we have


λ E1 E2 E3

−E1 −λ −cB3 cB2

−E2 cB3 −λ −cB1

−E3 −cB2 cB1 −λ


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (E8.4.2.1)
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Write out the linear equations in (E8.4.2.1) explicitly, we have

λ ξ0 + E1ξ1 + E2ξ2 + E3ξ3 = 0
−E1ξ0 − λ ξ1 − cB3ξ2 + cB2ξ3 = 0
−E2ξ0 + cB3ξ1 − λ ξ2 − cB1ξ3 = 0
−E3ξ0 − cB2ξ1 + cB1ξ2 − λ ξ3 = 0

The determinant equal to zero yields

λ∆0 + E1∆1 + E2∆2 + E3∆3 = 0

where

∆0 =

∣∣∣∣∣
−λ −cB3 cB2

cB3 −λ −cB1

−cB2 cB1 −λ

∣∣∣∣∣ = −λ(λ2 + |cB|2)

∆1 = −

∣∣∣∣∣
−E1 −cB3 cB2

−E2 −λ −cB1

−E3 cB1 −λ

∣∣∣∣∣ = λ2E1 − λ(E2cB3 − E3cB2) + (E · cB)cB1

∆2 =

∣∣∣∣∣
−E1 −λ −cB2

−E2 −cB3 −cB1

−E3 −cB2 −λ

∣∣∣∣∣ = λ2E2 − λ(E3cB1 − E1cB3) + (E · cB)cB2

∆3 = −

∣∣∣∣∣
−E1 −λ −cB3

−E2 cB3 −λ

−E3 −cB2 cB1

∣∣∣∣∣ = λ2E3 − λ(E1cB2 − E2cB1) + (E · cB)cB3

which gives an equation for eigenvalues λ

λ4 − λ2(E2 − c2B2)− c2(E ·B)2 = 0

Thus

λ = ± 1√
2

√
±

√
(E2 − c2B2)2 + 4c2(E ·B)2 + (E2 − c2B2)

= ±1
2

√
±

√
(FαβFαβ)2 + (F ∗

αβFαβ)2 − FαβFαβ

= λR, λI

λR = ± 1√
2

√√
(E2 − c2B2)2 + 4c2(E ·B)2 + (E2 − c2B2)

λI = ±i
1√
2

√√
(E2 − c2B2)2 + 4c2(E ·B)2 − (E2 − c2B2)
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The components of the eigenvectors can be written as

ξ1 =
∆1

∆0
ξ0; ξ2 =

∆2

∆0
ξ0; ξ3 =

∆3

∆0
ξ0

We see that for imaginary λ , ξµ is complex; for real λ , ξµ is real; and for a
complex conjugated imaginary λI pair, the eigenvectors are also a complex
conjugate pair. It can also be shown that for λ 
= 0 , −(ξ0)2 +(ξ1)2 +(ξ2)2 +
(ξ3)2 = 0 and thus the eigenvectors are null vectors.

End of Example 8.4.2

Example 8.4.3
We now classify the electromagnetic fields by their eigenvalues and eigen-

vectors.

(1) Wrench field: λ 
= 0

(a) E2 − c2B2 
= 0 , E · cB 
= 0 ; λR 
= 0 , λI 
= 0 .

E2 − c2B2 = 0 , E · cB 
= 0 ; λR = λI = (E · cB)1/4 .

(b) E2 − c2B2 > 0 , E · cB = 0 ; λR 
= 0 , λI = 0 .

(c) E2 − c2B2 < 0 , E · cB = 0 ; λR = 0 , λI 
= 0 .

For E · B 
= 0 and
∣∣E∣∣ 
= ∣∣cB

∣∣ . If
∣∣E∣∣ >

∣∣cB
∣∣ , we let E = x̂E1 and

cB = x̂cB1 + ŷcB2 . Eq. (E8.4.2.1) becomes




λ E1 0 0
−E1 −λ 0 cB2

0 0 −λ −cB1

0 −cB2 cB1 −λ


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (E8.4.3.1)

From (8.4.37), we find that for an observer S moving with velocity v =
ẑcB2/E1 , the magnetic field in y direction is zero. We call this observer a
canonical observer and

Fµν =




0 E1 0 0
−E1 0 0 0

0 0 0 −cB1

0 0 cB1 0


 (E8.4.3.2)

the canonical form of the field tensor. All observers moving along the x̂
direction of coordinate system ( ct, x, y, z ), in which E = x̂E and B = x̂B1 ,
are canonical observers.
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The eigenequation takes the form


λ E1 0 0
−E1 −λ 0 0

0 0 −λ −cB1

0 0 cB1 −λ


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (E8.4.3.3)

The eigenvectors and eigenvalues are determined from λ = ±E1 , ξ1 = ±ξ0

and λ = ±icB1 , ξ3 = ∓iξ2 . This is invariant for all observers moving along
the x̂ direction.

For E ·B = 0 and
∣∣E∣∣ >

∣∣cB
∣∣ , λ = ±

√
E2 − c2B2 . Let E = x̂E and

cB = ŷcB . Eq. (E8.4.3.3) becomes

−λ E 0 0
−E λ 0 cB

0 0 λ 0
0 −cB 0 λ


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (E8.4.3.4)

From (8.4.37), we find that for an observer S moving with velocity in the
v = ẑcB/E , the magnetic field is zero. This yields the canonical form of the
field tensor

Fµν =




0 E 0 0
−E 0 0 0
0 0 0 0
0 0 0 0


 (E8.4.3.5)

and the eigenequation becomes

−λ E 0 0
−E λ 0 0
0 0 λ 0
0 0 0 λ


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (E8.4.3.6)

This gives ξ1 = ±ξ0 and ξ1 = ξ2 = 0 . All canonical observers moving along
the x̂ axis of this canonical system only observe an electric field.

(2) Wave field: λ = 0 , E2 − c2B2 = 0 , E · cB = 0 .

(a) Free-space wave fields: E ·B = 0 and
∣∣E∣∣ =

∣∣cB
∣∣ , λ = 0. Let E = x̂E

and cB = ŷE . The canonical form of the field tensor is

Fµν =




0 E 0 0
−E 0 0 E

0 0 0 0
0 −E 0 0


 (E8.4.3.7)
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Eq. (E8.4.3.4) becomes




0 E 0 0
−E 0 0 E

0 0 0 0
0 −E 0 0


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (E8.4.3.8)

We have the solution ξ0 = ξ3 and ξ1 = 0 while ξ2 is left arbitrary. This
defines a two-dimensional subsurface containing the y -axis and the eigenvec-
tor (ξ0, 0, ξ2, ξ0) . Kinematically, it corresponds to the motion, with the speed
of light, of a linear element having the same direction as the magnetic field
in the ŷ direction.

End of Example 8.4.3

Exercise 8.4.1
For the free-space wave fields, if we let E = ŷE and cB = −x̂E , the

canonical form of the field tensor is

Fµν =




0 0 E 0
0 0 0 0
−E 0 0 E

0 0 −E 0


 (Ex8.4.1.1)

Eq. (E8.4.3.4) becomes


0 0 E 0
0 0 0 0
−E 0 0 E

0 0 −E 0


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (Ex8.4.1.2)

We have the solution ξ0 = ξ3 and ξ2 = 0 while ξ1 is left arbitrary. This de-
fines a two-dimensional subsurface containing the x -axis and the eigenvector
(ξ0, ξ1, 0, ξ0) . Kinematically, it corresponds to the motion, with the speed of
light, of a linear element having the same direction as the magnetic field in
the x̂ direction.

End of Exercise 8.4.1

Exercise 8.4.2
Consider the dual field tensor

F ∗
µν =




0 cBx cBy cBz

−cBx 0 Ez −Ey

−cBy −Ez 0 Ex

−cBz Ey −Ex 0


 (Ex8.4.2.1)
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For free space fields, E · B = 0 and
∣∣E∣∣ =

∣∣cB
∣∣ , λ = 0. Let E = x̂E and

cB = ŷE . The canonical form of the field tensor is

F ∗
µν =




0 0 E 0
0 0 0 0
−E 0 0 E

0 0 −E 0


 (Ex8.4.2.2)

Eq. (E8.4.3.4) becomes


0 0 E 0
0 0 0 0
−E 0 0 E

0 0 −E 0


 ·




ξ0

ξ1

ξ2

ξ3


 = 0 (Ex8.4.2.3)

We have the solution ξ0 = ξ3 and ξ2 = 0 while ξ1 is left arbitrary. This de-
fines a two-dimensional subsurface containing the x -axis and the eigenvector
(ξ0, ξ1, 0, ξ0) . Kinematically, it corresponds to the motion, with the speed of
light, of a linear element having the same direction as the electric field in the
x̂ direction.

End of Exercise 8.4.2

Example 8.4.4
Let the two real eigenvectors corresponding to the real eigenvalues be de-

noted by pµ and qµ , and the complex conjugated eigenvectors corresponding
to the imaginary eigenvalues be denoted by mµ and mµ . The field tensor
can be written as

Fµν = λR(pµqν − pνqµ) + λI(mµmν −mνmµ)
pµpµ = qµqµ = mµmµ = mµmµ = 0
pµqµ = −mµmµ = 1

pµmµ = pµmµ = qµmµ = qµmµ = 0

for then

Fµν = −F νµ

ξµξµ = 0
Fµνpν = λR pµ, Fµνqν = −λR qµ

Fµνmν = iλI mµ Fµνmν = −iλI mµ

Now the subclasses of the wrench field tensor can be represented as:
(a) λR 
= 0 , λI 
= 0 , Fµν = λR(pµqν − pνqµ) + iλI(mµmν −mνmµ)
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(b) λR 
= 0 , λI = 0 , Fµν = λR(pµqν − pνqµ)
(c) λR = 0 , λI 
= 0 , Fµν = iλI(mµmν −mνmµ)
With the canonical forms of the field tensor, the normalized eigenvectors take
the following forms:

pµ =




1/
√

2
1/
√

2
0
0


 ; qµ =




1/
√

2
−1/
√

2
0
0


 ; mµ =




0
0

1/
√

2
−i/
√

2


 ; mµ =




0
0

1/
√

2
i/
√

2




For the wave field, Fµν is completely degenerated, since λR = λI = 0 .
With the eigenequation in (Ex8.4.2.3), we write in the canonical coordinate
system the eigenvectors as follows:

pµ =




1/
√

2
0
0

1/
√

2


 ; xµ =




0
1
0
0




The field tensor can be represented by

Fµν = A(pµxν − pνxµ))
xµxµ = 1

We see that the real null vector pµ points into the future, and x is a space-
like vector.

End of Example 8.4.4

C. Constitutive Relations in Tensor Form

The constitutive relations in tensor notation provide a relation for the
excitation tensor Gαβ and the field tensor Fαβ . We write

Gαβ =
1
2

CαβρσFρσ (8.4.38)

We call the fourth-rank tensor Cαβρσ the constitutive tensor. Because
of the skew-symmetric properties of Fρσ and Gαβ , we see that

Cαβρσ = −Cβαρσ = −Cαβσρ = Cβασρ (8.4.39)

The constitutive tensor is skew-symmetric with respect to the first pair,
as well as the second pair, of indices. In general, a fourth-rank tensor in
a four-dimensional space possesses 256 elements. Because of this skew
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symmetry, the first pair of indices has six independent elements and so
does the second pair, giving rise to a total of 36 independent elements.
Thus the 6 × 6 constitutive matrix C is a faithful representation of
the constitutive tensor.

We shall establish relations between the tensor elements of Cαβρσ

and the matrix elements of C in (8.3.2) by making use of (8.4.32)
– (8.4.35). It follows that cDi = −G0i = −C0i0jF0j − 1

2C0ilmFlm =
−C0i0jE0j + 1

2C0ilmεjlmcBj = pijEj + lijcBj and Hi = −1
2εijkGjk =

−1
2εilkC lk0jF0j− 1

4εijkCjklmFlm = −1
2εilkC lk0jEj+ 1

4εilkC lkpqεjpqcBj =
mijEj + qijcBj . We find

pij = −C0i0j (8.4.40a)

lij =
1
2

εjklC
0ikl (8.4.40b)

mij = −1
2

εiklC
kl0j (8.4.40c)

qij =
1
4

εilkC lkpqεjpq (8.4.40d)

Likewise, G0i = C0i0jF0j + 1
2C0ipqFpq = −cDi = −pijEj − lijcBj =

−pijEj + 1
2 lijεjpqFpq and Gkl = Ckl0jF0j + 1

2CklpqFpq = −εiklHi =
−εiklmijEj − εiklqijcBj = −εiklmijF0j + 1

2εiklqijεjpqFpq . We find

C0i0j = −pij (8.4.41a)
C0ipq = lijεjpq (8.4.41c)

Ckl0j = −mijεikl (8.4.41d)

Cklpq = qijεiklεjpq (8.4.41b)

The symmetric conditions for lossless media can be written as

Cαβρσ = (Cρσαβ)∗ (8.4.42)

which yields pij = p∗ji , qmn = q∗nm , and lkn = −m∗
nk as discussed in

Chapter 3.
At this point it is appropriate to mention the work of von Tischer

and Hess [1969] on a covariant description of a conducting medium.
Ohm’s law relates the conduction current to the electric field by con-
ductivity, which can be isotropic as well as anisotropic. For moving
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anisotropic conducting media, von Tischer and Hess introduced a new
three-dimensional vector, together with the conducting current, to form
a four-dimensional skew-symmetric tensor just like Fµν and Gµν .
They thus obtained a covariant description of what we may call bian-
isotropic conducting media. The implications of the new vector have
not been explored.

Other covariant descriptions of moving isotropic media exist, such
as

(δαρ + uαuρ)Jρc = σuβFαβ

for Ohm’s law and

Gλµ = Fλµ + (n2 − 1)(Fµσuσuλ − Fλσuσuµ)

for isotropic nonconducting media. The velocity four-vector uα =
(1, β) . Thus the manifestly covariant descriptions explicitly display
the velocity dependence. When reference is made to the rest frame of
the medium, uα = (1, 0, 0, 0) and the two equations yield J = σE,
D = εE, and H = B/µ .

Problems

P8.4.1
Show that ηαβρσ = −1 when α, β, ρ, σ is even permutation of 0, 1, 2, 3 ,

ηαβρσ = 1 when α, β, ρ, σ is odd permutation of 0, 1, 2, 3 , and ηαβρσ = 0
when any two of α, β, ρ, σ is equal.

P8.4.2
Show that the eigenvector of an antisymmetric tensor corresponding to

a non-zero eigenvalue is null.

P8.4.3
In general, there are two real null eigenvectors for the electromagnetic

field tensor Fµν , and when Fµν is degenerate, there is only one real null
eigenvector. Show that

p[αFµ]νpν = 0
Fµνpν = 0



954 8. Relativity

8.5 Hamilton’s Principle and Noether’s Theorem

A. Action Integral

Starting from a postulated Lagrangian density, the variational princi-
ple provides an elegant and systematic way of deriving the equations
of motion and the conservation laws of a physical system. In the case
of macroscopic electromagnetic fields the Lagrangian density is postu-
lated as

L[xα,Aα(xµ), Aα,β(xµ)] = −1
4

FαβGαβ + JαAα

= −1
8

Cαβρσ(Aα,β −Aβ,α)(Aρ,σ −Aσ,ρ) + JαAα

(8.5.1)

The Lagrangian density L(x, Aα, Aα,β) is a function of the space-time
coordinates xα, the potential functions Aα, and the space-time deriva-
tives of the potential functions Aα,β . The potential functions Aα are
also called state functions. The charge current four-vector Jα is an
externally given state function.

The variational principle applies to an action integral I, defined
by integration of the Lagrangian density over a four-dimensional space
R :

I =
∫
R

d4x L[xα, Aα(xµ), Aα,β(xµ)] (8.5.2)

The variation of the action integral is caused by either a variation of the
state functions Aα or a variation of the domain of integration R which
induces variations on the space-time-dependent state functions Aα,
and on the externally given Jα because both are space-time dependent.

Joseph-Louis Lagrange (25 January 1736 – 10 April 1813) was born in Turin,
Sardinia-Piedmont (Italy) and died in Paris, France. In 1755, he impressed
Euler with his method of maxima and minima on the tautochrone problem,
and was appointed professor of mathematics at the Royal Artillery School
in Turin on 28 September. In 1756, he applied the calculus of variations to
mechanics and advocated for the principle of least action. On 6 November
1766 Lagrange succeeded Euler as Director of Mathematics at the Berlin
Academy of Science. On 18 May 1787 he left Berlin to become a member of
the Académie des Sciences in Paris, where he remained for the rest of his life.
In 1788 he published mécanique analytique in which Lagrange transformed
mechanics into a branch of mathematical analysis.
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B. Hamilton’s Principle and Maxwell Equations

In Hamilton’s principle, the domain of integration R is not varied.
The state function Aα inside the domain R is varied by an arbitrary
and infinitesimally small amount δAα :

A′
α(xµ) = Aα(xµ) + δAα(xµ) (8.5.3)

where A′
α are new state functions. The state functions on the boundary

of R are not varied, where δAα = 0. The principle requires that the
action integral be stationary under such variations:

δI =
∫
R

d4x [L′(xα, A′
α, A′

α,β)− L(xα, Aα, Aα,β)] = 0 (8.5.4)

The new Lagrangian density L′(xα, A′
α, A′

α,β) is related to the old
Lagrangian density L as follows:

L′(xα, A′
α, A′

α,β) = L(xα, Aα, Aα,β) +
∂L

∂Aα
δAα +

∂L

∂Aα,β
δAα,β

= L(xα, Aα, Aα,β) +
∂L

∂Aα
δAα

− d

dxβ

(
∂L

∂Aα,β

)
δAα +

d

dxβ

(
∂L

∂Aα,β
δAα

)

Substituting in (8.5.4) yields

∫
R

d4x

{[
∂L

∂Aα
− d

dxβ

(
∂L

∂Aα,β

)]
δAα +

d

dxβ

(
∂L

∂Aα,β
δAα

)}
= 0

(8.5.5)
The last term vanishes after integration because of the condition that
δAα vanishes on the boundary of R. Since δI vanishes for all varia-
tions of the state function δAα, we have

∂L

∂Aα
− d

dxβ

(
∂L

∂Aα,β

)
= 0 (8.5.6)

which is known as the Euler-Lagrangian equation.
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Leonhard Euler (15 April 1707 – 18 September 1783)
Leonhard Euler was born in Basel, Switzerland and died in St Petersburg,

Russia. He completed his studies at the University of Basel in 1726 and in 1727
joined the St. Petersburg Academy of Science. His book Mechanica (1736–
1737) provided a major advance in mechanics. From 1741 to 1766, he produced
around 300 articles at the Berlin Academy. In 1771, he became totally blind,
produced almost half of his total works, most were published posthumously.

The Maxwell equation

Fαβ,γ + Fβγ,α + Fγα,β = 0 (8.5.7)

is a direct consequence of the definition

Fαβ = Aα,β −Aβ,α (8.5.8)

The other Maxwell equation,

Gβα
,β = Jα (8.5.9)

can be derived from the Euler-Lagrangian equation by using the equa-
tions ∂L/∂Aα = Jα and ∂L/∂Aα,β = −Gαβ .

C. Noether’s Theorem and Energy Momentum Tensors

In Noether’s theorem the domain of integration R is rendered an in-
finitesimal transformation, which induces variations on both state func-
tions Aα and Jα . Suppose that the domain R is mapped onto a new
domain R′ such that

x′
α = xα + δxα (8.5.10)

This mapping transplants a state function from xα to x′
α :

A′
α(x′) = Aα(x) + δAα (8.5.11)

Note that δAα gives the difference between the new state function
A′
α(x′) at the new location x′

α and the old state function Aα(x) at
the old location xα before it is transplanted. Usually the state func-
tions are not explicit functions of space-time coordinates. Consider an
infinitesimal translation of the domain R :

x′
α = xα + εα (8.5.12)
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From the active viewpoint of a coordinate transformation, all state
functions are transplanted by an infinitesimal amount. The new and the
old state functions are equal in magnitude, and there is no change in the
orientation. From the passive viewpoint of coordinate transformation,
the coordinate axes are translated by an infinitesimal amount and the
state functions are left unchanged. We have

δAα = 0 (8.5.13)

Next, consider an infinitesimal rotation of the coordinate axes:

x′
α = xα − ωβ

αxβ (8.5.14)

The induced variations on the state functions are

δAα = ωβ
αAβ (8.5.15)

From the active viewpoint, the state functions are rotated by an in-
finitesimal amount. From the passive viewpoint, the amount is equal
to the change of the component projections on the new and the old
coordinate axes.

The variation denoted by δAα is rather awkward because it com-
pares two state functions at different locations. We define instead

δAα = A′
α(x′)−Aα(x′) = A′

α(x)−Aα(x) (8.5.16)

to denote the difference between the new and the old state functions
at the same location. The second equality is valid up to the first order,
as shown here:

δAα = A′
α(x′)−Aα(x′)

= A′
α(x)−Aα(x) + (A′

α,β −Aα,β)δxβ + · · ·
≈ A′

α(x)−Aα(x) (8.5.17)

As a matter of fact, all first-order quantities with infinitesimal space-
time separation can be shown to be equal. The relation between δAα

and δAα is easily established:

δAα = A′
α(x′)−Aα(x′)

= A′
α(x′)−Aα(x)− [Aα(x′)−Aα(x)]

= δAα −Aα,βδxβ
(8.5.18)
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Note that, when the domain variation is a translation, δAα = 0 be-
cause the new state function is the same as the old one. But δAα 
= 0
because the new state function at x′

α is transplanted from a neigh-
boring location and is certainly different from the old state function at
x′
α, which has been transplanted to another location.

Under the infinitesimal domain variations, variations are induced
on both the state functions Aα, Aα,β and the externally given Jα .
The new Lagrangian density is related to the old one by

L′(x′
α, A′

α, A′
α,β) = L + L,αδxα +

∂L

∂Aα
δAα +

∂L

∂Aα,β
δAα,β +

∂L

∂Jα
δJα

= L +
dL

dxρ
δxρ +

∂L

∂Aα
δAα +

∂L

∂Aα,β
δAα,β +

∂L

∂Jα
δJα

where

dL

dxρ
= L,ρ +

∂L

∂Aα
Aα,ρ +

∂L

∂Aα,β
Aα,βρ +

∂L

∂Jα
Jα,ρ

The new domain of integration R′ is related to the old domain of
integration by the Jacobian, which is

det
∣∣∣∣∂x′α

∂xβ

∣∣∣∣ = 1 + (δxα),α (8.5.19)

The variation of the action integral under this domain variation be-
comes, to the first order,

δI =
∫
R′

d4x′ L′(x′
α, A′

α, A′
αβ)−

∫
R

d4x L(xα, Aα, Aα,β)

=
∫
R

d4x

{
[1 + (δxα),α]

(
L +

dL

dxρ
δxρ +

∂L

∂Aα
δAα +

∂L

∂Jα
δJα

+
∂L

∂Aα,β
δAα,β

)
− L

}

=
∫
R

d4x

{[
∂L

∂Aα
− d

dxβ

(
∂L

∂Aα,β

)]
δAα

+
d

dxρ

[
Lδxρ +

∂L

∂Aα,ρ
δAα

]
+

∂L

∂Jα
δJα

}
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Note that, although this variation of the action integral is derived from
induced variations caused by infinitesimal domain changes, the result
is fairly general and includes Hamilton’s principle as a special case. Let
us keep the domain unchanged; we then have δxρ = 0 , δAα = δAα.
The externally given Jα is also not varied: δJα = 0 . This result is
seen to reduce to (8.5.5).

Noether’s theorem requires that the action integral be stationary,
and that the Euler-Lagrangian equations be satisfied for the state func-
tions Aα under the domain variations. As a result, we obtain

d

dxρ

[
Lδxρ +

∂L

∂Aα,ρ
δAα

]
+

∂L

∂Jα
δJα = 0 (8.5.20)

This equation gives all of the conservation laws.

Emmy Noether (23 March 1882 – 14 April 1935)
Emmy Noether obtained her doctorate degree in 1907 from the University

of Erlangen, where her father Max Noether was a professor. During the next
ten years she worked with her father at the Mathematics Institute in Erlangen.
In 1915 Noether started teaching at the University of Göttingen and in 1919
officially became a member of its faculty. Noether’s theorem was her first
piece of work at Göttengen in 1915. In 1933, she became a visiting professor
at Bryn Mawr College in US and also lectured at the Institute for Advanced
Study in Princeton.

We shall first consider the case of translation, which yields energy
momentum tensors for macroscopic electromagnetic fields. The case of
four-dimensional rotation is then considered, and the angular momen-
tum conservation laws are derived. Under an infinitesimal translation,
we have

δAα = −Aα,βεβ (8.5.21a)

δJα = −Jα,βεβ (8.5.21b)

Equation (8.5.20) gives

εβ
[

d

dxρ

(
−1

4
FµνGµνδρβ + JαAαδρβ + GαρAα,β

)
−AαJα,β

]
= 0

This equation can be expressed in terms of field variables alone. After
some manipulation and by use of the fact that GαρAβ,αρ = 0, we
eliminate the potentials and obtain

Tαβ
,α = −fβ (8.5.22)
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where

Tαβ = −1
4

ηαβFρσGρσ + ηµβGραFρµ

= −1
2

ηαβ [H · cB − E · cD] + ηµβGραFρµ (8.5.23)

is the four-dimensional energy momentum tensor, and

fβ = JαFαβ (8.5.24)

In three-dimensional vector notation, we find that

fβ =
[

J · E
cρE + J × cB

]
(8.5.25)

Tαβ =
[

cW c2G

S cT

]
(8.5.26)

where

Electromagnetic energy W =
1
2
(D · E + B ·H)

Energy flow density S = E ×H

Momentum density G = D ×B

Maxwell stress tensor T =
1
2
(D · E + B ·H)I −D E −B H

The conservation law (8.5.22), written in vector notation, takes the
form

∇ · S +
∂W

∂t
= −J · E (8.5.27a)

∇ · T +
∂G

∂t
= −(ρE + J ×B) (8.5.27b)

Under an infinitesimal rotation, we have

δAα = δAα −Aα,βδxβ = ωβ
αAβ −Aα,βωβ

ρxρ (8.5.28a)

δJα = ωβ
αJβ − Jα,βωβ

ρxρ (8.5.28b)



8.5 Hamilton’s Principle and Noether’s Theorem 961

After some manipulations, (8.5.20) gives

ωαβ

[
d

dxρ
(T ραxβ + GαρAβ + GβρAα) + JρF

ραxβ + ηαβJρAρ

]
= 0

(8.5.29)
Interchanging α and β, we have

ωβα

[
d

dxρ
(T ρβxα + GαρAα + GβρAβ) + JρF

ρβxα + ηβαJρAρ

]
= 0

(8.5.30)
We add the two equations above and note that ωβα = −ωαβ , obtaining

d

dxρ
Mραβ = xαJρF

ρβ − xβJρF
ρα (8.5.31)

where
Mραβ = T ραxβ − T ρβxα (8.5.32)

is the four-dimensional angular momentum tensor for electromagnetic
fields.

Problems

P8.5.1
To determine eigenvectors and eigenvalues of the energy tensor, we write

Tαβξβ = ηαβλξβ

The determinant of the above equation must be zero. Let z axis be perpen-
dicular to both E and H , determine Tαβ and show that eigenvalue

λ2 =
1
16

ε

µ
[(FαβFαβ)2 + (F ∗

αβFαβ)2]
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Answers

P8.1.1

E = EB ; B = BB

H =
1
µo

BB −MB ; D = εoEB + PB

J = JB ; ρ = ρB

P8.2.1

(e) γ = 1/0.6, twin A will be 30/0.6 = 50 years old.

P8.2.2

The velocity of S′′ w.r.t. S′ is β21 =
a1 · β2/γ1 − β1

1− β1 · β2

.

P8.2.3

B takes 7 years to complete the round trip, while the elapsed time on
Earth is 12 years.

P8.2.4

l = l′/γ .

P8.2.5

(c)

k = 1 : (1 + β ·Q′
)A1 = −1

k = 2 : (1 + β ·D′
)A2 = −1

2
(β ·Q′(2)

)A2
1

k = 3 : (1 + β ·D′
)A3 = 1(β ·Q′(2)

)A1 A2 −
1
3!

(β ·Q′(3)
)A3

1

P8.2.6

On side AB, cρ = γβ · J ′
= γβJ ′

0. On side CD, cρ = γβ · J ′
= −γβJ ′

0.

On sides BC and DA, since β ·J ′
= 0 , ρ = 0. Thus there is negative charges

on CD and positive charges on AB. A net electric dipole moment exists along
CB and DA direction.

P8.2.7

Suppose that in S frame

E = ẑE0

cB = x̂E0 + ẑ
√

3E0
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Consider a S′ frame moving in ŷ direction with velocity β . In S′

frame, we have

E
′
= x̂
√

3γβE0 + ẑγ(E0 − βE0)

cB = x̂γ(E0 − βE0) + ẑ
√

3γE0.

We want E and B fields to be parallel. Let a be the constant of
proportionality, then

√
3γβE0 = aγ(E0 − βE0)

γ(E0 − βE0) = a
√

3γE0.

Eliminating E0 and a from the above equation, we get β2−5β +1 = 0

which gives β =
5−
√

25− 4
2

= 0.21.

P8.2.8

β = cB0/E0 , and E′
x = γ(E0 − βcB0) = E0

√
1− c2B2

0/E2
0 .

Since |E′|2−|cB
′|2 = |E|2−|cB|2 is an invariant quantity, it is impossible

to find an observer moving with velocity less than c who observes only
a magnetic field.

P8.2.9

(a) In the frame of reference of S′ where q1 is stationary at the origin of
reference frame S ,

E
′
=

q1

4πεo
· r′

r′3
, B′ = 0

In the frame of reference of S :

E = x̂γ E′
x + ŷγ E′

y + ẑE′
z =

q1

4πεo
(x̂γ

x′

r′3
+ ŷγ

y′

r′3
+ ẑ

z′

r′3
)

where γ = 1/
√

1− β2
1 and β1 = v1/c . By Lorentz Transformation,

x′ = x, y′ = y, z′ = γz

r′2 = x′2 + y′2 + z′2 = γ2(
x2 + y2

γ2
+ z) = γ2

[
(1− β2

1)r2 +
(
β1 · r

)2
]

which yields

E =
q1

4πεo
· (1− β2

1)r[
(1− β2

1)r2 + (β1 · r)2
]3/2
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Since Bz = 0, B⊥ = γ
c β1 × E

′
⊥ = 1

cβ1 × E⊥ , we have

B =
1
c

β1 × E =
q1

4πcεo
· (1− β2

1)β1 × r[
(1− β2

1)r2 + (β1 · r)2
]3/2

(b) F 12 = q2(E + v2 ×B) = q2(1− β2 · β1)E + q2(β2 · E)β1
(c) For the case r = dŷ , v1 = v2 = ẑv , and q1 = q2 = −q , we have

E =
(−q)

4πεod2
ŷ ; F 12 =

(1− β2)q2

4πεod2
ŷ

They repel each other.

P8.2.10

(a) The electric field generated by an infinite line source is E = ŷ (−λ)
2πε0d

. The

electric force for length l is F e = ŷ(−λl) (−λ)
2πε0d

= ŷ λ2 l
2πε0d

. The magnetic

field generated by infinite current source is B = −x̂µ0v(−λ)
2πd . The mag-

netic force for length l is F c = −ŷ µ0v
2λ2 l

2πd . Total force for length l in
frame S is F = F e + F c = ŷ λ2 l

2πε0d
(1− v2

c2
) > 0 .

The force is repulsion.
(b) In frame S′ , the current I ′ = 0 . Total force acted by one line on length l′

on the other line in S′ frame (only electrostatic force exists between two
relatively static infinite line charge) is F

′
= F

′
e = ŷ′ λ′2 l′

2πε0d
, where ŷ′ = ŷ

due to the velocity of frame is along ẑ . The relativistic transformation
of length is l′ = γ l . Based on charge conservation Q = lλ = l′λ′ , we
get line charge density λ′ = λ/γ . Transform the force in S′ to frame S
(only y component is not zero):

Fy =
1
γ

F ′
y = ŷ

λ2l

2πε0d

1
γ2

= ŷ
λ2 l

2πε0d
(1− v2

c2
) > 0

The force is repulsion in lab frame S .
(c) Fields in frame S′ : Only electrostatic field exists between two relatively

static infinite line charges: E
′
= ŷ (−λ′)

2πε0d
= ŷ −λ/γ

2πε0d
. Fields in frame S :

Frame S moves with vs = −vẑ with respect to S′

E = ŷEy = ŷγE′
y = ŷ

(−λ)
2πε0d

B = −x̂Bz =
γ

c

(
−v

c
× E

′
)

= −x̂
v

c2

(−λ)
2πε0d

Finally, we get the same fields as method 1, which give the same force.

P8.2.11

(a) F (+λ)(+q) = qE = q λ
2πεodo

ŷ
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z

y
+q

−ρ

F

r

θ

v

do

Figure A8.2.11.1 Observer S′ moves with velocity v relative to observer S.

The static positive line charge will repel the static positive point charge.
(b) F (+λ)(−q) = −F (+λ)(+q) = −q λ

2πεodo
ŷ

The static positive line charge will attract the moving negative point
charge.

(c) Calculate F (−λ)(+q) . In this case, v1 = vx̂ , v2 = 0 .

F (−λ)(+q) = q

∫ θ=π
2

θ=−π
2

dE(θ)

= q

∫ θ=π
2

θ=−π
2

1
4πεo

· (1− β2)(−r)[
(1− β2)r2 + (v·(−r)c )2

] 3
2
· d(−λdotanθ)

= q

∫ π
2

−π
2

1
4πεo

· (1− β2)r(sinθx̂ + cosθŷ)[
(1− β2)( do

cosθ )
2 + (vrsinθc )2

] 3
2
· (−λdo)sec2θdθ

= (−q)
∫ π

2

−π
2

λ(1− β2)
4πεodo

cos θ

(1− β2 + β2 sin2 θ)
3
2

ŷdθ

= − qλ

2πεodo
ŷ

The moving negative line charge will attract the static positive point
charge.

(d) Using similar derivation, we have

F (−λ)(−q) = −(1− β2)F (−λ)(+q) = (1− β2)
qλ

2πεodo
ŷ

The moving negative line charge will repel the moving negative point
charge.



966 8. Relativity

(e) F seg = F (+λ)(+q) + F (−λ)(+q) + F (+λ)(−q) + F (−λ)(−q) = −β2 qλ
2πεodo

ŷ
The wire will attract the segment! Also

F seg = −β2 qλ

2πεodo
ŷ =

v2

c2

qλ

2πεodo
(−ŷ) = qvµo

λv

2πdo
(−ŷ)

= (−qvx̂)× µo

(
− λv

2πdo
ẑ

)
= J × µoH = J ×B

P8.2.12

The discrepancy lies in the wrong assumption that the current-carrying
wire can be regarded as moving negative charges alone. In fact, the current-
carrying wire is electrically neutral. It consists of static positive charges and
moving negative charges. See Problem 8.2.11.

P8.3.1

(a) In the laboratory frame,

CEB = L
−1

6 C
−1

EBL6

= γ2




p′−β2q′ 0 0 ?′(1− β2) β(−p′ + q′) 0
0 (p′ − q′β2) 0 β(p′ − q′) ?′(1− β2) 0
0 0 p′

γ2 0 0 2
γ2

−2′(1−β2) −β(p′ − q′) 0 (−p′β2 + q′) 0 0
β(p′−q′) −?′(1− β2) 0 0 (−p′β2 + q′) 0

0 0 −2
γ2 0 0 q

γ2




(b) For a biaxial medium in its rest frame S′

ε
′
=

[
ε′x

ε′y
ε′z

]

C
′
EB =

[
cε

′
0

0
1

cµ′ I

]
.

By brute force matrix multiplication, in ways exactly the same as done
previously for the moving biisotropic medium, we obtain

CEB = γ2·


cε′x−
β2

cµ′ 0 0 0 β(−cε′x + 1
cµ′ ) 0

0 cε′y − β2

cµ′ 0 β(cε′y − 1
cµ′ ) 0 0

0 0 cε′z
γ2 0 0 0

0 β(−cε′y + 1
cµ′ ) 0 −cε′yβ2 + 1

cµ′ 0 0
β(cε′x− 1

cµ′ ) 0 0 0 −β2cε′x + 1
cµ′ 0

0 0 0 0 0 1
γ2cµ′



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We notice that both moving biisotropic medium and moving biaxial
medium are bianisotropic.

P8.4.1

ηαβρσ = ηαµηβνηργησωηµνγω . For instance, let α = 0 , β = 1 , ρ = 2 ,
σ = 3 . We find that η0123 = η00η11η22η33 = −η0123 = −1 .

P8.4.2

The eigenequation is Fµνξν = ληµνξν

Contracting by ξµ , we obtain ληµνξµξν = Fµνξµξν = 0
Therefore for λ 
= 0 , ξµξν = 0 .

P8.4.3

For the wrench field

Fµν = λR(pµqν − pνqµ) + iλI(mµmν −mνmµ)
pµpµ = qµqµ = mµmµ = mµmµ = 0
pµqµ = −mµmµ = 1

pµmµ = pµmµ = qµmµ = qµmµ = 0

we find p[αFµ]νpν = pαFµνpν − pµFανpν = pαpµ − pµpα = 0 .
For the wave field

Fµν = A(pµyν − pνyµ))
yµyµ = 1

we find Fµνpν = A(pµyν − pνyµ))pν = 0 .

P8.5.1

T00 =
c

2
(D · E + B ·H)

T11 =
c

2
[(D1E1 + B1H1)− (D2E2 + B2H2)]

T22 = − c

2
[(D1E1 + B1H1)− (D2E2 + B2H2)] = −T11

T33 =
c

2
(D · E + B ·H) = T00

T12 = −c(D1E2 + B1H2)
T21 = −c(D2E1 + B2H1) = T12

T03 = c2(D1B2 −D2B1)
T30 = (E1H2 − E2H1) = T03

and we have


T00 + λ 0 0 T03

0 T11 − λ T12 0
0 T21 T22 − λ 0

T30 0 0 T33 − λ


 ·




ξ0

ξ1

ξ2

ξ3


 = 0
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The eigenvalues are determined by setting∣∣∣∣∣∣∣
T00 + λ 0 0 T03

0 T11 − λ T12 0
0 T12 −T11 − λ 0

T03 0 0 T00 − λ

∣∣∣∣∣∣∣ = 0

which yields

λ2 = T 2
00 − T 2

03 =
c2

4
(D · E + B ·H)2 − c4(D1B2 −D2B1)2

=
1
4
[c2(D · E + B ·H)2 − 4c4(D1B2 −D2B1)2]

=
1
4
[c2(D1E1 + D2E2 + B1H1 + B2H2)2 − 4c4(D1B2 −D2B1)2]

=
1
4
[c2(εE2

1 + εE2
2 + εc2B2

1 + εc2B2
2)2 − 4(

1
cµ

E1cB2 −
1
cµ

E2cB1)2]

=
1
16

ε

µ
[4(2E2

1 + 2E2
2 + c2B2

1 + c2B2
2 − E2

1 − E2
2)2 − 16(E1cB2 − E2cB1)2]

=
1
16

ε

µ
[(FαβFαβ)2 + 16(E2

1 + E2
2)2 + 16(E2

1 + E2
2)(c2B2

1 + c2B2
2 − E2

1 − E2
2)

− 16(E1cB2 − E2cB1)2]

=
1
16

ε

µ
[(FαβFαβ)2 + 16(E2

1 + E2
2)(c2B2

1 + c2B2
2)− 16(E1cB2 − E2cB1)2]

=
1
16

ε

µ
[(FαβFαβ)2 + (F ∗

αβFαβ)2]

where

FαβFαβ = 2(|cB|2 − |E|2) = 2(c2B2
1 + c2B2

2 − E2
1 − E2

2)

F ∗
αβFαβ = −4cB · E = −4c(B1E1 + B2E2)
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half-power (HPBW), 690.

Beckmann, P., 970.
Beker, B., 972.
Bennett, C. L., 970.
Bergmann, P. G., 970.
Bernstein polynomials, 543.
Besieris, I. M., 984.
Bessel equation, 470.
Bessel functions, 435–437, 442, 491.

cylindrical, 470, 556.
integral representation, 783.
recurrence formulas, 556.
spherical, 469, 556.

Bharuch-Reid, A. T., 975.
Bianisotropic medium, 42, 81, 84, 86, 292,

296, 330, 335, 904, 929.
characteristic waves in, 330.
conducting, 953.
constitutive matrix for, 330.
constitutive parameters for, 330.
constitutive relation for, 84, 296.
covariant description for, 953.
dispersion relations for, 330.
lossless, 298, 321.
lossless conditions for, 298.
moving, 905.
reciprocal, 701.
wave quantization in, 762.

Biaxial medium, 348, 350.
Biconical antenna, 554.

characteristic impedance, 562, 571.
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input impedance, 563.
terminal admittance, 564, 570.
terminal impedance, 564.

Biisotropic medium, 85, 295, 331.
constitutive relation for, 295, 350.
dispersion relation for, 350.
moving, 967.
reciprocal, 331.

Bilinear transformation, 190, 748, 749.
Bilocal approximation, 862, 863.
Binomial array, 523, 536.
Biot, J.-B., 69.
Biot-Savart law, 69, 70, 77, 80.
Bird, V. M., 977.
Birefringence, 319, 328.
Birss, R. R., 84, 970.
Bistatic scattering coefficient, 810, 811,

814, 822, 850.
Bjorken, J. D., 970.
Blanchard, A. J., 970, 987.
Blumlein line, 166, 167.
Boerner, W. M., 970.
Boffi formulation, 878.
Bohr, N., 59.
Bolotovskii, B. M., 970.
Boltzmann’s constant, 89.
Booker, H. G., 970.
Borgeaud, M., 970.
Born approximation, 850, 851.

distorted, 850.
Born series, 842, 850, 851.
Born, M., 847, 970.
Botros, A. Z., 971.
Boundary conditions, 90, 93, 94, 367, 370,

382, 402, 403, 408, 416, 443.
extended (EBC), 656, 797, 816.
for D, 97.
for E field, 90, 92, 97, 133.
for H field, 90, 92, 97, 133.
for moving boundaries, 95, 913, 914, 921,

922, 924.
for stationary boundaries, 95, 914, 921.

Bouwkamp, C. J., 971.
Bowhill, S. A., 976.

Bowman, J. J., 971.
Boyd, G. D., 971.
Bra, 751.
Bragg angle, 826, 828, 832, 834.
Bragg frequency, 829.
Bragg-scattered beam, 833.
Branch cut, 589.
Branch point, 588.
Brekhovskikh, L. M., 971.
Brevik, I., 971.
Brewster angle, 107, 108, 134, 381, 397,

398, 401, 479, 482.
Brewster, D., 108.
Broadside array, 517.
Brown, G. S., 971.
Budden, K. G., 329, 971.
Burke, H.-H. K., 971.
Burke, J. J., 978.

Cabrera, N., 975.
Campbell, L., 971.
Capacitance, 148, 151, 155, 181.

for coaxial transmission line, 142.
for parallel-plate transmission line, 141.

Capacitor, 146–148, 151, 204, 206.
Carniglia, C. D., 971.
Carrier, 273.
Cartesianism, 6.
Casey, K. F., 989.
Casimir, H. B. G., 971.
Cassegrain, 728.
Cauchy’s integral formula, 587.
Cauchy’s theorem, 584–586, 590, 597, 628.
Cauchy-Riemann equations, 627, 628, 641.
Causality, 301.
Causality condition, 591.
Causality relations, 301.
Cavity

at resonance, 703.
circular, 705.
perturbation, 472.

Cavity resonator
circular, 467.
energy stored in, 467.
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inward perturbation, 472.
outward perturbation, 473.
quality factor for, 465.
rectangular, 462.
resonant frequency of, 466.
resonant wavenumber of, 463, 471.
spherical, 468.

Celli, V., 975.
Center frequency, 277.
Centrifugal force, 47.
Čerenkov radiation, 489, 494.

condition, 492, 494.
polarization, 492.
power, 493.

Čerenkov velocity, 928, 929.
Čerenkov zone, 911, 913.
Čerenkov, P. A., 489, 492, 971.
Chan, C. Y., 970.
Chan, H. L., 982.
Chang, C. S., 976.
Chang, D. C., 971.
Chang, S. K., 971.
Characteristic impedance, 56, 64, 410.

for biconical antenna, 562, 571.
for isotropic medium, 722.
for transmission line, 153, 156, 180.

Characteristic waves, 323, 324.
for periodic structures, 789.
in moving uniaxial medium, 910.
in uniaxial medium, 319.

Charge current four-vector, 954.
Charge-current conservation law, 555, 935.

Lorentz covariance of, 884.
Chari, M. V. K., 972.
Chawla, B. R., 908, 972.
Chebyshev polynomials, 526, 527, 530.
Chen, Y., 972.
Cheng, D. K., 972, 987.
Chew, W. C., 972, 976.
Chi-Lin, I., 984.
Chiral medium, 85, 295, 331.

optical activity, 331.
Chiral parameter, 85, 295.
Cholesteric liquid crystal, 88.

Chow, P. L., 979.
Chu formulation, 877.
Chu, C. M., 988.
Chu, F. Y. F., 985.
Chu, L. J., 552, 877, 972, 975.
Chu, R. S., 972.
Chu, T. S., 972.
Chuang, S. L., 798, 972.
Circuit elements, 146, 147, 154, 195.
Circuit theory, 144, 147, 184.
Circular cavity, 467.

energy stored in, 467.
power dissipation in, 467.
quality factor for, 468.
resonant wavenumber, 467.

Circular dielectric waveguides, 442.
cutoff criterion for, 445.
cutoff frequency for, 449.
dispersion relation, 442.
EH modes in, 449.
guidance conditions for, 444.
HE modes in, 449.

Circular metallic waveguides, 435.
cutoff wavenumber, 439.
dispersion relation, 438.
guidance condition for, 439.

Classification of electromagnetic fields
electric fields, 891.
free-space wave fields, 890.
magnetic fields, 891.
wrench fields, 891.

Clausius-Mossotti formula, 854, 865.
Clemmow, P. C., 972.
Coaxial transmission line, 141, 143, 153,

241.
capacitance of, 142.
current of, 143.
inductance of, 142.
voltage of, 143.

Cohen, M. H., 985.
Coherence length, 341.
Coherent intensity, 806.
Coherent state, 761.
Colbeck, S., 972.
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Cole H., 970.
Cole, J. D., 972.
Collier, J. R., 973.
Collin, R. E., 969, 973.
Commutation relation, 752, 753, 762.

for creation and annihilation operators,
756, 765.

for electromagnetic fields, 752, 753, 755.
Commutator, 51.
Complementarity, 663, 667, 668.
Complementary medium, 702, 712, 769.
Complementary screen, 670.
Complex impedance, 181, 190.
Compton, R. T., Jr., 973, 974.
Condon, E. U., 973.
Conductance, 148, 181.
Conducting medium, 268–270.

bianisotropic, 953.
Conduction current, 148, 952.
Conductive uniaxial medium, 348.
Conductivity, 88, 268, 302.
Confocal ellipses, 631.
Confocal hyperbolas, 631.
Conservation equation, 724.
Conservation laws, 954, 959, 960.

charge-current, 555, 884, 935.
for angular momentum, 959.

Conservation of energy, 57.
Constitutive matrix, 86, 903, 905–907, 909,

930, 952.
for bianisotropic medium in kDB

system, 330.
for isotropic medium, 82, 86.
for moving bianisotropic medium, 905.
for moving gyrotropic medium, 908.
for moving isotropic medium, 903, 904,

953.
for moving uniaxial medium, 906.
under DB representation, 87, 296.
under EH representation, 87, 296.

Constitutive parameters, 81, 86, 903.
for bianisotropic medium, 330.
for gyrotropic medium, 293.
for moving medium, 907, 927.

in DB representation, 298.
in EB representation, 298.
lossless conditions for, 298.
reciprocity condition for, 300.

Constitutive relations, 81, 82, 86, 88, 89,
131, 132, 908, 930.

for accelerated medium, 908.
for anisotropic medium, 83, 84, 292.
for bianisotropic medium, 84, 295, 296,

330, 335.
for biisotropic medium, 85, 350.
for chiral medium, 85, 331.
for free space, 4.
for gyrator, 85, 295.
for gyrotropic medium, 323.
for homogeneous medium, 309.
for isotropic medium, 82, 84, 314.
for magnetoelectric material, 84.
for moving bianisotropic medium, 905.
for moving biaxial medium, 933.
for moving biisotropic medium, 933.
for moving gyrotropic medium, 908.
for moving isotropic medium, 904.
for moving medium, 875, 903, 929.
for moving uniaxial medium, 906, 909.
for nonlinear medium, 339.
for plasma medium, 271.
for pyroelectric material, 88.
for quartz crystal, 88.
for superconductor, 303.
for uniaxial medium, 315.
in DB representation, 87, 296, 312, 315.
in EB representation, 87, 903.
in EH representation, 87, 296, 346.
in tensor form, 951.
Lorentz covariance, 903.
Lorentz transformation, 903.

Constitutive tensor, 951.
Continuity law, 3, 21.
Continuous wave, 263.
Contravariant

base vectors, 938.
components of tensor, 934.
index, 934.
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tensor, 941, 943.
vector, 936, 938, 941.

Convergent lens, 688.
Cook, B. D., 827, 979.
Coordinate system

principal, 83.
Coordinate time interval, 881.
Coordinate transformation, 83.

active viewpoint, 957.
passive viewpoint, 957.

Cornu spiral, 684–686.
Correlation function, 807, 813, 822, 842,

849.
Gaussian, 809, 822.
two-point, 842.

Correlation length, 809, 813, 822, 842.
Corson, D., 973.
Cosine integral, 552.
Costa, M. F., 984.
Costen, R. C., 973.
Cotton-Mouton effect, 328.
Coulomb gauge, 936.
Coulomb’s law, 3, 20, 21, 45.
Coupled-mode approach, 825.
Coupled-mode equations, 825, 827, 829.
Covariant

base vectors, 938, 939.
components of tensor, 934.
index, 934.
tensor, 941.
vector, 936, 939, 941.

Cox, D. C., 973.
Crane, R. K., 973.
Creation operator, 755, 758, 760.

eigenstates, 760.
matrix representation, 760.

Creeping waves, 786, 787.
Critical angle, 376, 401, 482.
Cross product, 7, 19, 95.
Crystal, 83, 84, 88, 89, 292.

biaxial, 83.
cholesteric liquid, 88.
cubic, 83.
hexagonal, 83.

monoclinic, 83.
optic axis, 83, 292.
orthorhombic, 83.
principal axes, 83.
quartz, 88, 334.
rhombohedral, 83.
tetragonal, 83.
triclinic, 83.
uniaxial, 83, 292, 347.

Curl, 12–14, 23, 306.
in general orthogonal coordinate system,

16.
in index notation, 19.
theorem, 22, 97, 122, 133.

Current, 140, 142, 143.
coaxial transmission line, 143.

Current loop
moving, 900.
small, 649.

Current moment, 220, 222.
vector, 499, 500, 502, 504, 516, 545, 548.

Current sheet, 235, 236.
equivalent, 655.
impressed, 654, 698.
induced, 654.

Current wave, 154, 155, 168, 249.
Cutoff frequency, 206, 418, 426, 432, 446.

for circular dielectric waveguide, 448.
for isotropic-medium-coated conductor,

421.
for metallic rectangular waveguide, 431,

432.
for moving dielectric slab, 928.
for parallel-plate waveguide, 405.
stationary formula for, 713.

Cutoff spatial frequency
for parallel-plate waveguide, 115, 405.
for slab dielectric waveguide, 426.

Cutoff wavelength, 115, 405, 418, 434.
Cutoff wavenumber, 927.

for circular metallic waveguide, 439, 441.
for isotropic-medium-coated conductor,

418.
for moving dielectric slab, 927, 928.
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for slab dielectric waveguide, 483.
Cyclotron, 48.
Cyclotron frequency, 46, 47, 125, 292, 323.

transformation of, 908.
Cylindrical circular waveguide, 435.
Cylindrical coordinate system, 16, 17, 47,

60, 71.
Cylindrical rectangular waveguide, 430.
Cylindrical wave, 782.
Cylindrical waveguide, 429.

Daly, P., 925, 973.
Dashen, R., 973.
Davidson, S. E., 984.
Davis, W. A., 984.
de Hoop, A. T., 973.
Debye potentials, 776–779.
Debye’s formula, 304.
DeGroot, S. R., 973.
Deirmendjian, D., 973.
Delay line, 203.
Depolarization, 814, 823.
Deringin, L. N., 973.
DeSanto, J. A., 974.
DeVries, H., 974.
Diamagnetism, 82.
Diaphragm, 720, 721.
Dielectric waveguide

circular, 442.
Diffraction

by aperture, 679.
by half-space aperture, 684.
by slit, 237, 238, 687.
Fraunhofer, 681.
Fresnel, 681.
Kirchhoff formula for, 677.
of Gaussian beam, 833.

Dipole
antenna, 78, 225, 236, 552.
electric, 504, 877.
half-wavelength, 553.
Hertzian, 65, 76, 504.
horizontal electric (HED), 572, 574, 576,

577, 580.

horizontal magnetic (HMD), 572, 574,
576, 577, 581.

in layered medium, 572.
induced, 865.
magnetic, 649, 877.
on half-space medium, 615, 623.
on two-layer medium, 607.
static, 69.
vertical electric (VED), 572, 573, 576,

577, 579, 623.
vertical magnetic (VMD), 572, 574, 576,

577, 581, 582, 607, 615.
Dipole moment, 65, 77, 78, 877, 962.

electric, 82.
induced, 82, 773, 855, 865.
magnetic, 82, 775.
permanent, 82, 278.

Dirac, P. A. M., 974.
Directive gain, 505.
Directivity, 505, 521, 522, 525, 535–537,

639.
for array antenna, 521.
for Hertzian dipole, 522.

Dirichlet matrix, 798.
Dispersion relation, 25, 31, 65, 98, 101, 102,

112, 132, 168, 180, 203, 204, 210, 211,
275, 283, 306, 307, 320, 322, 323, 335,
337, 346, 363, 367, 385, 415, 425, 463.

derived with kDB system, 313.
for bianisotropic medium, 330.
for biisotropic medium, 350.
for circular dielectric waveguide, 442.
for circular metallic waveguide, 440.
for cylindrical waveguide, 438.
for general lumped element line, 205.
for gyrotropic medium, 323, 328.
for high-pass lumped element line, 206.
for isotropic medium, 98.
for low-pass lumped element line,

202–204.
for parallel-plate waveguide, 403.
for periodically loaded transmission line,

209.
for plasma medium, 273, 274.
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for transmission line, 153.
Dispersive

medium, 273, 277, 278, 301.
spatial, 86.
time, 86, 278.
transmission system, 458.

Displacement current, 3, 148, 150, 935.
Distorted Born approximation, 850.
Divergence, 10, 11.

in general orthogonal coordinate system,
16.

in index notation, 19.
theorem, 11, 915.

Djermakoye, B., 974.
Dolph transformation, 528, 529.
Dolph, C. L., 974.
Dolph-Chebyshev array, 526, 532.

broadside, 531.
endfire, 529.

Dominant mode
for parallel-plate waveguide, 410.
for rectangular cavity, 465.
for rectangular waveguide, 434.

Doppler effect, 893.
Dot product, 7, 18, 95.
Double refraction, 319, 378.
Drell, S. D., 970.
Du, L. J., 974.
Duality, 109, 510, 511, 663–665, 667, 668.
DuHamel, R. H., 974.
Dyad, 7.

in index notation, 496.
unit, 496, 880.
unit dyad, 59.

Dyadic Green’s function, 495, 496, 671,
673.

far field approximation, 802.
for layered medium, 843, 845.
integral representation, 815.
singularity of, 851, 860.
symmetry property, 847.
symmetry relations, 674.
two-dimensional, 682.

Dzyaloshinskii, I. E., 84, 330, 974.

E wave, 99.
Echo area, 694, 714.
Effective area, 700.
Effective permittivity, 852, 854, 855, 857,

859, 860, 862, 864.
Eigenstates

energy, 755, 757, 761.
for annihilation operator, 761.
for creation operator, 760.
for Hamiltonian, 755.

Eigenvalues
energy, 757.
for annihilation operator, 761.

Eikonal, 351, 722.
Eikonal equation, 722.
Einstein summation convention, 938.
Einstein, A., 4, 879.
El’yashevich, M. A., 974.
El-Arini, M. B., 970.
Elachi, C., 974.
Electric charge density, 3, 4.
Electric current density, 3.
Electric dipole, 877.
Electric displacement, 3, 854.
Electric energy density, 56, 57, 125.
Electric field strength, 3, 26–28, 31, 60.
Electromagnetic energy density, 58.
Electromagnetic field classification, 890.

electric fields, 891.
free-space wave fields, 890.
magnetic fields, 891.
wrench fields, 891.

Electromagnetic wave spectrum, 28, 29.
Electromotive force (EMF), 53, 55.
Electron charge, 30, 271, 349.
Electron mass, 59, 271, 349.
Electron velocity, 59.
Electron volts, 28, 30.
Electrooptical material, 89.
Elliott, R. S., 974.
Elliptic coordinates, 631.
Ellipticity angle, 37.
Emissivity, 400.
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Endfire array, 520.
Energy, 58.

complex electromagnetic, 266.
conservation of, 56, 57, 85, 343.
density, 58.
eigenstates, 757.
eigenvalues, 757.
electric, 56, 57.
in cavity resonator, 467.
levels, 758.
magnetic, 56, 57.
negative, 764.
operator, 755.
photon, 764.
spectrum, 758.

Energy density
electric, 56, 57, 125.
electromagnetic, 58.
magnetic, 56, 57, 126.
time-average, 58.

Energy eigenstates, 755, 761.
Energy momentum tensor, 956, 959, 960.
Energy velocity, 58, 283, 320, 351.

direction, 351.
Engheta, N., 978.
England, A. W., 974.
Ensemble average, 808, 841, 842, 862.
Entity of intensity, 876, 883, 889.
Entity of quantity, 876, 883, 903.
Eom, H., 986.
Equivalence principle, 235, 649, 655, 656,

661.
Equivalent sources, 649.

non-uniqueness of, 656.
Erankena, H. J., 973.
Euler’s constant, 567.
Euler-Lagrangian equation, 955, 956, 959.
Evanescent wave, 272.
Evans, S., 974.
Excitation tensor, 876, 934, 935, 942, 943,

951.
Exclusion volume, 858, 860.
Expectation value, 751, 761, 767.

Extended boundary conditions (EBC), 656,
797, 816.

Extinction theorem, 656, 680, 793, 794,
815.

Extraordinary wave, 318–320, 341, 350,
363.

Fabry-Perot etalon filter, 400.
Fabry-Perot resonator, 750.
Fano, F. M., 877, 975.
Fante, R. L., 975.
Far field approximation, 500.
Faraday rotation, 324, 325, 327, 333, 334,

349, 360, 361.
Faraday’s law, 3, 4, 21, 127, 132, 144, 147,

149, 754, 886, 915, 935.
Faraday’s magnetic induction law, 3.
Farrell, R. A., 976.
Felsen, L. B., 975.
Ferrite, 713, 769.
Ferromagnetism, 82, 84.
Feshbach, H., 981.
Feynman, R. P., 975.
Fiberglass waveguide, 461.
Field tensor, 876, 934, 935, 942–945,

947–951, 953.
Fikioris, J. G., 975.
Fizeau-Fresnel drag, 913.
Floquet modes, 789, 790, 792, 795, 797,

826.
Focal length, 688, 734, 741, 748, 749.
Foldy, L. L., 975.
Four-vector, 936.

charge current, 954.
length, 882.
null, 937.
spacelike, 937.
timelike, 937.
velocity, 953.

Fourier optics, 237, 238, 688.
Fourier Stieltjes integral, 820.
Fourier transform

of aperture field, 688, 833.
of aperture source, 692.



1000 INDEX

of correlation function, 822.
of Green’s function, 843.
of spectral intensity, 849.
of step function, 688.

Fractional volume, 854, 859, 861, 864.
Frank, I., 489, 975.
Frankl, D. R., 975.
Franz formula, 676.
Franz, W., 975.
Fraunhofer approximation, 688, 833.
Fraunhofer diffraction, 681.
Fraunhofer formula, 688.
Fraunhofer zone, 682, 687, 688, 690.
Frequency, 26, 30, 278.

angular, 26.
center, 277.
cyclotron, 46, 47.
Larmor, 63, 127.
resonant, 194.
spatial, 25, 27, 28, 30, 268, 273, 328.
temporal, 25–28, 30, 170, 273.

Fresnel, 400, 680.
Fresnel approximation, 683, 687, 688.
Fresnel diffraction, 681.
Fresnel diffraction formula, 688.
Fresnel ellipsoid, 348, 359.
Fresnel integrals, 683, 685, 688.
Fresnel reflection coefficient, 102, 106, 370,

372, 376, 803, 806, 811, 819.
for TE wave, 102, 372.
for TM wave, 106, 370.

Fresnel zone, 688.
Fresnel, A. J., 103.
Frisch, V., 975.
Fuchs, R., 975.
Fulton, R. L., 975.
Fundamental mode

for parallel-plate waveguide, 115, 410.
for rectangular waveguide, 434.

Fung, A. K., 975, 982, 986.
Furutsu, K., 975.

Gabled array, 523.
Gain, 700.

for circular aperture, 741.
for dipole antenna, 700.
for paraboloidal reflector antenna, 736,

740, 741.
pattern, 506.

Galerkin’s method, 712.
Galilean relativity, 879.
Galilean transformation, 879, 882, 887.
Gamma function, 457.
Garcia, N., 975.
Garden hose effect, 61.
Garnett, W., 971.
Gas laser, 117, 397.
Gauge condition, 936.

Coulomb, 936.
Lorenz, 66, 501, 936.

Gauge transformation, 936.
Gauss’ law, 3, 20, 21, 500, 501.
Gauss’ law for electric field, 3, 884, 935.
Gauss’ law for magnetic field, 3, 886, 935.
Gauss’ theorem, 11, 94, 676.

generalized in tensor calculus, 678.
Gaussian beam, 743–745, 749.

far field diffraction, 833.
transmission, 748.

Gaussian distribution, 807.
Gaussian-Hermite beam modes, 746, 747.
Generalized Ampère’s circuit law, 3.
Generalized impedance, 182, 183, 185.
Generalized reflection coefficient, 187, 190.
Generators, 55.

linear, 49, 54.
Geometrical optics, 722, 738, 788, 811.
Ginzburg, V. L., 976.
Glisson, A. W., 984.
Goldman, M., 976.
Goldstein, H., 976.
Goodman, J. W., 976.
Goodrich, R. F., 985.
Goos, Von F., 976.
Goos-Hänchen shift, 376, 420.
Gordan, J. P., 971.
Gradient, 9, 19, 120.
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in general orthogonal coordinate system,
16.

in index notation, 19.
Gradshteyn, I. S., 976.
Grant, I. S., 976.
Gray, E. P., 976.
Gray, K. G., 976.
Green’s function, 495, 497.

dyadic, 495, 496, 671, 673.
in cylindrical coordinates, 491.
in spherical coordinates, 497, 498.
one-dimensional, 503.
periodic, 795.
scalar, 491, 496, 660, 672, 675, 678.
three-dimensional, 503, 672.
two-dimensional, 503, 672, 683.
vector, 490.

Green’s theorem, 495, 628.
Group delay, 277.
Group of plane waves, 277.
Group pattern, 229–231.
Group velocity, 43, 114, 206, 273, 274, 277,

283, 320, 322.
Gruenberg, H., 925, 973.
Gruodis, A. J., 976.
Gu, Q., 988.
Guidance condition, 382, 405, 410, 420,

421, 423, 424, 426, 452.
EH mode, 445.
for circular dielectric waveguide, 444.
for circular metallic waveguide, 439, 440.
for isotropic-medium-coated conductor,

416, 420.
for metallic rectangular waveguide, 431,

432.
for moving dielectric slab, 927.
for parallel-plate waveguide, 112, 404.
for slab dielectric waveguide, 427.
HE mode, 445.
TE mode, 420.
TM mode, 417.

Guided waves
attenuation, 411.
dissipated power, 411.

external excitation, 408.
in isotropic-medium-coated conductor,

415.
in layered medium, 422.
in moving dielectric slab, 927.
in moving gyrotropic medium, 929, 933.
in symmetric slab dielectric waveguide,

425.
Gurvich, A. S., 976.
Gyrator, 85, 295.
Gyroelectric medium

electrical, 292.
Gyrofrequency, 329.
Gyromagnetic medium

magnetic, 292.
Gyromagnetic ratio, 63, 127, 513, 514.
Gyrotropic medium, 293, 323.

characteristic waves in, 323.
constitutive parameters for, 293.
constitutive relation for, 323.
dispersion relation for, 323.
Type I wave in, 324, 326, 328, 331.
Type II wave in, 324, 326, 328, 331.

H wave, 100.
Habashy, T. M., 976.
Hall coefficient, 88.
Hall effect, 88.
Hall, P. S., 978.
Hällén, 552.
Hällén’s integral equation, 658, 660, 661.
Hällén, E., 660, 976.
Hamilton’s principle, 954, 955, 959.
Hamiltonian, 754–757, 763, 764.

eigenvalues for, 757.
eigenvectors for, 757.
for electromagnetic field, 754.
for moving uniaxial medium, 762, 764.

Hänchen, H., 976.
Hankel functions, 435, 442, 594.

asymptotic form, 597.
asymptotic series, 598, 600.
asymptotic values, 598.
integral representation, 596.
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modified, 442.
of first kind, 435.
of second kind, 435.
spherical, 470, 556.

Hansen, J. E., 969.
Hansen, W. W., 976.
Harman, P. M., 977.
Harrington, R. F., 977, 984, 988.
Harrison, C. W. H., Jr., 978.
Hart, R. W., 976.
Heald, M. A., 981.
Heaviside, O., 4, 206.
Heisenberg equation of motion, 753, 754.
Heisenberg picture, 753.
Heitler, W., 977.
Helix, 36, 44.
Helmholtz equation, 24, 66, 429, 672.

for Debye potentials, 776.
homogeneous, 98, 306, 932.
in cylindrical coordinates, 435, 782.
in spherical coordinates, 469, 776.
one-dimensional, 660.
two-dimensional, 932.

Helmholtz wave equation, 24, 98, 306.
Helmholtz, H. L. F., 24, 65.
Hermite polynomials, 746, 747.

integral relations, 747.
orthogonality conditions, 747.
recurrence formula, 747.

Hermitian matrix, 751.
Hermitian operator, 751.
Hertz, H. R., 4, 65, 71, 74, 977.
Hertzian dipole, 65, 76.

directivity, 505.
electric, 504.
electric and magnetic fields for, 68, 75.
electric field pattern, 71.
far field solutions, 68, 74.
magnetic, 508.
power pattern, 506.
Poynting’s power density, 74, 75, 505.
Q parameter, 71, 73.
radiation pattern, 74, 506.
static limit, 69.

Hertzian magnetic dipole, 510.
Hertzian potential, 65, 66.
Hertzian waves, 65.
Hess, S., 952, 953, 988.
Hessel, A., 982.
Hibbs, A. R., 975.
High-pass filter, 206.
Hilbert transform, 591.

inverse, 591.
Hill, D. A., 977.
Hill, E. L., 977.
Hill, N. R., 975.
Hogg, D. C., 972.
Holden, A. J., 982.
Hole-correction approximation, 858, 859.
Hologram, 828.
Holography, 825.
Homogeneous medium, 367.

constitutive relation for, 309.
Hu, C., 977.
Huang, H. C., 977.
Hurd, G. K., 982.
Hutley, M. C., 977.
Huygens, 680.
Huygens’ principle, 661, 671, 672, 674, 675,

681, 689, 793, 795, 801, 815, 833.
Huygens, C., 672.
Hybrid modes, 443, 445, 932.
Hyperboloidal surface, 728.

Idler wave, 351.
Image

method, 651, 655, 656.
region, 650.
sources, 650.
theorem, 661.

Image theorem, 236.
Impedance

antenna, 707.
capacitive, 184.
characteristic, 56, 64, 410.
free-space, 32.
generalized, 182, 183, 185.
in circuit theory, 181.
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inductive, 184.
input, 183–185, 665.
intrinsic, 409, 412, 413.
load, 182, 183.
normalized, 190, 191.
of aperture antenna, 665.
of capacitor, 184.
of metal antenna, 665.
wave, 393, 394.

Impermeability, 314, 315.
tensor, 327.

Impermittivity, 314.
tensor, 315, 348, 350.

Incoherent intensity, 806.
Indenbom, V. L., 84, 977.
Index

contravariant, 934.
covariant, 934.
Greek, 934.
notation, 18.
refractive, 904.
repeated, 18, 934.
Roman, 934.

Index ellopsoid, 348.
Inductance, 175, 181.

for coaxial transmission line, 142.
for parallel-plate transmission line, 141.

Induction theorem, 661.
Inductor, 146, 147, 204.
Input impedance, 183–185.

of aperture antenna, 665.
of metal antenna, 665.
of planar complementary antennas, 667.
of radial parallel-plate waveguide, 708.
of slot antenna, 694.
stationary formula for, 708.

Integrated optics, 825.
Interferometer, 289, 765, 766.
Intrinsic impedance, 409, 412, 413.
Ionosphere, 329.
Ishimaru, A., 820, 977.
Isotope separation, 48.
Isotropic medium, 42, 82, 86.

constitutive relation for, 314.

dispersion relation for, 98.
moving, 903.
nonconducting, 953.
reciprocity of, 697.

Isotropic plasma, 277.
Isotropic-medium-coated conductor, 415.

cutoff spatial frequency, 421.
guidance condition, 420.
TM modes, 415.

Iterative approach, 842.
Ito, S., 978.
Itoh, T., 978.

Jackson, J. D., 978.
Jacobian, 958.
Jaggard, D. L., 978.
James, G. L., 978.
James, J. R., 978.
Jauch, J. M., 978.
Jordan’s Lemma, 585, 591, 628, 642.
Jordan, A. K., 978.
Jordan, E. C., 978.

k surface, 320–322, 342, 374, 375.
for extraordinary waves, 321.
for moving isotropic medium, 911.
for moving uniaxial medium, 911.
for ordinary waves, 321.

Kalinin, V. L., 976.
Kapany, N. S., 978.
Katehi, P. B., 978.
kDB system, 310, 312–315, 323, 327, 346,

909.
dispersion relations with, 313.
Maxwell equations in, 313.
transformation matrix, 311.
transformation of constitutive relations

to, 312.
Keller, J. B., 982, 987, 988.
Kembrovskaya, N. G., 974.
Kerr effect, 89.
Ket, 751.
King, R. W. P., 552, 978, 979.
Kirchhoff, 680.
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Kirchhoff approximation (KA), 679, 680,
801, 803.

Kirchhoff formula for diffraction
scalar form, 677, 678.
vector form, 678, 680.

Kirchhoff’s current law (KCL), 143, 146,
147.

Kirchhoff’s voltage law (KVL), 143–145,
147, 149.

Kirchhoff, G. R., 65, 147.
Klauder, J. R., 979.
Klein, W. R., 827, 979.
Kline, M., 984.
Kogelnik, H., 828, 829, 979.
Kohler, W. E., 979.
Kong, J. A., 798, 815, 970, 972, 974, 976,

979, 980, 983, 985, 987–989.
Kramers-Krönig relation, 590, 591, 593,

630.
Kraus, J. D., 979.
Kravtsov, Y. A., 969.
Kronecker delta function, 414.
Kuester, E. F., 971.
Kumagai, N., 985.

Lagrange interpolation, 537, 538, 543.
Lagrange, Joseph-Louis, 954.
Lagrangian density, 954, 955, 958.

for electromagnetic fields, 954.
Lanczos, C., 979.
Landau, L. D., 84, 979, 980.
Lane, J. A., 985.
Lang, R. H., 978.
Langevin equation, 89.
Laplace equation, 19, 20.
Laplace method, 603, 630, 644.
Laplacian operator, 8.

in general orthogonal coordinate system,
16.

in rectangular coordinates, 8, 98, 306.
Larmor frequency, 63, 127, 513–515, 636,

637.
Lateral wave, 419.
Lautrap, B., 971.

Lax, M., 980.
Layered medium, 384, 394, 422.
Leader, J. C., 980.
Leaky wave, 419, 420.
Leaky wave mode, 613.
Lebedev, A. N., 970.
LeChatelier’s principle, 54.
Lee, J. K., 980.
Lee, K. F., 980.
Lee, K. S. H., 980.
Lee, S. W., 980, 981.
Left-handed medium (LHM), 308.
Legendre equation, 557.
Legendre polynomials, 543, 557.

associated, 469, 471.
Lehmann, H., 988.
Leibnitz’ rule of differentiation, 587.
Length

four-dimensional, 882.
Lens antenna, 729.

cylindrical, 731.
metal-plate, 733, 734.

Lenz’ law, 53–55.
Lenz, H., 53.
Lesselier, D., 977.
Levi-Cevita symbol, 19.
Lifshitz, E. M., 84, 979, 980.
Lindell, I. V., 980.
Linear antenna, 220–224, 545.

current distribution for, 545.
radiation pattern, 221.

Linear dipole array, 516.
Liu, C. H., 989.
Lo, Y. T., 980.
Load impedance, 182, 183.

normalized, 183, 189.
Load reflection coefficient, 182, 187.
London equations, 303.
Long, S. A., 984.
Lorentz contraction, 898, 900.
Lorentz covariance, 86, 875, 879, 889.

of Ampère’s law, 884.
of charge conservation equation, 884.
of constitutive relations, 903.
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of Faraday’s law, 886.
of Gauss’ law for electric field, 884.
of Gauss’ law for magnetic field, 886.
of Maxwell equations, 875.

Lorentz force law, 45, 49, 59, 62, 96.
Lorentz group

homogeneous, 942.
improper, 942.
inhomogeneous, 942.

Lorentz invariance, 889.
Lorentz invariant, 888, 889, 937, 941, 944,

945.
Lorentz reciprocity theorem, 697.
Lorentz transformation, 875, 876, 879–882,

884, 892, 894, 897, 899, 937, 942.
for electromagnetic field, 903.
first-order (FLOT), 882.
for D and H, 886.
for E and B, 886.
for constitutive relations, 903.
for electromagnetic field, 884.
for frequency, 892.
for wave vector, 892.
homogeneous (HLT), 942.
inhomogeneous, 942.
inverse, 889.
of constitutive relations, 903.

Lorentz transformation of field vectors, 883.
Lorentz transformation of space and time,

879.
Lorentz, G., 879, 980.
Lorentz, H. A., 45, 66.
Lorenz gauge, 66, 501, 936.
Lorenz, L. V., 66.
Lorenz-Lorentz formula, 66, 854, 865.
Lorrain, P., 973.
Lossless conditions, 298.
Lossless medium, 297, 298.
Louisell, W., 980.
Low-pass filter, 204, 212.
Lumped element line, 201–205.

dispersion curve, 206.
dispersion relation, 205.
high-pass, 205.

low-pass, 204.
Lynch, P. J., 980.

Ma, M. T., 537, 542, 543, 980.
MacDonald, D. K. C., 981.
Mack, R. B., 979.
Maclaurin series, 509.
Macroscopic theory, 489.
Magnetic conductor, 651.
Magnetic dipole, 649, 877.
Magnetic energy density, 56, 57, 126.
Magnetic field strength, 3, 150.
Magnetic flux, 53, 54.
Magnetic flux density, 3.
Magnetic moment, 50, 63, 127, 513, 514,

637.
Magnetic monopole, 664.
Magnetic resonance imaging, 513, 514.
Magnetic sources, 649.
Magnetic torque, 50.
Magnetization vector, 82, 89.
Magnetoelectric effect, 84.
Magnetoelectric medium, 84, 330.
Magnetomotive force (MMF), 150.
Mahmad, A. R., 971.
Mahmoud, S. F., 971.
Makios, V., 987.
Mandel, L., 971.
Manley-Rowe relation, 352.
Mannersalo, K., 980.
Marcuse, D., 981.
Marcuwitz, N., 975.
Marion, J. B., 981.
Mason, W. P., 981.
Mastoris, P. M., 970.
Matveyer, D. T., 976.
Mautz, J. R., 988.
Maxwell equations, 3, 56, 81, 307.

components form, 20.
differential form, 24, 93.
for TM waves, 111.
in Amperian formulation, 876.
in Boffi formulation, 878.
in Chu formulation, 877.
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in source-free region, 306, 367.
in tensor form, 934.
index notation, 19, 128.
integral form, 15, 93, 95, 914.
Lorentz covariance of, 875.
source free region, 24.

Maxwell stress tensor, 59, 128, 960.
Maxwell, J. C., 3, 4, 981.
Maxwell, James Clerk, 5.
Maxwell-Garnett mixing formula, 854.
Maxwell-Garnett, J. C., 981.
Maxwell-Minkowski theory, 875, 878.
McKenzie, J. F., 981.
Medium

accelerated, 908.
active, 297.
anisotropic, 42, 83, 84, 86, 292, 302, 929.
bianisotropic, 42, 84, 86, 292, 296, 330,

335, 929.
biaxial, 83, 348, 350, 712, 966.
biisotropic, 85, 295, 331, 350, 713.
chiral, 295, 331.
complementary, 702, 769.
conducting, 268–270.
conductive uniaxial, 348.
diamagnetic, 82.
dipolar, 877.
dispersive, 273, 277, 278, 301.
gyroelectric, 292.
gyromagnetic, 292.
gyrotropic, 293, 323.
homogeneous, 309, 367.
inhomogeneous, 86.
isotropic, 42, 82, 86, 314.
layered, 384, 394, 422.
linear, 89.
lossless, 297, 298.
magnetoelectric, 330.
moving, 84.
moving bianisotropic, 905.
moving biaxial, 712, 933, 967.
moving biisotropic, 933.
moving gyrotropic, 908, 929.
moving isotropic, 903.

negative uniaxial, 83, 292.
nondispersive, 277.
nonlinear, 86, 339, 343, 351.
nonstationary, 86.
paramagnetic, 82.
passive, 297.
periodic, 825.
plasma, 271, 273, 274, 278.
positive uniaxial, 83, 292, 318.
random, 841, 848, 860.
reciprocal, 300, 701.
spatial-dispersive, 86.
stratified, 387, 391, 422.
Tellegen, 350.
temporally dispersive, 629.
time-dispersive, 86.
uniaxial, 315, 318, 319, 378.

Mei, K. K., 971.
Meissner effect, 303.
Mergelyan, O. S., 981.
Method of moments, 711, 712.
Metric coefficient, 16.

in cylindrical coordinate system, 16.
in rectangular coordinate system, 16.
in spherical coordinate system, 16.

Metric tensor, 942.
Microstrip transmission line, 139, 141, 143.
Microwave remote sensing, 400.
Midwinter, J. E., 989.
Mie scattering, 776, 778, 780.
Minkowski, 875.
Minkowski formulation, 876, 877.
Minkowski space, 876, 882, 937.
Minkowski’s postulate, 876.
Mittra, R., 972, 981.
Mo, T. C., 981.
Mocella, V., 981.
Mode

amplitudes, 408.
fundamental, 115.
guided-wave, 408.
hybrid, 932.
TE, 115, 116, 406, 432.
TEM, 115, 410.
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TM, 112, 115, 405, 431, 464.
Mode-matching technique, 792.
Møller, C., 981.
Momentum conservation theorem, 59.
Momentum density, 59, 110.
Monochromatic wave, 263.
Moore, R. K., 975, 982.
Morse, P. M., 981.
Motors, 51, 52.

DC, 51, 55.
linear, 49.

Moving anisotropic conducting medium,
953.

Moving bianisotropic medium, 905.
constitutive matrix for, 905.
constitutive relations for, 905.

Moving biaxial medium, 967.
constitutive relations for, 933.

Moving biisotropic medium, 967.
constitutive relations for, 933.

Moving boundary, 922.
boundary conditions for, 922.

Moving dielectric slab, 927.
cutoff frequency, 928.
cutoff wavenumber, 927.
guidance condition, 927.
propagation constant, 928.

Moving gyrotropic medium, 908, 929.
constitutive matrix for, 908.

Moving isotropic medium, 903.
constitutive matrix for, 903, 904, 953.
constitutive relations for, 904.
guidance condition, 928.

Moving medium, 84, 764, 908, 923, 929.
constitutive matrix for, 903.
constitutive parameters for, 903, 907,

927.
constitutive relations for, 875, 903, 929.
reflectivity, 925.
slow waves in, 764.
transmissivity, 925.
uniaxial, 906.

Moving uniaxial medium, 906, 909.
characteristic waves in, 910.

constitutive matrix for, 906, 909.
constitutive relations for, 906, 909.
dispersion relation for, 910, 911.

Multiple image, 651.

Nahin, P. J., 981.
Nath, N. S. N., 983.
Natural frequency, 168.

spatial, 169.
temporal, 169.

Near zone, 688.
Neumann functions, 435, 437.

spherical, 556.
Neumann matrix, 798.
Newton’s law, 46.
Newton’s second law, 271.
Newton, R. W., 987.
Nghiem, S. V., 970.
Nicol prism, 401.
Niven, W. D., 981.
Noether’s theorem, 954, 956, 959.
Noncommuting operators, 752.
Nondispersive medium, 277.
Nonlinear medium, 86, 339, 343, 351.
Nonreciprocal medium, 334.
Normal modes, 168, 170.
Normalized impedance, 190, 191.
Normalized load impedance, 183, 189.
Null vector, 937, 947, 951.
Number operator, 759, 761.
Numerical aperture, 461.

O’Brian, S., 981.
O’Connor, J. J., 982.
O’Dell, T. H., 982.
Obliquity factor, 680.
Observables, 751, 752, 754.
Off resonance, 514.
Oguchi, T., 982.
Ogura, H., 982.
Ohm’s law, 147, 268, 302, 952.

for moving isotropic medium, 953.
Oliner, A. A., 982.
On resonance, 514.
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Onnes, K., 302.
Onstott, R. G., 982.
Optic axis, 83, 292, 315, 316, 320, 378, 379,

397, 762, 906.
Optical activity, 332–334.
Optical fiber, 452, 461, 484.
Optical path-length theorem, 729.
Optical rotation, 333.
Optimum angular aperture, 741.
Ordinary wave, 317, 319, 320, 341.
Orientation angle, 37, 39.
Orthogonality

for Hermite polynomials, 747.

p wave, 100.
Pair-distribution function, 857.
Pampaloni, P., 982.
Panofsky, W. K. H., 877, 982.
Papanicolaou, G. C., 979, 982.
Papas, C. H., 980, 982.
Paraboloidal reflector antenna, 734.

aperture efficiency, 741.
gain, 740, 742.

Parallel-plate transmission line, 139, 143,
184.

capacitance of, 141.
inductance of, 141.

Parallel-plate waveguide, 111, 139, 141,
403, 459.

cutoff, 115, 405.
dispersion relation for, 403.
group velocity, 114, 457.
guidance condition, 112, 404.
mode excitation, 408.
phase velocity, 114, 457.
Poynting power, 407.
radial, 708.

Paramagnetism, 82.
Parametric amplification, 351.
Paraxial approximation, 688, 743, 744.
Paraxial limit, 743.
Paris, D. T., 982.
Pattern multiplication technique, 229, 230,

239.

Peake, W. H., 970, 982.
Pendellösung, 839, 840.
Pendry, J. B., 981, 982.
Penetration depth, 269, 270, 303, 356.
Peng, S. T., 983.
Percus, J. K., 983.
Percus-Yevick pair distribution function,

859.
Perfect conductor, 92, 93.
Periodic medium, 825.
Periodic structures, 789.
Periodically-modulated slab, 829.

reflection coefficient, 830.
transmission coefficient, 830.

Permeability, 4, 82, 99.
tensor, 83, 292.

Permittivity, 4, 82, 89, 99.
complex, 268.
tensor, 83, 292, 293, 302, 315, 334, 348.

Perturbation
cavity, 472.
for attenuation rate, 411.

Peterson, B., 983.
Phariseau limit, 828.
Phase conjugation, 339, 343.
Phase delay, 31, 277.
Phase invariance, 892.
Phase matching condition, 102, 103, 106,

216, 341, 342, 373, 374, 377, 385.
for moving boundary, 922, 923.

Phase velocity, 31, 43, 114, 206, 255, 273,
274, 277, 318, 319, 322, 324, 326, 331.

direction, 351.
for extraordinary wave, 317.
for ordinary wave, 316.
in moving uniaxial medium, 910.
of guided wave, 457.

Phase-matching condition, 796.
Phasor, 180.
Phillips, M., 877, 982.
Phillips, W. R., 976.
Photon

energy, 30, 343.
extraordinary, 764.
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number operator, 761.
ordinary, 764.

Physical optics, 678.
Physical optics approximation, 694, 736.
Piezoelectric tensor, 89.
Piezoelectricity, 89.
Planar equiangular spiral antenna, 667.
Planck’s constant, 30, 752.
Planck’s radiation, 30.
Planck, M. K. E. L., 30.
Plane of incidence, 99, 108, 373.
Plane waves, 32, 99, 116, 307.

generated by current sheets, 653.
in bianisotropic medium, 330.
in gyrotropic medium, 323.
in moving uniaxial medium, 909.
in nonlinear medium, 339.
in terms of cylindrical waves, 783.
uniform, 99.

Plasma, 271.
anisotropic, 292, 293, 323.
electron, 271, 292, 293, 302.
frequency, 271, 323, 904, 908.
isotropic, 277.
permittivity tensor for, 292, 293.

Plasma medium, 273, 278.
constitutive relation for, 271.
dispersion relation for, 273, 274.

Plasma surface wave, 383.
Plonus, M. A., 983.
Pockel’s effect, 89.
Poh, S. Y., 983.
Poincaré group, 942.
Poincaré sphere, 37–42.
Poincaré, J. H., 39.
Point matching, 712.
Point source, 495, 497.
Poisson distribution, 761.
Poisson equation, 19, 20.
Poisson, S. D., 20.
Polarizability, 853, 865.
Polarization, 33–35, 37, 39, 42.

angle, 108, 118.

circular, 33, 244, 265, 320, 324, 326, 327,
331, 332, 360.

circular, left-handed, 35, 38, 44.
circular, right-handed, 35, 38, 44.
elliptical, 33, 35, 37–39, 265, 328, 330,

362.
elliptical, left-handed, 35.
elliptical, right-handed, 35.
handedness, 33.
horizontal, 99, 244, 368.
in terms of B, 42.
in terms of D, 42.
linear, 33, 337, 362.
nonlinear, 340, 343.
parallel, 100, 368.
partial, 42.
perpendicular, 99, 368.
plane, 265.
spatial view point, 36, 44.
temporal view point, 36, 44.
vector, 82, 803, 853, 861, 865.
vertical, 100, 244, 368.

Polarization angle, 381, 398.
Polaroid, 320, 359, 398.
Polder, D., 862, 983.
Polder-van Santen mixing formula, 862.
Popovic, B. D., 983.
Post, E. J., 983.
Potential

Debye, 776–779.
four-vector, 936.
Hertzian, 65, 66.
scalar, 66.
vector, 66.

Power, 58.
Power conservation, 103, 104, 141.
Power density, 58.

time-average, 74–76.
Power dissipation

in circular cavity, 467.
in parallel-plate waveguide, 411.
Poynting’s, 266.

Power flow, 58, 141, 178, 266.
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Power pattern, 74, 248, 506, 512, 534, 535,
537, 539.

Poynting’s power density, 58, 74, 75, 100,
101.

for Hertzian dipole, 74, 75, 505.
for radiation, 500.
time-average, 307.

Poynting’s theorem, 56, 58, 59, 64, 74, 141,
282, 350.

complex, 266, 297.
for transmission line, 141.
in source-free region, 57.

Poynting’s vector, 56, 75, 100, 101, 128,
309, 318.

complex, 266, 267.
instantaneous value, 266, 267.
of solar wind, 61.
time-average, 58, 103, 267, 320, 321.

Poynting, J. H., 56.
Principal coordinate system, 83, 292, 348,

350.
Principal value, 860.
Principle of relativity, 879.
Pritchard, R. L., 983.
Propagation constant, 927.

for metallic rectangular waveguide, 431,
432.

for moving dielectric slab, 928.
for slab dielectric waveguide, 427.

Propagation matrices, 390.
backward, 390.
forward, 390–392.

Proper time interval, 881.
Pulsar, 288, 289.
Pump wave, 346.
Pupin, 206.
Pupin coil, 207.
Purcell, E. M., 983.
Pyroelectricity, 88.

Quality factor, 195, 465.
for circular cavity, 468.
for rectangular metallic cavity, 465.

Quantization of electromagnetic waves, 751.

for bianisotropic medium, 762.
Quantum electrodynamics, 751.
Quarter-wave plate, 320, 349.
Quartz, 334.
Quasi-monochromatic wave, 41.
Quasi-static limit, 715.

Radiation, 41.
Radiation condition, 501, 502, 675.
Radiation field approximation, 499.
Radiation pattern, 227, 228, 232.

broadside, 517.
endfire, 520.
of array antenna, 225, 229.
of Hertzian dipole, 74, 506.
of linear antenna, 221, 223.

Radiation pressure, 58, 110, 125, 926.
Radiation resistance, 545.

of dipole antenna, 700.
of half-wavelength wire, 549.
of short antenna, 547.
of wire antenna, 546.

Radiation vector, 500.
Radiation zone, 491, 499, 507, 516, 833.
Radiometer, 241, 400.
Rado, G. T., 84, 983.
Raman, C. V., 983.
Raman-Nath regime, 828.
Ramo, S., 983.
Ramseier, R. O., 987.
Random medium, 841, 848, 860.
Random rough surface, 801, 813.
Rao, B. R., 983.
Rao, N. N., 983.
Rao, S. M., 984.
Ray optics, 748.
Ray surface, 351, 363.
Ray vector, 347, 351, 723, 725, 726, 729.
Rayleigh, 78.
Rayleigh mixing formula, 854.
Rayleigh scattering, 773, 774, 776, 777, 780,

858.
Rayleigh-Ritz procedure, 703.
Reactance, 181, 184, 185.
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Reaction, 695, 698, 702.
for cavity, 704.
of current source, 696.
of voltage source, 696.

Read, F. H., 984.
Real and imaginary parts of permittivity,

279.
Reality condition, 755, 762.
Reciprocal ellipsoid, 348.
Reciprocal medium

conditions for, 300, 701.
Reciprocity, 697.
Reciprocity condition, 300.

in DB representation, 300.
in EB representation, 300.

Reciprocity theorem, 698, 700, 701.
modified, 702.

Rectangular cavity, 462, 464, 475.
dominant mode in, 465.
quality factor, 465.
resonant frequency, 466.
resonant wavenumber, 463.

Rectangular coordinate system, 6, 8, 16, 98.
Rectangular metallic waveguide, 116.

cutoff frequency, 431, 432.
dominant mode, 434.
fundamental mode, 434.
guidance condition, 432.
propagation constant, 431, 432.

Rectangular waveguide, 116.
Reflection and guidance, 98.
Reflection and transmission, 100, 105, 109,

367, 368.
Reflection coefficient, 160, 161, 167, 422,

423, 479.
for half-space medium, 216.
for moving dielectric half-space, 924.
for perfect conductor, 106.
for periodic medium, 392.
for periodically-modulated slab, 830.
for stratified media, 387.
for stratified medium, 388.
for TE wave, 101, 102, 372.
for TM wave, 106, 109, 369, 370.

for two-layer medium, 387, 389.
generalized, 187, 190.
load, 159, 182, 187.
source, 159, 162, 163.
space-dependent, 393.

Reflectivity, 104.
for moving dielectric half-space, 925.

Refractive index, 103, 329, 722, 729, 904.
Relativity

Galilean, 879.
principle, 879.
special, 875, 879.

Reluctance, 150.
Residue, 587.
Residue series, 784.
Residue theorem, 586–588, 621.
Resistance, 148, 181, 184.
Resistor, 49, 54, 146, 545.
Resonant absorption, 279.
Resonant frequency, 465, 472–475, 485.

stationary formula for, 703.
Resonant wavenumber

for circular cavity, 467, 705.
for metallic rectangular cavity, 463.
for spherical cavity, 471.
stationary formula for, 704.

Resonator, 464.
circular cavity, 467.
Fabry-Perot, 750.
rectangular cavity, 462.
resonance conditions for, 463.
short-circuited, 174, 193.
spherical cavity, 468.

Riblet transformation, 532.
Riblet, H. J., 984.
Rice, S. O., 984.
Richards, W. F., 984.
Riemann sheet, 588, 589, 608, 609.
Right-hand rule, 7, 22, 50, 63.
Riley, J., 984.
Ritz procedure, 706, 707.
Robbin, D. J., 982.
Roberts, W. K., 242, 984.
Robertson, E. F., 982.
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Rodrigues’ formula, 557.
Röentgen, W. C., 84, 984.
Rohrlich, F., 984.
Rosenbaum, S., 984.
Ross, G. F., 970.
Rouse, J. W., 970.
Rumsey, V. H., 984.
Ruppin, R., 984.
Ryon, J. W., 969.
Rytov, S. M., 969.
Ryzhik, I. M., 976.
Ryzhov, Y. A., 984.

s wave, 99.
Saddle-point method, 594, 598, 600, 601,

603.
modified, 621.

Sakoda, K., 984.
Saleh, A. A. M., 969.
Sandler, S. S., 979.
Sarkar, T. K., 984, 988.
Savart, F., 69.
Saxton, J. A., 985.
Scala, C., 985.
Scalar potential, 66, 501.
Scalar product, 6, 7, 98, 307.
Scattering coefficient

backscattering, 850.
bistatic, 810, 811, 814, 822, 850.

Scattering
Brillouin, 339.
by conducting cylinder, 782.
by half-space random medium, 848.
by periodic corrugated conducting

surface, 789.
by periodic dielectric surface, 793.
by periodic medium, 825.
by periodic rough surface, 789.
by random medium, 841.
by random rough surface, 801.
by spheres, 773.
cross section, 775, 780, 866.
Mie, 776, 778, 780.
Raman, 339.

Rayleigh, 773, 774, 776, 777, 780, 858.
stationary formula for, 708.

Schelkunoff, S. A., 552, 985.
Schiff, L. I., 985.
Schlomka, V. T., 985.
Schmugge, T. J., 971.
Schrödinger equation, 753.
Schrödinger picture, 753.
Schwartz inequality, 767.
Schwering, F., 988.
Scott, A. C., 985.
Second-harmonic generation (SHG),

339–341.
Self-complementary antenna, 667.
Self-reaction, 695, 707.
Sen, P. N., 985.
Senior, T. B. A., 971, 985.
Separation of variables, 385, 469.
Seshadri, S. R., 985.
Sezginer, A., 985.
Shank, C. V., 829, 979.
Shen, L. C., 985.
Shin, R. T., 970, 985, 987, 989.
Shiozawa, T., 985.
Shrubsall, R. G., 970.
Sidelobes, 518, 520, 535.
Sihvola, A. H., 980.
Silver, S., 985.
Silvester, P. P., 972.
Sine integral, 552.
Singularity

branch point, 588.
essential, 587.
of dyadic Green’s function, 851, 860.
pole, 587.

Sinusoidal steady state, 180, 182.
Skin depth, 270.
Skolnik, M. I., 985.
Slab dielectric waveguide

cutoff spatial frequency, 426.
cutoff wavenumber, 483.
guidance condition, 427.
propagation constant, 427.

Slow wave, 764.
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Small perturbation method (SPM), 801,
815.

Smith chart, 190, 191, 393, 394.
Smith, P. H., 190.
Snell’s law, 103, 107, 373, 725, 726.
Snell, W. R., 103.
Snitzer, E., 985.
Snyder, A. W., 985.
Solar wind, 61.
Sommerfeld branch cut, 608, 618, 645.
Sommerfeld identity, 573, 604, 606, 620,

631.
Sommerfeld integration path (SIP), 614.
Sommerfeld poles, 623.
Sommerfeld radiation condition, 678.
Sommerfeld, A., 680, 876, 986.
Sommerfeld-type integral, 631.
Spacelike vector, 937.
Spatial frequency, 25, 27, 28, 30, 268, 273,

328.
fundamental unit for, 27.

Special relativity, 875, 879.
Special theory of relativity, 4, 45, 81.
Spectral density, 822.

Gaussian, 822.
Spectral intensity, 849.
Spherical antenna, 570.
Spherical cavity, 468.
Spherical coordinate system, 16–18.
Spiral antenna, 667.
Spizzichino, A., 970.
Staelin, D. H., 986.
State functions, 954–959.
State vector, 751, 753.
Stationary formula, 698, 703, 705, 710.

for antenna impedance, 707.
for cutoff frequency, 713.
for resonant frequency, 703.
for resonant wavenumber, 704.
for scattering, 708, 709.

Stationary-phase method, 603, 811, 847.
Steepest descent path (SDP), 598, 611, 612,

617, 618.
Stegun, I. A., 969.

Stewart, W. J., 982.
Stirling’s formula, 630.
Stogryn, A., 986.
Stokes parameters, 37, 39–42.
Stokes’ theorem, 14.
Strait, B. J., 972.
Stratified medium, 384, 387, 391, 422.
Stratton, J. A., 552, 972, 986.
Stratton-Chu formula, 675–677.
Stress tensor, 59, 89, 128, 960.
Strom, S., 983.
Strong fluctuation theory, 851, 861.
Strutt, J. W., 78.
Stutzman, W. L., 986.
Sudarshan, E. C. G., 979.
Summation convention, 18.
Sun, K., 972.
Sun, X., 978.
Superconductivity, 302, 303.
Surface charge density, 92, 93, 140.
Surface current density, 92, 93, 140, 142,

143.
Surface wave, 376, 418.
Susceptance, 181.
Suttorp, L. G., 973.
Symmetric Slab dielectric waveguide, 425.
Synge, J. L., 986.
Synthetic aperture radar (SAR), 694.
Szekielda, K., 986.

Tai, C. T., 847, 877, 973, 986.
Tamir, T., 972, 983.
Tamm, Ig., 489, 975.
Tamoikin, V. V., 984.
Tan, H. S., 986.
Tangent plane approximation, 801, 803.
Tatarskii, V. I., 820, 969, 984, 986.
Taylor, B., 603.
Tellegen medium, 350.
Tellegen, B. D. H., 85, 295, 986.
Temporal frequency, 25–28, 30, 170, 273.
Tensor

angular momentum, 961.
constitutive, 951.
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contravariant, 941, 943.
covariant, 941.
ellipsoid, 348, 359.
energy momentum, 956, 959, 960.
excitation, 876, 934, 935, 942, 943, 951.
field, 876, 934, 935, 942–945, 947–951,

953.
impermeability, 327.
impermittivity, 315, 348, 350.
metric, 942.
notation, 934.
permeability, 83, 292, 908.
permittivity, 83, 292, 293, 302, 315, 334,

348, 908, 930.
piezoelectric, 89.
skew-symmetric, 943, 953.

Tesla, 350.
Testing function, 711, 712.
Thiele, G. A., 986.
Third law of motion, 54.
Tijhuis, A. G., 987.
Time dilation, 881, 895.
Time dispersion, 278.
Time interval

coordinate, 881.
proper, 881.

Time-average power, 74–76, 115, 272.
Time-domain reflectometer (TDR), 176.
Time-harmonic field, 263.
Timelike vector, 937.
TM modes

in Parallel-Plate Waveguides, 410.
TM waves, 368.
Tolman, R. C., 987.
Tomil’chik, L. M., 974.
Total internal reflection, 397, 398, 482.
Total reflection, 374–376, 401, 482.
Total transmission, 380, 401, 478.
Transients

on transmission line, 156, 157.
Transmission coefficient

for half-space medium, 215.
for moving dielectric half-space, 924.
for periodic medium, 392.

for periodically-modulated slab, 830.
for TE wave, 101, 102, 372.
for TM wave, 106, 109, 369, 370.
for two-layer medium, 391.

Transmission line, 139, 143, 147, 153, 154,
207.

as capacitor, 155.
capacitive loaded, 211.
characteristic impedance, 153, 156, 180.
coaxial, 141–143, 153, 241.
dispersion relation for, 153.
equation, 139, 141, 154, 156, 180, 182,

192, 201, 208.
lumped element, 201–205.
microstrip, 139, 141, 143.
model for antenna radiation, 220, 561.
model for reflection and transmission,

215.
normal modes, 168.
parallel-plate, 139, 143, 184.
periodically loaded, 208.
transients, 156, 157.
two-port description, 208.
two-wire, 141, 143, 242.
with capacitive termination, 162.
with inductive termination, 163.
with resistive termination, 157.

Transmissivity, 104.
for moving dielectric half-space, 925.

Transverse electric (TE) wave, 99, 368.
Transverse electromagnetic (TEM) wave,

139, 143.
Transverse magnetic (TM) wave, 100, 368.
Trigonometric interpolation, 543.
Truell, R., 988.
Tsang, L., 860, 972, 987.
Tseng, F. I., 987.
Turner, C. W., 987.
Turnstile antenna, 243, 512.
Twersky, V., 987.
Twin paradox, 894.
Two-wire transmission line, 141, 143, 242.
Tyras, G., 987.
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Ultrasonic light diffraction, 825.
Uncertainty principle, 752.
Uniaxial medium, 315.

characteristic waves in , 319.
constitutive relation for, 315.
extraordinary wave in, 318.
k surfaces for, 321.
negative, 83, 292.
optic axis, 315, 378.
ordinary wave in, 317.
positive, 83, 292, 318.

Uniqueness theorem, 661, 680.
Unit pattern, 229–231.
Unit vector, 6, 67.
Units

absolute temperature, 57.
electromotive force (EMF), 54.
energy, 57.
energy density, 58.
force density, 45.
frequency, 26.
power, 57.
power density, 58.
radiation pressure, 58.
spatial frequency, 27.
surface charge density, 93.
surface current density, 93.

Unz, H., 908, 972.
Uslenghi, P. L. E., 971.

Van Bladel, J., 987.
Van de Hulst, H. C., 987.
Van den Berg, P. M., 987.
Van der Pol, 620.
Van Duzer, T., 983, 987.
Van Santen, J. H., 862, 983.
Vant, M. R., 987.
Variational principle, 954.
Vector current moment, 499, 500, 502, 504,

516, 545, 548.
Vector potential, 66, 495, 500, 501.
Vectors

addition and subtraction, 7.
cross product, 7.

defined, 6.
dot (scalar) product, 7.

Vega, 898.
Velocity four-vector, 953.
Veselago, V., 987.
Vezzetti, D. J., 987.
Villeneuve, A. T., 977.
Visible range, 517–520, 530–532, 537, 543.
Voltage, 140, 142.

coaxial transmission line, 143.
parallel-plate waveguide, 143.

Voltage standing wave pattern (VSWP),
188.

Voltage standing wave ratio (VSWR), 188.
Voltage wave, 154–156, 158, 168, 249.
Volume scattering medium, 852, 853.
von Schmutzer, E., 988.
von Tischer, M., 952, 953, 988.

Wagner, R. J., 980.
Wait, J. R., 977, 988.
Waterman, P. C., 975, 988.
Watson transformation, 784, 785.
Watson, G. N., 988.
Watson, J. G., 988.
Watson, K. M., 978.
Wave equation, 24, 25, 32, 65, 153.

for voltage and current, 153.
in cylindrical coordinates, 435.
in paraxial limit, 743.
in spherical coordinates, 469.
scalar, 743, 745.

Wave guidance, 402, 461.
Wave impedance, 393, 394.

continuity of, 393.
Wave in negative isotropic medium, 308.
Wave surface, 322.

for extraordinary wave, 347.
Wave transformation, 777, 783, 788.
Wave vector, 98, 306, 309.

incident, 99, 101, 923.
reflected, 101, 108.
transmitted, 101, 108.
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Waveguide
circular dielectric, 442.
circular metallic, 435.
cylindrical , 429.
cylindrical circular, 435.
cylindrical rectangular, 430.
fiberglass, 461.
metallic rectangular, 116.
parallel-plate, 111, 139, 141, 403.
radial parallel-plate, 708.
rectangular, 116.

Wavelength, 27, 30.
Wavenumber, 27, 277.
Waves

backward, 379, 383.
circularly polarized, 33.
continuous, 263.
creeping, 786, 787.
current, 154, 155, 168, 249.
elliptically polarized, 33.
evanescent, 272.
extraordinary, 318–320, 341, 350, 363.
guided, 111, 402.
guided backward, 929.
Hertzian, 65.
idler, 351.
in bianisotropic medium, 330.
in conducting medium, 268.
in gyrotropic medium, 323.
in isotropic mediium, 314.
in moving dielectric slab, 927.
in moving gyrotropic medium, 929.
in moving medium, 903.
in moving uniaxial medium, 909.
in nonlinear medium, 339.
in uniaxial medium, 315.
linearly polarized, 33, 35.
monochromatic, 263.
ordinary, 317, 319, 320, 341.
phase-conjugated, 343.
pump, 346.
slow, 764.

TE, 99, 368.
TEM, 115, 139, 143, 410.
TM, 100, 368.
Type I, 328.
Type II, 328.
voltage, 154, 155, 168, 249.
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