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PREFACE

This book presents a unified macroscopic theory of electromagnetic
waves in accordance with the principle of special relativity from the
point of view of the form invariance of the Maxwell equations and the
constitutive relations. Great emphasis is placed on the fundamental
importance of the k vector in electromagnetic wave theory. We intro-
duce a fundamental unit K, = 27 meter—! for the spatial frequency,
which is cycle per meter in spatial variation. This is similar to the
fundamental unit for temporal frequency Hz, which is cycle per sec-
ond in time variation. The unit K, is directly proportional to the unit
Hz; one K, in spatial frequency corresponds to 300 MHz in temporal
frequency.

This is a textbook on electromagnetic wave theory, and topics
essential to the understanding of electromagnetic waves are selected
and presented. Chapter 1 presents fundamental laws and equations
for electromagnetic theory. Chapter 2 is devoted to the treatment of
transmission line theory. Electromagnetic waves in media are stud-
ied in Chapter 3 with the kDB system developed to study waves
in anisotropic and bianisotropic media. Chapter 4 presents a detailed
treatment of reflection, transmission, guidance, and resonance of elec-
tromagnetic waves. Starting with Cerenkov radiation, we study radia-
tion and antenna theory in Chapter 5. Chapter 6 then elaborates on
the various theorems and limiting cases of Maxwell’s theory important
to the study of electromagnetic wave behavior. Scattering by spheres,
cylinders, rough surfaces, and volume inhomogeneities are treated in
Chapter 7. In Chapter 8, we present Maxwell’s theory from the point
of view of Lorentz covariance in accordance with the principle of spe-
cial relativity. The problem section at the end of each section provides
useful exercise and applications.

The various topics in the book can be taught independently, and
the material is organized in the order of increasing complexity in math-
ematical techniques and conceptual abstraction and sophistication.
This book has been used in several undergraduate and graduate courses
that I have been teaching at the Massachusetts Institute of Technology.



vi Preface

The first version of the book was published in 1975 by Wiley
Interscience, New York, entitled Theory of Electromagnetic Waves,
which was based on my 1968 Ph.D. thesis, where the concept of bian-
isotropic media was introduced. The book was expanded and published
in 1986 with the present title and its second edition appeared in 1990.
Since 1998, it has been published by EMW Publishing Company, Mas-
sachusetts. The development of the various concepts in the book relies
heavily on published work. I have not attempted the task of referring
to all relevant publications. The list of books and journal articles in the
Reference Section at the end of the book is at best representative and
by no means exhaustive. Some of the results contained in the book are
taken from many of my research projects, which have been supported
by grants and contracts from the National Science Foundation, the
National Aeronautics and Space Administration, the Office of Naval
Research, the Army Research Office, the Jet Propulsion Laboratory of
the California Institute of Technology, the MIT Lincoln Laboratory,
the Schlumberger-Doll Research Center, the Digital Equipment Cor-
poration, the IBM Corporation, and the funding support associated
with the award of the S. T. Li prize for the year 2000.

During the writing and preparation of the book, many people
helped. In particular, I would like to acknowledge Chi On Ao for for-
mulating the TEX macros, and Zhen Wu for editing the text and con-
structing the index. Over the years, many of my teaching and research
assistants provided useful suggestions and proofreading, notably Le-
ung Tsang, Michael Zuniga, Weng Chew, Tarek Habashy, Robert Shin,
Shun-Lien Chuang, Jay Kyoon Lee, Apo Sezginer, Soon Yun Poh, Eric
Yang, Michael Tsuk, Hsiu Chi Han, Yan Zhang, Henning Braunisch,
Bae-Tan Wu, Xudong Chen, and Baile Zhang. I would like to express
my gratitude to them and to the students whose enthusiastic response
and feedback continuously give me joy and satisfaction in teaching.

J. A. Kong

Cambridge, Massachusetts
December 2007
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1.1 Maxwell’s Theory 3

1.1 Maxwell’s Theory

A. Maxwell’s Equations

The laws of electricity and magnetism were established in 1873 by
James Clerk Maxwell (1831-1879). In three-dimensional vector nota-
tion, the Maxwell equations are

VXF:%§+7 (1.1.1)

VXE——%B (1.1.2)

V-D= (1.1.3)

V-B=0 (1.1.4)

where E, B, H, D, J, and p are real functions of position and time.
E = electric field strength (volts/m)
B = magnetic flux density (webers/m?)
H = magnetic field strength (amperes/m)
D = electric displacement (coulombs/m?)
J = electric current density (amperes,/m?)
p = electric charge density (coulombs/m?)

Equation (1.1.1) is Ampere’s law or the generalized Ampere circuit law.
Equation (1.1.2) is Faraday’s law or Faraday’s magnetic induction law.
Equation (1.1.3) is Coulomb’s law or Gauss’ law for electric fields.
Equation (1.1.4) is Gauss’ law or Gauss’ law for magnetic fields.
We generally refer to £ and D as electric fields, and H and B
as magnetic fields.

Maxwell’s contribution to the laws of electricity and magnetism is
the term 9D /0t which is called the displacement current. The addi-
tion of the displacement current to the electric current density J (7, t)
in the original Ampere’s law has at least three major consequences.
First, in a capacitor which is an open circuit for direct current, the
displacement current insures the continuity of alternating currents in
electric circuits. Secondly, the continuity law

_ 0
V- T=—50p (1.1.5)
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follows from (1.1.1) and (1.1.3) by making use of the vector identity
V- (V x H) = 0. It is the displacement term that guarantees the
conservation of electric current and charge densities. Eq. (1.1.5) states
that the electric current and charge densities are conserved at all time.
Thirdly, Faraday’s law in (1.1.2) states that surrounding a time-varying
magnetic field, electric fields are produced, and are also time-varying.
With the displacement term in (1.1.1), Ampere’s law states that around
time-varying electric fields, time-varying magnetic fields are produced.
This interrelationship between the time-varying electric and magnetic
fields constitutes the foundation of electromagnetic wave theory and
led Maxwell to the prediction of electromagnetic waves.

In developing his theory for the electromagnetic fields in space
and time, Maxwell conceived of a substance filling the whole space
called aether. In the aether, the electric fields D and E are related
by a dielectric permittivity e, , and the magnetic fields B and H are
related by a magnetic permeability g, .

€& E (1.1.6a)
poH (1.1.6b)

| S
I

where
€, ~ 8.85 x 10712 farad /meter

fto=4m x 1077 henry /meter

where the numerical values for €, and pu, are expressed in MKS units.
We now call (1.1.6) the constitutive relations for free space.

With Equations (1.1.1)—(1.1.6), Maxwell’s theory of electromag-
netic fields is completely expressed. Originally written in Cartesian
component form, Maxwell’s equations were cast in the current vector
form by Oliver Heaviside (1850-1925). In 1888, Heinrich Rudolf Hertz
(1857-1894) demonstrated the generation of radio waves and experi-
mentally verified Maxwell’s theory. Since then, electromagnetic theory
has played a central role in the development of radio, television, wire-
less communications, radar, microwave heating, remote sensing, and
numerous other practical applications. The special theory of relativity
developed by Albert Einstein (1879-1955) in 1905 further asserted the
rigorousness and elegance of Maxwell’s theory. As a well-established
scientific discipline, this sophisticated theoretical structure embodies
many principles and concepts which serve as fundamental rules of na-
ture and vital links for all scientific disciplines.
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James Clerk Maxwell (13 June 1831 — 5 November 1879)

James Clerk Maxwell attended University of Edinburgh (1847-1850),
and studied under William Hopkins at Cambridge University (1850-1854).
He was a fellow of Trinity (1855-1856), Professor of Natural Philosophy at
Marischal College of the University of Aberdeen (1856-1860), and at King’s
College (1860-1865). He was the first Cavendish Professor of Experimental
Physics at Cambridge University to build and direct the Cavendish Labora-
tory (1871-1879). He published four books and about 100 papers starting at
age 14, including ‘On Faraday’s Lines of Forces’ in 1855, ‘On Physical Lines
of Force’ in 1861, and ‘A Dynamical Theory of the Electromagnetic Field’ in
1864. In 1865, at age 33, he retired to his country home estate to write his
monumental book A Treatise of Electricity and Magnetism (Constable and
Company, London, 1873; Dover Publications, New York, 1006 pages, 1954).

Michael Faraday (22 September 1791 — 25 August 1867)

Faraday became an assistant to Sir Humphry Davy at the Royal Institu-
tion on 1 March 1813. In September 1821, his experimentation demonstrated
electro-magnetic rotation, initiated the concept of electric motor. In August
1831, he discovered electro-magnetic induction, and that magnetism produced
electricity through movement, the principle behind the electric transformer
and generator. He became professor of chemistry in 1833. Faraday published
many of his results in the three-volume Ezperimental Researches in Electricity

(1839-1855).

Johann Carl Friedrich Gauss (30 April 1777 — 23 February 1855)

Gauss studied mathematics at the University of Gottingen from 1795 to
1798, and received his doctoral degree from the University of Helmstedt in
1799. In 1807 he took the position of director of the Gottingen Observatory.
In 1832 he presented a systematic use of absolute units (length, mass, time)
to measure nonmechanical quantities. From 1831 to 1837 he worked closely
with Wilhelm Eduard Weber (24 October 1804 — 23 June 1891) on terrestrial
magnetism and organized a system of stations for systematic observations.

André-Marie Ampére (20 January 1775 — 10 June 1836)

Ampere was appointed professor at Bourg Ecole Centrale in 1802, at
the Ecole Polytechnique in 1809, and at Université de France in 1826. In
September 1820, Ampere showed that two parallel conductors attract each
other if they carry currents that flow in the same direction and repel if the
currents flow in opposite directions. In 1823-1826, he completed his memoir on
the ‘Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced
from Experience’.

Charles-Augustin de Coulomb (14 June 1736 — 23 August 1806)

Coulomb worked in the Corps du Génie until he retired in 1791. In 1777
he invented the torsion balance, which enabled him to establish the funda-
mental laws of electricity by measuring the force between two small spheres
charged with electricity. Between 1785 and 1791, he published seven treatises
on electricity and magnetism.
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B. Vector Analysis

A vector A has a magnitude and a direction, which can be represented
graphically by a straight-line element of length proportional to the
magnitude of A and with an arrow pointing in the direction of A. In
a Cartesian coordinate system (also called the rectangular coordinate
system), we write in terms of the three Cartesian components A, A, ,
and A, [Fig. 1.1.1].

>y

Figure 1.1.1 Projection of A in rectangular coordinate system.

A=3A, + A, + 2A,

where A, Ay, A, are the projections of A onto the z,y,z axes. We
denote the directions of the x,y,z axes with Z, ¢, 2 each of them
has unit magnitude with the scalar product z-z2=9-g=2-2=1.
They are called the unit vectors. Furthermore -y =9-2=2-2=0.
We use a hat instead of an overbar to represent the vector with unit
magnitude.

Rene Descartes (31 March 1596 — 11 February 1650)

Rene Descartes originated the Cartesian coordinates and founded an-
alytic geometry. His philosophy is called Cartesianism (from Cartesius, the
Latin form of his name), with the famous statement ‘I think, therefore I am.’
He preached universal doubt; only one thing cannot be doubted: doubt itself.
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Vector Addition and Subtraction

Two vectors A and B, when they are not in the same direction or in
opposite directions, determine a plane. In Cartesian components, we write

=a3A, +gA, + 2A,
= #B, + B, + 2B,
It follows that
A+ B =#(A, £B,) +§(A, £ By) + 2(A, £ B.)

Scalar Dot Product

The scalar or dot product of two vectors A and B, denoted by A- B,
is a scalar number,

A-B=A,B,+A,B,+ A.B,

Vector Cross Product

The vector or cross product of two vectors A and B, denoted by Ax B,
is a vector. In terms of their Cartesian components,

Ax B=3(A,B, — A,B,) + §(A,B, — A, B.) + 2(A, B, — A, B,)

=4, 4, A
B, B, B.

For the three orthogonal unit vectors z, g, and Z it is seen that & =
YXZ, Y=2X2T, 2=1 X 4.

The direction of A x B follows the right-hand rule, i.e., when the fingers
of the right hand rotate from A to B, the thumb of the right hand points in
the direction of A x B. Thus the vector A x B is perpendicular to both A
and B and the plane containing A and B . It is seen that for A = 2A4,+7A,
and B = &B, + B, both in the zy-plane, A x B = 2(A,B, — A,B,) is in
the % direction perpendicular to both A and B.

Division by a vector is not defined; thus B/A and 1/A are meaningless
expressions. If none of the operations of addition, subtraction, dot product,
or cross product is imposed on A and B, the entity A B is called a dyad.
In the language of tensor analysis, a dyad is a tensor of second rank, while
all vectors are tensors of first rank.
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Operation of Three Vectors

For three vectors A, B, and C, we have
B

C-(AxB)=A-(BxC)=B-(CxA) (1.1.7)
c, ¢, C. A, A, A, B, B, B,
=|4, A, A, |=|B, B, B.|=|C, C, C.
B, B, B. c, ¢, C, Am A, A
Cx(AxB)=3%[Cy, (A;By — AyB;) — C,(A, B, — A, B,)]
+9 [C.(AyB. — A.By) — Cu(A: By A By)]
+ 2 [Cy(A.B, — A,B,) — Cy(A, By — AyBy,)]
= (2A; + yA, + 2A.)(Cy B, + CyB, + C.B.,)
—(C Ay +C A, +C.A,) (B, +yBy, + 2B.)
=A(C-B)-(C-AB (1.1.8)

Notice that the vector C' x (A x B) is perpendicular to C' and lies in the
plane determined by A and B.

Operation with the del Operator

The del operator V is a vector differential operator written as

SN )
- T ox yay 0z

The following can be proved in Cartesian coordinates or in vector form:

V- (ExH)=H-(VxE)-E-(VxH) (1.1.9)
V- (VxA)=0 (1.1.10)
V x (V&) =0 (1.1.11)
Vx(VxE)=V(V-E)-V*E (1.1.12)

where
Vi=V.V= a2+82+82 (1.1.13)

is the Laplacian operator in the rectangular coordinate system.

Pierre-Simon Laplace (28 March 1749 — 5 March 1827)
Pierre-Simon Laplace was appointed to a chair of mathematics at the
Ecole Militaire in Paris at the age of 19. During the French Revolution he

helped to establish the metric system. The Laplace equation V2-® =0 was
published in 1813.
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Gradient of a Scalar

When the del operator operates on a scalar function ®(x, y, z), the result is a vector

0 0 7]
P=2—>P+y—P+2— 1.1.14
v T or Y Jy Tz 0z ( )
called the gradient of ®(x,y, z). The differential form of the gradient of ® as defined
states that

Ve fim 5

=& lim LK‘P(Wr %JJ,Z) — @z - %,y,Z))]

Az—0 Az

— 4+ g lim g+2 lim &
Yy Ay—0 Ay Az—0 Az

N 1 Ay Ay
+y hmofy[(q)(;my"_Tvz) (b(l',y 77Z)):|

Ay—
. 1 Az Az
+ 2 AlerOA—Z{(qu,y,erT) - O(z,y,z — 7))} (1.1.15)

When ®(z,y,z) = ®(z) is a function of z only, V®(x) is a vector pointing in the
direction of increasing x with the magnitude equal to the slope of the function at
x.

EXAMPLE 1.1.1 Electric field vector as gradient of a potential function.
When there is no time variation, we may write the electric field vector F as

E=-Vd (E1.1.1.1)

and call ® a potential function. As the gradient V& points in the direction of
increasing potential ®, the electric field E points from high potential towards low
potential, similar to water flowing from a high altitude to lower ground.

Giving the potential of a point charge @ is

the electric field is 5 0
E=——&=
0 47r2

Thus the electric field points from high potential to low potential.

— END OF EXAMPLE 1.1.1 —
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Divergence of a Vector

The divergence of a vector function is a scalar, defined as

_ 0 0 0 A . .
V'D_< Yo T3y +28—>'(IDx+yDy+ZDz)
0 8 0
= g5 De+ 5, Du+ 52D (1.1.16)
z
A
(anyOaZO)
T Az
Az
Ay

X

Figure 1.1.2 Differential volume AzAyAz.

Consider a differential volume with sides Ax, Ay, Az centered around a
point (xo, Yo, z0) [Fig. 1.1.2]. The divergence as defined states that

1 Az Az
V-D —Alflﬂfgo m {AZUAZ |:Dx ($0 + 77 Yo, ZO)_DI (960 - 77 Yo, ZO):|
Az—>0

A A
+ AzAz [Dy(:vo,yo + 7y,Zo) - D, (3307y0—7y,20)}

Az Az
+ AzAy [Dz(l‘o,yo,zo + 7) — D (x0,y0, 20 — 7)] }

(1.1.17)
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Gauss Theorem or Divergence Theorem

The first term in the braces is equal to the field component D, at the

surface at =z = xg + % multiplied by the surface area AyAz. We define a

surface normal vector dS pointing outward of the volume such that at the

surface at © = xg + % , dS = 2AyAz and at the surface at © = zg — % ,

dS = —2AyAz. Then the negative sign in the second term is due to D dot
multiplied by dS . All six terms account for the six differential areas bounding
the differential volume AV = AzAyAz with a surface normal dS. We thus
express the divergence of D as

— 1 .
D= lim — : 1.1.1
V-D= lim <o (] d5-D (1.1.18)

Applying (1.1.18) to a large volume V' containing an infinite number of such
infinitesimal differential volumes [Fig. 1.1.3], we note that integrating the di-
vergence over the volume surfaces shared by adjacent differential volumes will
have no contribution because the surface normals point in opposite directions
and thus cancel. The result is the divergence theorem or Gauss theorem

Figure 1.1.3 Derivation of divergence theorem.

///Vdvvﬁﬁgd?ﬁ (1.1.19)

The divergence theorem states that the volume integral of the divergence of
the vector field D is equal to the total outward flux D through the surface
S enclosing the volume.
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Curl of a Vector

The curl of a vector field H is a vector defined as

o 8 0 R B
(0 0 0\ = _|o b o
VXH_<xax+yay+Zaz>XH oz Oy 0z
H, H, H.

T ) N ) N )

(1.1.20)

Consider a differential volume of sides Az, Ay, Az centered around a point
(0, Y0, 20) - In the Cartesian coordinate system, the differential form of the

curl of H as defined states that

_ 1 — A — A
VxH = lim {A—[Qfx (H($o+7$7yo,zo)—H($o— —x7yo,zo))}

Az—0 x 2
i
=1 . — A — A
+ A_y [y x | H(zo,y0 + 711720) — H(x0,y0 — 7y320)>:|
1 |. — Az — Az
+ s [2 X (H(&L‘o,yo,Zo + 7) — H(x0,%0,20 — 7))] }
i ! X
= lim ——
Az—0 AzAyAz
Ay—0
Az—0
A A
{ﬁ {AxAz <Hz(xo,yo + 7y720) — H.(x0,y0 — 7y720)>

Az Az
— ArAy (Hy(xmyo,zo + 7) - Hy(3307y0,20 - 7))]

+9 -AxAy <Hm($o,yo,zo + %) — H(20,Y0, 20 — %))

— AyAz <Hz(xo + %,ymzo) — H(wo — %;%%O)]
+2 -AyAz (Hy(xo + %,yo,m) — Hy(zo — %JJO,ZO))

— AxAz <H3;(Io,yo + %77«“0) — Hy(z0,90 — %JO))] }
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Stokes Theorem
The 2 component of (1.1.21) is

_ 0 0
2-(VxH)=(VxH) oz~ 3,
. 1 Ax Ax
= ﬁ%rélg m{ﬁy [Hy(fﬂo + T,yo,zo) — Hy(zo — 77?/0,20)}

A A
— Az [Hx(l‘o,yo + Ty,zo) — Hy(z0,90 — Ty,zo)] }

The first term in the bracket is equal to the component H, at z = + 4z
multiplied by the differential length Ay . We define a vector dlfferentlal length

dl [Fig. 1.1.4] such that for the side Ay at = = xg + AT , dl = gdy; for
the side Az at yg + &Y gl = —jdx; for the side Ay at T = x0— Aw
dl = —gdy; and for the side Az at y = yo — %, dl = &dz. If we use
the fingers of the right hand to trace the direction of dl along the loop, the
right-hand thumb points in the surface normal direction 2. Thus

dl = —@dx

Ay =

/

fe—— Az —>

Figure 1.1.4 Derivation of Z-component of the curl of a vector field.

— 1 _
2 (VxH)= lim — ¢ d-H (1.1.22)
Ay—0 c

where C denotes the contour circulating the area AS = AzAy. Similar
results are derivable for the & and § components of V x H . For a differential
area AS with a surface normal in the direction of 5, we have

— 1
§-(VxH)= Alérgo AS dl H (1.1.23)
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We now apply (1.1.21) to an open surface S, subdivide into N differential
areas [Fig. 1.1.5]. For a differential area AS; bounded by a contour C; and

with a surface normal s, we have Agj = 5;AS; and
AS; - (V x H); :7{ dl-H
<

Adding the contributions of all N differential areas [Fig. 1.1.5], we find

Figure 1.1.5 Derivation of Stokes’ theorem.

Since the common part of the contours in two adjacent elements is traversed
in opposite directions by the two contours, the net contribution of all the
common parts in the interior sums to zero and only the contribution from the
external contour C' bounding the open surface S remains in the line integral
on the right-hand side. The left-hand side becomes a surface integral, and the
result is Stokes’ theorem:

//d?-(Vxﬁ) :yidi-ﬁ (1.1.24)

Stokes’ theorem states that the surface integral of the curl of the vector field
H over an open surface S is equal to the closed line integral of the vector
along the contour enclosing the open surface.

George Gabriel Stokes (13 August 1819 — 1 February 1903) was appointed
Lucasian Professor of Mathematics at Cambridge University in 1849. His
mathematical and physical papers were published in 5 volumes, the first 3 of
which Stokes edited himself in 1880, 1883 and 1891. The last 2 were edited
by Joseph Larmor in 1887 and 1891.
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Maxwell Equations in Integral Form

Applying Stokes theorem to the Ampére’s law and Faraday’s law and
applying the divergence theorem to Gauss’ and continuity laws, we find

faz—[[s 28 aazm
ﬂg ///VdVV.E:///Vde (1.1.27)
ﬁid@-?:///vdvv-ﬁzo (1.1.28)
o fffos

These are the integral form of Maxwell equations.

Oliver Heaviside (18 May 1850 — 3 February 1925)

The year after the publication of Maxwell’s Treatise of Electricity and
Magnetism in 1873, Heaviside resigned from his job at age 24 and devoted
all his time to the study of Maxwell’s theory. Despite of the criticism from
all the disbelievers, he remained the faithful decipher and declared himself a
Maxwellian. He refuted the quaternion notation initiated by Hamilton and
Tait and developed the vector notation to cast Maxwell’s equation into the
form as we show in this book.
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Cylindrical and Spherical Coordinate Systems

In addition to the rectangular coordinates with unit vectors ,9, Z, the
cylindrical coordinate system with unit vectors g, é, %, and the spherical co-
ordinate system with unit vectors p, é,(ﬁ are often used in this book.

In a general orthogonal coordinate system, we use 4; (i = 1,2,3) to
denote the three basis vectors, dl; = h;du; to denote a differential length,
where h; is called a metric coefficient. The basis vectors are perpendicular to
one another 4;-u; =0 for i # j but they are not necessarily of unit length.
In Table 1.1.1 we summarize the basis vectors and the metric coefficients for
the rectangular (or Cartesian), cylindrical, and spherical coordinate systems.

Rectangular Cylindrical Spherical
Or.thogonal Coordinates | Coordinates Coordinates
Coordinate System (z,y,2) (p, b, 2) r, 0,
Base Vectors PN JUE LA a
(ﬁ1,ﬁ2,ﬁ3) x,Y,z p7¢az T797¢
Metric Coefficients .
(h1, o, hs) 1,1,1 1,p,1 1,7,rsinf
Differential Volume 2 -
(h1hahsdu; dusdus) dxdydz pdpdpdz r* sin Odrdfdeo

Table 1.1.1 Orthogonal coordinate systems.

In terms of the general orthogonal coordinate system, the gradient, the
divergence, the curl, and the Laplacian operators are defined as

Vo =14 ¢ + 4 oo + U 0%
= u
! hl 8’11,1 2 hg@ﬂg 3 h38U3
— 1 0 0 0
D= —— | =—(h2hsD —(hsh1 D —(h1haD:
v hlhghg |:8U1( 21 1)+3U2( 3 2)+ 8U3( 172 3):|
hl’ll1 hQ’ELQ h3’0,3
7 1 9o 90 0
VxH= h1h2h3 8’[1,1 811,2 8u3
hiHy hoHs hsHs
Ve =V Ve
1 0 0P 0 0P 0 0P
= —— | —hohs—— + —hshy —— + —h1ho———
hlhghg I:aul 2 3h18u1 + 3’[1,2 3 1h,2(9U2 + 8u;3 ! 2h3(9’u,3:|

Identifying the metrics hi, ho, hy with those as listed in Table 1.1.1, we
readily obtain the expressions in cylindrical and spherical coordinates.
In the cylindrical coordinate system [Fig. 1.1.6],

Vector differential length dl = pdp + (jAdeng + zdz
Differential area dS = ppdpdz + édpdz + Zpdpde
Differential volume dV = pdpdpdz
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z
A
dz[ s p dpd¢p
\\:\} e dpdz
NN
l pdodz
\\\\\\\/\\\\\ 3
N

Figure 1.1.6 Cylindrical coordinate system.

0 -109 0P

(I)— 5
\Y pap+¢ 0¢+282
— 18 19 9
V-D=-—(pD,)+~=-Dy + 3 D,
pap(p p) 00
popd 2
Z=_ 119 8 a
H, pH, H,
V2p =V VP
1o oe] 1o o
"o op| TP og T 922

In the spherical coordinate system [Fig. 1.1.7],

Vector differential length dl = #dr + Ordo + (]37“ sin 0d¢
Differential area dS = 772 sin 0dfd¢ + Or sin Odrdg + qgrdrdH
Differential volume dV = r?sin 8drdfde
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X

Figure 1.1.7 Spherical coordinate system.

0P 10d ~ 1 0®
Ve = T e T 0 90

— 19 0 1 9
VoD = g D) g g (in0De) + a5 Do
7 r 7 sin 8¢
VXH:rzsllne % % %
H, rHy rsinfHy
V20 =V .V
10[,00 1 o[, 00 1 0%®
:r—za[’“ W] m&[m@%} Zsin? 0 09
1 02 1 9. 09 1 0%
= ;ﬁ[r ]—i—m%[smH%} —TQSiHQGW

Index Notation
A vector in the Cartesian coordinate system can be represented by its
three components. Thus, A; with j = 1,2,3 represents A;, As, A3 of the

vector A. The dot product A- B is written as A;B; where the repeated
index j implies summation over j from 1 to 3:
3
A;jBj = " A;Bj = A1By + A;By + A3By

j=1
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To express cross products in index notation we need to define a Levi-Cevita
symbol ¢€;;; where i,j,k take values from 1 to 3. When any of the two
indices are equal the Levi-Cevita symbol is zero. Otherwise, €;;;, is either
4+1 or —1.Itis +1 if ijk is an even permutation of 1,2,3; —1 if ijk is an
odd permutation of 1,2,3. Thus €123 = €231 = €312 = 1 and €913 = €132 =
€301 = —1 and all others equal to 0. Let C' = A x B. In index notation, we
write Ci = EijkAjBk . ThllS7 Cl = 6123A233 + 8132A332 = A2B3 — A3B2 .
The dyad A B is A; By, , no summation implied because no index is repeated.
The identities (1.1.7) and (1.1.8) are
CigijuA; By = AjeriBiCi = BreyijCiA,
€ijkCi€rimAi1Bm = (€ijkkim)Cj AiBm = (0510 jm — 6im01;)Cj A1 B,
= AzcmBm - ClAlBi
where d;; =1 when ¢ =7 and d;; =0 when 7 # 5.
In index notation, divergence of D;, V- D;,is 0;D;.
In index notation, V is represented by 0; and V¢ by 0;¢ .
In index notation, curl of H;, V x H;, is written as €;;,0;Hj.
The identities (1.1.9)—(1.1.12) are, in index notation
Oi(eijk EjHy) = €iji Hi0i Ej + €51, B 0; Hy, = Hyeyij0i By — Ejejir0; H,
(%EijkajAk = —EjikaiajAk =0
€ijk 000 = —€i1;0j0r P = —€i1jO0r0;0 = 0
€ijk0i€kim O Em = (0i10jm — 0im0;1)0;01 By = 0 0; By — 0;0; E;
Maxwell equations, when written in index notation, take the form:
5ijk8ij =0D; + J;
EijkajEk = 8tBi
9;Dj = p
8ij = —agp

where 0; denotes partial derivative with respect to time.

ExXAMPLE 1.1.2 Poisson equation and Laplace equation.
In (E1.1.1.1), we wrote the electric field vector as the gradient of a po-
tential function @ :

E=-Vo (E1.1.2.1)

By virtue of (1.1.11), we see that V x E = 0. Thus the above definition for
the electric field is true only when the term 9B/0t in Faraday’s law can be
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neglected, i.e., when there is no time variation. We may refer to the above
electric field as the static electric field. Derive an equation for @ .

SOLUTION:
Coulomb’s law (or Gauss’ law for electricity) in free space is

V-E=ple
In terms of the potential function, we obtain the Poisson equation
V20 = —p/e, (B1.1.2.2)

In places where there is no charge density, p = 0, we have the Laplace
equation V2® =0.

— END oF EXAMPLE 1.1.2 —

Siméon Denis Poisson (21 June 1781 — 25 April 1840) studied mathematics at
the Ecole Polytechnique and was student of Pierre-Simon Laplace and Joseph-
Louis Lagrange. His memoir on finite differences was written at age 18. His
well-known contributions include Poisson’s equation in potential theory was
developed in 1829-1835.

ExamMPLE 1.1.3 -
_The voltage Vg is defined as the integration of E along a line segment
of ¢ from point a to point b.

b
Vab:/ dt-E (E1.1.3.1)

Thus V,; is the potential difference between points a and b. For positive
Vb , the electric field vector points from a to b. Point a is at a higher
potential ®, than &, at point b, &, < &, and V,p = ¢, — Py .

— END OoF EXAMPLE 1.1.3 —

ExAMPLE 1.1.4

Maxwell’s equations were originally written in the form of scalar partial
differential equations. Written in terms of all field components, we find that
for Ampere’s law,

0 0 0

—H ——H =—D E1.1.4.1
gy~ gy = gDt ( a)
0 0 0

o He — aHz = aDy +Jy (E1.1.4.1b)
0 0 0

—H,—- —H,=—D, , El1.1.4.1
T el TR ( g
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for Faraday’s law,

0
ayEé o By =5, Bs (E1.1.4.2a)
0 0 0
o b~ 5B = —5.B, (E1.1.4.2b)
0 1o} 0
— —F,=——B, E1.1.4.2
ar Y By ot ( c)
for Coulomb’s law
0 0 0
D, +Zp,+<D, = El1.1.4.
Or + oy Y + 0z P ( 3)
and for Gauss’ law
0 0 0
B +2B+2B,=0 El.1.4.4
Oz * oy Y + 0z ( )

Taking the sum of d(E1.1.4.1a)/0x, 0(E1.1.4.1b)/0y, (E1.1.4.1¢)/dz, and
making use of (E1.1.4.3), we obtain

0 0 B B
IR R v

p (E1.1.4.5)
which is the continuity law. Given (E1.1.4.5), Coulomb’s law can be derived
from Ampere’s law. Likewise, Gauss’ law can be derived from Faraday’s law,
V - B = Const , noticing that no static magnetic monopole is found to exist
and that Const = 0. Thus (E1.1.4.3) and (E1.1.4.4) are not independent
scalar equations, they can be derived from (E1.1.4.1) and (E1.1.4.2).

— END OoF EXAMPLE 1.1.4 —

Problems

P1.1.1
Three vectors A, B, and 6_draﬂn in a head-to-tail fashion form the
three sides of a triangle. What is A+ B+ C and whatis A+ B—C7?

P1.1.2

Prove |A x B|?> = A?2B? — (A-B)? by using C x (Ax B) = A(C-B) —
© AL
P1.1.3

A position vector 7 = #v/2 + §v/2 + 42 . Determine its spherical compo-
nents r,6,¢ and its cylindrical components p, ¢, z .
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P1.14
Find a unit vector ¢ that is perpendicular to both A =34+ 95— 23
and B=22—gy7—215.

P1.1.5
Let A = 3A, and the projection of another vector B on A be B, =
BcosBap. What is A- B in terms of the angle 645 between A and B7?

P1.1.6
Assume A > B and draw a line projecting B on A . The line length h =
Bsinfap , which is also related to A from h? = |A— B|?> — (A~ Bcosf0,p)>

by the cosine law in geometry. Show that A-B = ABcosfap

P1.1.7

The direction of A x B follows the right-hand rule, i.e., when the fingers
of the right hand rotate from A to B, the thumb of the rlght hand points
in the direction of A x B. Thus the Vector A X B is perpendicular to both

A and B and the plane containing A and B. Let A = #A, + ¢4, and
B=iB, + 9By both in the zy-plane, find AxB.

P1.1.8

Using cosfsp = A- B/AB, show that |A x B| = |ABsinf,p|.
P1.1.9

For ®(z) =22, and ®(z) = —23, what are their gradients?
P1.1.10

The function ® = 224+2y? describes a family of ellipses. Find its gradient
and show that V& is normal to the ellipse and pointing in the directions of
an expanding ellipse.

Pl.lélolnsider the function ® = x + y. Find the gradient of the function.
P1.1.12
Prove the following identities:

V- (ExH)=H-(VxE)-E-(VxH) (1.1.9)

(V x A) =0 (1.1.10)

x (V@) =0 (1.1.11)

Vx(VxE)=V(V-E)-V*E (1.1.12)
P1.1.13

The six terms in (1.1.21) are associated with the six differential surfaces
bounding (zo, o, z0) - For the first term, the surface normal is in the & di-
rection; we write dS = 2AyAz. For the second term dS = —2AyAz. For
the thlrd term dS = §AzAzx , etc. Derive a curl theorem by integrating over
the volume similar to the divergence theorem.
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P1.1.14

What is the result if the surface integral of V x H is carried out over
a closed surface? Compare with Stokes Theorem in (1.1.24) and the curl
theorem in P1.1.13 for the curl integrated over a volume V enclosed by a
surface S'.

P1.1.15
For the vector A = pp? + 52z, verify the divergence theorem for the
circular cylindrical region enclosed by p=5,2=0, and z=3.

P1.1.16 B B -
Prove that [A X (V X .B)]z = AjaiBj — [(A . V).B]z .

P1.1.17
Prove that V(A-B) = (A-V)B+(B-V)A+Ax (Vx B)+ B x (V x A).

P1.1.18 o L B
Show that V(A-A)=2(A-V)A+24x (V x A).

P1.1.19
Express static electric field vector as the gradient of a potential function

I S
\r?+y? 422

and find the electric field of a charge ¢ from Maxwell equations.

b =
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1.2 Electromagnetic Waves

A. Wave Equation and Wave Solution

The Maxwell equations in differential form are valid at all times
for every point in space. First we shall investigate solutions to the
Maxwell equations in regions devoid of source, namely in regions where
J =0 and p = 0. This of course does not mean that there is no source
anywhere in all space. Sources must exist outside the regions of interest
in order to produce fields in these regions. Thus in source-free regions
in free space, the Maxwell equations become

2_

H=¢—F 1.2.1

V x €0 ( )
— 0 —

E=—po~—H 1.2.2

V x Hony (1.2.2)

V-E=0 (1.2.3)

V-H=0 (1.2.4)

To derive an equation for the vector field E, we take curl of (1.2.2),
substitute (1.2.1)

2

VXVXE——MO%VXF——MOGO%E

and make use of the vector identity V x V X E =VV.E-V?E.
Noticing from (1.2.3) that V- E =0, we have

(1.2.5)

2

_ 0%
V2E — Hoto g B =0 (1.2.6)

This is known as the Helmholtz wave equation. Solutions to the wave
equation (1.2.6) that satisfy all Maxwell equations are electromagnetic
waves.

Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 — 8 September
1894) was a professor of anatomy and physiology at the University of Bonn in
1858, then became a professor of physics at the University of Berlin in 1871,
and the first director of the Physico-Technical Institute of Berlin in 1888.
His 3-volume Handbook of Physiological Optics appeared between 1856 and
1867.




1.2 Electromagnetic Waves 25

Wave Solution

We shall now study a solution to (1.2.6) assuming E, = E, =0.
Let E, be a function only of z and ¢ and independent of z and y.
The electric field vector can be written as

E =3E,(z,1)
The wave equation it satisfies follows from (1.2.6) which becomes

9? 0?
@ELE - MOGO@EZ‘ =0 (127)

The simplest solution to (1.2.7) takes the form

E =3E;(2,t) = 2Ep cos(kz — wt) (1.2.8)

Substituting (1.2.8) in (1.2.7) we find that the following equation,
called the dispersion relation, must be satisfied:

k? = W pioe, (1.2.9)

The dispersion relation provides an important connection between the
spatial frequency k and the temporal frequency w .

There are two points of view useful in the study of a space-time
varying quantity such as FE,(z,t). The temporal view point is to exam-
ine the time variation at fixed points in space. The spatial view point
is to examine spatial variation at fixed times, a process that amounts
to taking a series of pictures.

From the temporal view point, we first fix our attention on one
particular point in space, say z = 0. We then have the electric field
E.(z = 0,t) = Epcoswt. Plotted as a function of time in Fig. 1.2.1,
we find that the waveform repeats itself in time as wt = 2mn for any
integer m. The period is defined as the time T for which wT = 27.
The number of periods in a time of one second is the frequency f
defined as f = 1/T, which gives

f=—= (1.2.10)
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wt

3

wT = 27

E.(2=0,t) = Eycoswt

Figure 1.2.1 Electric field strength as a function of wt at z = 0.

t t t

L [ —

=
D ke

FAWAWA

-
7
<
—

i 1 sec > 1 sec
E, = Eycos2m fyt E, = Eycosdn fyt E, = Eycos6mfot
a.f=1f,=1Hz b. f =2f, =2Hz c.f=3f,=3Hz

Figure 1.2.2 Electric field strength vs. ¢ for different frequencies w.

The unit for frequency f is Hertz (Hz) with 1 Hz = 1 s~!, which is
equal to the number of cycles per second. Since w = 27 f, w is the
angular frequency of the wave.

In this book, we often refer to w as the frequency, simply because
w is more commonly encountered than f. The temporal frequency w
characterizes the variation of the wave in time. We plot in Fig. 1.2.2a
E.(z =0,t) as a function of ¢ instead of wt. Let there be one period
within the time interval of 1 second. Thus, f = f, = 1Hz, and we let
w = w, = 27 rad/s. In Fig. 1.2.2b, we plot w = 2w, ; there are two
periods in a time interval of one second and the period in time is 0.5
seconds. In Fig. 1.2.2c, w = 3w, and there are three periods in one
second.
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B. Unit for Spatial Frequency k

To examine wave behavior from the spatial view point, let wt = 0.
The electric field becomes

E.(z,t =0) = Epcoskz (1.2.11)

The electric field thus varies periodically in space. We plot E,(z,t = 0)
as a function of kz in Fig. 1.2.3. The waveform repeats itself periodi-
cally in space when kz = 2mm for integer values of m. The period of
one spatial variation is the wavelength A defined as the distance for
which kX = 27w . The number of spatial variations per unit distance is

é/
o = 2ﬂ>
—~

kz

<

Figure 1.2.3 Electric field strength as a function of kz at t = 0.

E,(z,t=0) = Egcoskz

_27T

A

We call k the spatial frequency, which characterizes the spatial vari-
ations of the field strength, similar to the temporal frequency which
characterized the temporal variations of the field strength. The spatial
frequency is also called the wavenumber as it is equal to the number
of wavelengths in a distance of 27 and has the dimension of inverse
length.

Let me define for the spatial frequency k a fundamental unit K, :

k (1.2.12)

1K, = 27 rad/m | (1.2.13)

Similar to the unit Hz which is cycles per second in temporal variation,
K, is cycles per meter in spatial variation. For a wave that has a spatial
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1m

A

i 1m > 1m
—

E,. = Egcoslk,z E, = Egcos2k,z E,. = Egcos3k,z
a. k=1k, = 1K, b. k =2k, = 2K, c. k=3k,=3K,

Figure 1.2.4 Electric field strength vs. distance z with different spatial
frequency k.

frequency of one period of spatial variation in one meter distance, we
have k = 1K, . An electromagnetic wave in free space with k = 3K,
has three spatial variations in a distance of one meter.

We plot in Fig. 1.2.4a E,(z,t = 0) as a function of z instead of
kz. There is one cycle of spatial variation within the wavelength of
1 meter. Since K, = 27 rad/m, we have k = 1K, = 27 rad/m. In
Fig. 1.2.4b, we plot k£ = 2K, ; there are two variations in a spatial
distance of one meter and the wavelength is 0.5 meters. In Fig. 1.2.4c,
k = 3K, and there are three variations in one meter.

From the dispersion relation for electromagnetic waves (1.2.9), we
see that the spatial frequency and the temporal frequency are related
by the velocity of light. Thus for a spatial frequency of 1K,, the
corresponding temporal frequency is f = 300 MHz . With k expressed
in unit K, , we find

f=3x10k Hz; A=1/k m (1.2.14)

Within the spatial frequency range of 0.01K, to 100K, electromag-
netic waves are used for microwave heating, radar, navigation, and
carrying signals from radio, television, and satellite communications.
The visible light has a spatial frequency band between 1.4 x 10° ~
2.6 x 10K, . In Fig. 1.2.5 we illustrate the electromagnetic wave spec-
trum according to the spatial frequency in K, and corresponding wave-
length in meters, frequency in Hz, and energy in electron-volts (eV).
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In this book I shall place great emphasis on the use of k, which is
of more fundamental importance in electromagnetic wave theory than
both of the more popular concepts of wavelength A and frequency f.
The corresponding values of wavelength A\ and frequency f are, for
k=AK,,

A=2n/k=2n/(AK,) = %m; f =ck/2n = cAK, /21 = 3x10° AHz

The photon energy in electron-volts (eV) is calculated from
hw = (hc¢AK,/q) eV ~ 1.24 x 1074 eV = hck/q eV

where ¢ = 1.6 x 107" coulombs is the electron charge, and h =
1.05 x 10734 Joule-second is Planck’s constant h = 6.626 x 1073* J-
sec divided by 27 .

Max Karl Ernst Ludwig Planck (23 April 1858 — 4 October 1947)

Max Planck entered the University of Munich in 1874. He taught at
the University of Munich in 1880-1885, Kiel 1885—1889. After the death of
Kirchhoff in 1887, Planck succeeded his chair of theoretical physics at the
University of Berlin in 1889 until his retirement in 1927. In 1900 he announced
a formula now known as Planck’s radiation formula and introduced the quanta
of energy.

ExAMPLE 1.2.1 Operating frequencies of common devices:

Device Temporal frequency (Hz) Spatial frequency (K,)
AM Radio 535 — 1605 kHz 0.00178 — 0.00535 K,
Shortwave Radio 3 — 30 MHz 0.01 - 0.1 K,
FM Radio 88 — 108 MHz 0.293 - 0.36 K,
Airport ILS 108 — 112 MHz 0.35 - 0.373 K,
Commercial Television
Channels 2-4 54 — 72 MHz 0.18 - 0.24 K,
Channels 5-6 76 — 88 MHz 0.253 — 0.293 K,
Channels 7-13 174 — 216 MHz 0.58 - 0.72 K,
Channels 14-83 470 — 890 MHz 1.57 - 2.97 K,
Microwave Oven 2.45 GHz 8.17 K,
Communication Satellite
Downlink 3.70 — 4.20 GHz 123 -14 K,
Uplink 5.925 — 6.425 GHz 19.75 - 214 K,

— END oF EXAMPLE 1.2.1 —
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Phase Velocity and Phase Delay

In Figs. 1.2.6b and 1.2.6¢ we plot E,(z,t) at two progressive times
wt =m/2 and wt = 7. We observe that the electric field vector at A
appears to be propagating along the 2 direction as time progresses.
The velocity of propagation V), is determined from kz—wt = constant
which gives

dz w
Vp=— =— 1.2.15

We call V,, the phase velocity. By virtue of the dispersion relation
(1.2.9), we see that V, = (uo€,)~/2, which is equal to the velocity of
light in free space c.

kz kz kz

3n 35 3 >
27 > o -2

a. wt=20 b. wt= c. wt=m

T
2
E,. = Egcoskz E,. = FEysinkz E,=—FEgcoskz

Figure 1.2.6 Electric field strength vs. kz at different times.

The spatial frequency k is, according to the dispersion relation,
directly related to the temporal frequency w by the phase delay

k
Ap = = = Vlioko (1.2.16)

which determines how much time it takes for the wave to propagate a
unit distance. In free space A, = 107%/3 s/m or it takes 3.33 nanosec-
onds for an electromagnetic wave to travel the distance of one meter.
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EXAMPLE 1.2.2 Electric field vector E and magnetic field vector H.

A wave equation similar to (1.2.6) can be derived for the magnetic field vector
H. Wave solutions for £ and H can be written as

) = ZEo cos(kz — wt) (E1.2.2.1)

E=&E.(z,t
H = gHy(z,t) = §Ho cos(kz — wt) (E1.2.2.2)

o=

>

It is seen that E and H satisfy (1.2.3) and (1.2.4). From (1.2.1), we find

T 7 z
— o} o} 1o} . .
VxH = e Biy 9 =& kHosin(kz — wt)
0 H, 0
=€ gE—ﬁwe Epsin(kz — wt)
- oat - o120

N
B,
%

N

S

Figure E1.2.2.1 Electric and magnetic fields of an electromagnetic wave.

The magnitudes Ey and Ho are related by Fo/Ho = k/weo = \/o/€0 = 1,
where 7 = \/10/€o is called the free-space impedance. The same result is obtained
by substituting (E1.2.2.1) and (E1.2.2.2) into (1.2.2). The electromagnetic wave
is propagating in the positive Z direction. The field vectors of the electromagnetic
wave are transversal to the direction of propagation and lie in the xy-plane, on
which the phase kz —wt of the wave is a constant. Since the phase front of the wave
is the zy-plane, we call the electromagnetic wave as represented by (E1.2.2.1) and
(E1.2.2.2) a plane wave.

— END OF EXAMPLE 1.2.2 —
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C. Polarization

The polarization of a wave is conventionally defined by the time vari-
ation of the tip of the electric field vector E at a fixed point in space.
If the tip moves along a straight line, the wave is linearly polarized.
When the locus of the tip is a circle, the wave is circularly polarized.
For an elliptically polarized wave, the tip of E describes an ellipse.
If the right-hand thumb points in the direction of propagation while
the fingers point in the direction of the tip motion, the wave is de-
fined as right-hand polarized. The wave is left-hand polarized when it
is described by the left-hand thumb and fingers.
Consider the following wave solution:

Bz t) = 2B, + B,
=z cos(kz — wt) + JAcos(kz —wt +v)  (1.2.17)

with A > 0. The wave propagates in the +Z direction. From the
temporal view point,

E(t) = 2 cos(wt) + yA cos(wt — 1)

We now study polarization for the following special cases:
Case 1) ¢ = 2mm, where m =0,1,2,... is an integer. We have

E(t) = & cos(wt) + §A cos(wt)

The tip of the electric field vector moves along a line as shown in
Fig. 1.2.7a. The wave is linearly polarized.
Case 2) ¥ = (2m + 1)m, we have

E(t) = & cos(wt) — §A cos(wt)

The tip of the electric field vector moves along a line as shown in
Fig. 1.2.7b. The wave is linearly polarized.
Case 3) v =n/2 and A =1, we have

E(t) = & cos(wt) + ysin(wt) (1.2.18)

It can be seen that while the x component is at its maximum the y
component is zero. As time progresses, the y component increases and
the = component decreases. The tip of E rotates from the positive FE,
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axis to the positive E, axis [Fig. 1.2.7c]. Elimination of ¢ from the z
and y components in (1.2.18) yields a circle of radius 1, E2+ EZ =1.
Thus the wave is right-hand circularly polarized.

Case 4) ¢ = —m/2 and A =1, we have

E(t) = % cos(wt) — §sin(wt) (1.2.19)

As time progresses, the y component increases and the x compo-
nent decreases. The tip of E rotates from the positive E, axis to
the negative F, axis. Thus the wave is left-hand circularly polarized
[Fig. 1.2.7d].

Case 5) ¢ = +m/2, we have

E(t) = & cos(wt) & §Asin(wt) (1.2.20)

The wave is right-hand elliptically polarized for ¢ = 7/2 [Fig. 1.2.7¢]
and left-hand elliptically polarized for ¢ = —x/2 [Fig. 1.2.71].

\
M/

_—
2

f\
I\

S~

/
S

Figure 1.2.8 Polarizations for various values of 1) and A.

The above discussion can be summarized in Fig. 1.2.8 where we
illustrate the polarization for different values of A and . On the
horizontal axis, ) = 0, or 7, the wave is linearly polarized. If A =1
and ¢ = m/2, the wave is right-hand circularly polarized. For A =1
and ¢ = —m /2, the wave is left-hand circularly polarized. Otherwise
the wave is elliptically polarized. The polarization is right-handed if
the phase difference is between zero and w, and left-handed if 1 is
between 7 and 2.
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EXAMPLE 1.2.3 Polarization from the spatial view point.

Wave polarization can be viewed by either taking a series of still pictures
at several fixed times, called the spatial view point or by making observations
at a fixed point in space, called the temporal view point. The definition of
polarization so far has been discussed from the temporal view point. Let us
now look at polarization from the spatial view point.

T

Figure E1.2.3.1 Spatial view of polarization.

Consider the right-hand circularly polarized wave with ¢ = x/2 and
A =1 in case 3), setting ¢t =0 in wave solution (1.2.17), we have

E(z,t =0) = &cos(kz) — gsin(kz) = £E,(z) — §E,(2)

This is a left-handed helix as shown below.
2 2
E, = Eycos (Tﬁz) E, = Ejsin (Tﬂz)

The parametric equation of a helix is

2 2
x = Rcos (—ﬂz> y = Rsin <—7rz)r
p p

where p is the pitch of the helix. Thus, the locus of the tip point of the electric
field vector measured along the z axis is a left-handed helix with the pitch
p = A. The helix advances along +2 without rotating. At z = zg = 3\/4,
electric field vector is at E\tzto when t, = 0, it is shown as E\t=t+ when
t+ = 7T/4u] .

— END OF EXAMPLE 1.2.3 —
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Poincaré Sphere and Stokes Parameters

We now use the ellipse as shown in Fig. 1.2.9 to illustrate all polariza-
tion states by introducing two parameters: polarization angle o and
orientation angle 3. We let the major axis of the ellipse be e; and
the minor axis ey < e;. The shape of the ellipse can be specified by
the ellipticity angle « defined as

tana = + 2 (1.2.21)
€1

where the plus sign corresponds to right-hand polarization for which
0 < a < w/4 and the negative sign to left-hand polarization for which
—m/4 < a < 0. We see that for linearly polarized wave o = 0. For as
is evident from the defining equation for Fig. 1.2.9.

E,
Figure 1.2.9 Elliptical polarization.
E(t) = & coswt + JAsinwt (1.2.22)
For right-hand circularly polarized waves, « = —7/4 and ey = €7,
for left-hand circularly polarized waves, « = —7/4 and eg = e; . For

right-hand polarization, «a > 0, for left-hand polarization, o < 0.

The orientation angle 3 is introduced with Fig. 1.2.10 by rotating
the ellipse in Fig. 1.2.9. The major axis of the ellipse is rotated and
makes the angle § with the E, axis with 0 < g < «. Thus for a
linearly polarized wave along the E,—axis, f=m/2.

Instead of the planar representation of polarization states as shown
in Fig. 1.2.8, we shall now discuss representation of polarization states
with a sphere called Poincaré sphere as shown in Fig. 1.2.11. The radius
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Figure 1.2.10 Elliptical polarization.

of the sphere is I, and the three axes are Q, U,V as shown below:

Q = Icos2acos2(
U = Icos2asin2g
V = Isin2«a

Figure 1.2.11 Poincare sphere.

We see that I? = Q? + U? + V2. When the wave is right-hand cir-
cularly polarized Q = U = 0, V = I, as a = /4. When the
wave is left-hand circularly polarized, @ = U = 0, V -1, as o =
—7/4. When the wave is linearly polarized, V = 0, as a« = 0. With a
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rigorous mathematical derivation, I,Q,U,V can be derived from e,
and ey, and they are called Stokes parameters, which are useful in
characterizing polarized as well as unpolarized electromagnetic waves.

Jules Henri Poincaré (29 April 1854 — 17 July 1912)

Henri Poincaré entered the Ecole Polytechnique in 1873, graduating in
1875, and received his doctorate in mathematics from the University of Paris
in 1879. In 1886 he was appointed to a chair of mathematical physics and
probability at the Sorbonne and also at the Ecole Polytechnique. In 1894, he
published the first of his six papers on algebraic topology.

ExXAMPLE 1.2.4

To facilitate a mathematical discussion of polarization, we decompose
the E vector of a wave into two components perpendicular to the direction
of propagation. For a specific point in space, we write

E(t) = 2B, + )E, = #e, cos(wt — 1) + Je, cos(wt — 1) (E1.2.4.1)

where Z, ¢, and the direction of propagation are mutually perpendicular
and thus form an orthogonal system. We assume the amplitudes e, and e,
are both positive. The locus of the tip E(¢) is determined by eliminating the
time ¢ dependence between the two components E, and E, .

In general, a polarized wave has elliptical polarization; that is, when time
is eliminated from the two components of F , the resultant equation describes
an ellipse. Consider the case ¥, = ¢, ¥y, — ¢, = £7/2 in (E1.2.4.1) and let
ex = €1 > ey = e,. We have

/

E({t)=2'E,+JE,=7"e cos(wt — ) + 7 easin(wt —1hy) (E1.2.4.2)
with e; denoting the major axis and e, the minor axis, we write

tana = -2 (E1.2.4.3)
€1
where —m/4 < a<m7/4.

The general polarization states are more popularly described with the
Poincaré sphere as discussed below. Consider the elliptical polarization as
given by (E1.2.4.1), which describes a tilted ellipse as plotted in Fig. 1.2.10.
The major axis of the ellipse described in (E1.2.4.2) is rotated and makes the
angle § with the Ej axis with 0 < 8 <. We call 8 the orientation angle.

In view of (E1.2.4.2) and Fig. 1.2.9, we have from coordinate transfor-
mation

E! = E,cos 3+ E,sinf3
E, = —E,sin 3 + E, cos 3
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leading to

eq cos(wt — 1hg) = Eycos B+ Eysin (E1.2.4.4a)
e sin(wt — 1)g) = —E,sinf + E, cos (E1.2.4.4b)

Substituting the components E; and E, of (E1.2.4.1) in (E1.2.4.4) and
comparing the coefficients of coswt and sinwt, we obtain

€1 Cos Yy = ey cos 1y cos 3 + e, cos Py, sin (E1.2.4.5a)
e1sinyg = ey siny, cos B + e, sin )y, sin B (E1.2.4.5b)
e2 COS Py = —ey sin, sin B + ey sin )y, cos B (E1.2.4.5¢)
ez sing = ey cos P, sin B — e, cos Y, cos 5 (E1.2.4.5d)

Eliminating 1o from (E1.2.4.5a¢) and (E1.2.4.5b), we find

e? = €2 cos® f + ez sin® 8 + ege, sin 2 cos ¥ (E1.2.4.6a)
Similarly from (E1.2.4.5¢) and (E1.2.4.5d), we have

e = e2sin’ B + ei cos? 3 — epe, sin 203 cos ¥ (E1.2.4.6b)

Multiplying (E1.2.4.5a) by (E1.2.4.5¢), (E1.2.4.5b) by (E1.2.4.5d) and then
adding, we again eliminate 1y and obtain

e1€y = egey siny (E1.2.4.6¢)

Finally we multiply (E1.2.4.5a) by (E1.2.4.5d) and subtract from the prod-
uct of (E1.2.4.5b) and (E1.2.4.5¢), which yields

2eze, cos ) = (e2 — e2) tan 23 (E1.2.4.6d)

Equation (E1.2.4.6) will be used in the following discussion on Stokes param-
eters and the Poincaré sphere.

To facilitate the discussion of various polarization states of electromag-
netic waves, the four Stokes parameters pertaining to E(t) given in (E1.2.4.1)
are defined as follows :

I= % (e2+¢2) (E1.2.4.7a)

- % (2 — ¢2) (B1.2.4.7b)
U= %exey cos (E1.2.4.7¢)
V= %exey sin ¢ (E1.2.4.7d)
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Notice that I? = Q2+ U? + V2.
Adding (E1.2.4.6a) and (E1.2.4.6b) yields ef + e5 = e2 + el = nl.
Making use of (E1.2.4.3), we have

e? = nl cos® a (E1.2.4.8)

Subtracting (E1.2.4.6b) from (E1.2.4.6a) and making use of (E1.2.4.6d) , we
find e —e3 = (e2 —e;)/cos23. Making use of (E1.2.4.3) and (E1.2.4.8),
we find

1
Q=—(e2 - 632;) = [ cos2acos2f3 (E1.2.4.9q)
n

In terms of I, we find from (E1.2.4.7¢), (E1.2.4.6d) and (E1.2.4.9a)
U = Icos2asin2p (E1.2.4.9b)
and from (E1.2.4.7d), (E1.2.4.6¢) and (E1.2.4.8)
V =1Isin2a (E1.2.4.9¢)

Equation (E1.2.4.9) suggests a simple geometrical representation of all states
of polarization by recognizing that @, U, and V can be regarded as the
rectangular components of a point on a sphere with radius I, known as the
Poincaré sphere. We define, in the spherical coordinate system, 6 = 7/2 — 2«
and ¢ = 20. As seen from (E1.2.4.3), positive « is for right-hand polariza-
tion which is represented by points on the upper hemisphere. On the lower
hemisphere, the points correspond to left-hand polarization. The north pole
represents right-hand circular polarization and the south pole represents left-
hand circular polarization. The sphere is called the Poincaré sphere. Fig. 1.2.8
is seen to be a planar projection of the Poincaré sphere with the plane and
the sphere touching each other at @@ = I. The equator is mapped into the

horizontal axis.
— END OF EXAMPLE 1.2.4 —

ExXAMPLE 1.2.5 Partial polarization.
Radiation from many natural and man-made sources consists of field
components that fluctuate with time. We write

Ej, = en(t) cos (wt - (t))
E, = ey(t) cos (wt — 1y (t))

The wave is quasi-monochromatic when ep(t), e,(t), ¥n(t), and 1, (t) are
slowly varying compared with coswt. The Stokes parameters are defined by
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a time-average procedure over a large time interval T, denoted with the
brackets <>:

<E}t)>= %/ dt [Ey (1))
0

The Stokes parameters are
I=Iy+1I,==(<E;>+<E.>)

Q=1I,—-1I,= (<E2> — <E12,>) = I <cos2acos2/3>

I =3I

2
U=—-<EpFE,cosyp>=1 <cos2asin2(3>
n

2
V==-<EpE,siny>=1 <sin2a>
n

For completely unpolarized waves, Fj and E, are uncorrelated and we have
I = total Poynting power and Q = U = V = 0. For completely polarized
waves we have I? = Q% 4+ U? + V2. For partially polarized waves it can be
shown that I? > Q%+ U? +V? [Example 1.2A.2]. With the Poincaré sphere
of radius I, the partially polarized waves correspond to points inside the
sphere.

In concluding this section on wave polarization, we remark that the po-
larization is defined according to the time variations of the E vector. As we
shall see in Chapter 3, it is imperative that we define polarization in terms of
D when anisotropic and bianisotropic media are involved. This is because in
isotropic media E is perpendicular to k, k- E = 0, while in non-isotropic
media k-D = 0. This also suggests that wave polarization can be defined in
terms of the field vector B .

— END OF EXAMPLE 1.2.5 —

Problems

P1.2.1
Electromagnetic waves satisfy all of the Maxwell equations. Consider, in
free space, the following electric field vectors:

+ +

5
|

E = @ cos(wt — k2)

Ey = 2 cos(wt — kz)

E3 = (& + 2) cos(wt + ky)
(

%) cos (wt + kl|z + z|/\/§)
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Do these electric field vectors satisfy the wave equation and all Maxwell equa-
tions? Which of the four fields qualify as electromagnetic waves? For those
not qualified as electromagnetic waves, state which of the Maxwell equations
are violated.

P1.2.2
The electric field vector

E = iFEycos(kz — wt)

represents an electromagnetic wave propagating in the 42 direction. What
is the expression if the wave is propagating in the —Z direction?

P1.2.3

An electromagnetic wave has spatial frequency k, = 100 K,. Determine
the wavelength in meters and the temporal frequency in GHz.

Determine the spatial frequency in unit of K, for a laser light at wave-
length A = 0.6328 pm .

Determine the spatial frequency in unit of K, for a microwave oven at
frequency 2.4 GHz.

P1.24
The known spectrum of electromagnetic waves covers a wide range of
frequencies. Electromagnetic phenomena are all described by Maxwell’s equa-
tions and, by convention, are generally classified according to wavelengths or
frequencies. Radio waves, television signals, radar beams, visible light, X rays,
and gamma rays are examples of electromagnetic waves.
(a) Give in meters the wavelengths corresponding to the following frequen-
cies:
(i) 60 Hz
(ii) AM radio (535-1605 kHz)
(iii) FM radio (88-108 MHz)
(iv) Visible light (~ 10 Hz)
(v) X-rays (~ 10'® Hz)
(b) Give in Hertz the temporal frequencies corresponding to the wavelengths:
(1) 1 km, (i) 1 m, (iii) 1 mm, (iv) 1 pm, (v) 1 A.
(c) Give in K, the spatial frequencies corresponding to the wavelengths in
(b).

(d) Give in eV the spatial frequencies corresponding to the wavelengths in
(b).

P1.2.5
Consider the electric field amplitude

E.(z,t) = Egcos(kz — wt)

Find the phase velocity v, = w/k and the group velocity v, = dw/dk .
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P1.2.6
Consider an electromagnetic wave propagating in the 2z-direction with

E = e, cos(kz — wt + 1) + Je, cos(kz — wt + )

where e, ey, Y., and 1, are all real numbers.

(a) Let e, =2, e, =1, ¥, =7/2, ¥, = 7/4. What is the polarization?

(b) Let ey =1, ey =, = 0. This is a linearly polarized wave. Prove that it
can be expressed as the superposition of a right-hand circularly polarized
wave and a left-hand circularly polarized wave.

(c) Let ey =1, ¢, =7/4, ¢y, = —m/4, e, = 1. This is a circularly polarized
wave. Prove that it can be decomposed into two linearly polarized waves.

P1.2.7

Wave polarization can be viewed by either taking a series of still pictures
at several fixed times, called the spatial view point or by making observations
at a fixed point in space, called the temporal view point. We define polariza-
tion from the temporal view point. Let us now look at polarization from the
spatial view point.

Consider an electromagnetic wave with k& = 100K, propagating in the
z direction.

E(T,t) = Ep[Z cos(kz — wt) — gsin(kz — wt)]

What are the wavelength and the polarization of this wave?

From the spatial point of view, by taking a picture at ¢ = 0, the tips of
the electric field vectors form a helix. Is the helix right-handed or left-handed?
What is the pitch of this helix?

Observing at a fixed point in space, show that the tip of the electric field
describes the same polarization as in the temporal view point when the helix
advances without turning.

P1.2.8
For polarized waves

I=1,+1,
Q=1,—1,=1cos2acos2f3
U = Icos2asin2
V = Isin2a
Show that when the wave is right-handed circularly polarized @ = U =0 and

V = I, when it is left-hand circularly polarized, @ = U =0 and V = —1I,
and when the wave is linearly polarized, V = 0.
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1.3 Force, Power, and Energy

A. Lorentz Force Law

The interaction of the electric and magnetic fields with the current
and charge densities are governed by the Lorentz force law

f=pE+JxB (1.3.1)

where f is the force density (with unit N/m?). The Lorentz force
law relates electromagnetism to mechanics. The manifestation of the
electric field vector E and the magnetic field vector B can be demon-
strated with the forces exerted on the charge density p and the current
density J. It can thus be used to define the fields £ and B.

Hendrik Antoon Lorentz (18 July 1853 — 4 February 1928)

Hendrik Lorentz entered the University of Leyden in 1870, obtained his
B.Sc. degree in 1871, and in 1875, his doctor’s degree for his thesis on the
reflection and refraction of light. Three years later he was appointed to the
Professor of Physics at Leyden. In 1904 he developed the Lorentz transfor-
mation formula that form the basis for the special theory of relativity .

ExAMPLE 1.3.1 Coulomb’s law.

For static electric fields in the absence of magnetic fields, the Lorentz
force law becomes f = pE. Acting on a charged particle ¢, the total force is
F = gF . Assuming that the electric field E is generated by another charged

particle @ situated at the origin, we have

Q

Fei 2
4me,r?
Thus the total force acting on the charged particle ¢ is

= qQ

F=r
4de,r?

which is proportional to the squared inverse distance. This is the well-known

Coulomb’s law.
— END oF ExXAMPLE 1.3.1 —

Issac Newton (25 December 1642 — 20 March 1727)

Newton attended Cambridge University at the age of 19 and entered
Trinity College in 1661. After receiving his B.A. degree in 1664, he returned
to his birth place Woolsthorpe, England. In the next two years, he extended
the binomial theorem, invented calculus, discovered the law of universal grav-
itation, and experimentally proved that white light is composed of all colors,
all these great accomplishments in scientific history before his 25th birthday.
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ExAMPLE 1.3.2 Cyclotron frequency.

Consider a particle with charge ¢ and mass m moving with velocity
v in a uniform static magnetic field in the —Z direction, B = —2Bgy. In
the absence of electric fields, if the velocity v has no component in the 2
direction, the Lorentz force is perpendicular to the direction of the velocity
and the charge particle moves in the x-y plane. Let v = fv, + gv, , we have

F=qoxB= —2quy By + 9qv, Bo

Equating to Newton’s law

F—mdj —;%md&—k ”md&
T T TV
we find
dvg
mee = —quy By (E1.3.2.1a)
dt
d
m% — qu. By (E1.3.2.1b)

Eliminating v, from the above two equations, we find

d%z——w%
2~ e
where
B
we = L0 (E1.3.2.2)
m
YA
X X X X
X X |X X
X X X|X X X
X X X XX X X X o
X X X XX X X X
X X X|X X X
XANK X XX X X/X
X X XX 5

Figure E1.3.2.1 Cyclotron frequency.



1.3 Force, Power, and Energy 47

is called the cyclotron frequency, which is proportional to the magnitude of
the magnetic field and is independent of the velocity of the particle.
The solution to (E1.3.2.1) can be written as

d

vy = d—f = vcoswet (E1.3.2.3q)
d

vy = d—z = vsinw,t (E1.3.2.3b)

To find the trajectory of the particle, we write the solution of (E1.3.2.3) as

v =— sinwet = Rsinw,t (E1.3.2.4a)
We
Y= ~ 2 cos wet = —Rcoswet (E1.3.2.4b)
We

The trajectory of the particle is thus a circle with radius

R=(a2+y)2 =2 (E1.3.2.5)

In terms of the applied magnetic field, we find from (E1.3.2.2)

muv
R=—-r E1.3.2.6

It is seen that the larger the magnetic field, the smaller the radius. If the
charged particle has a velocity component in the Z direction, the trajectory
of the particle will follow a helical path.

— END OF EXAMPLE 1.3.2 —

EXERCISE 1.3.1 Centrifugal force.
In cylindrical coordinate system, p is the radial vector and p is in the
radial direction. The force acting on the charge in the above example is

Taz TV w2 T el
= mRw?(—&sinwet + § cosw.t) = —mw?(2x + Jy)

U2

2= —pm— (Ex1.3.1.1)

o d’z d?y d?

which is equal to the negative of the centrifugal force pointing in the p di-
rection, whose magnitude is equal to the Lorentz force pquB, .
— END OF EXERCISE 1.3.1 —
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ExampLE 1.3.3 Cyclotron.

A cyclotron [Fig. E1.3.3.1] is an accelerator for charged particles. The
a.c. source provides an alternating voltages at the cyclotron frequency and
a charged particle is repeatedly accelerated every time it passes through the
voltage drop.

a.c. source

Figure E1.3.3.1 Cyclotron.

— END OoF EXAMPLE 1.3.3 —

ExAMPLE 1.3.4 Isotope separation.

To separate the isotope Uranium 235 from Uranium 238, the isotopes are
first vaporized and then ionized by electric discharge. Accelerated through a
voltage drop V', they acquire a kinetic energy ¢V = mv?/2 . Passing through
[Fig. E1.3.4.1] a uniform magnetic field, the isotopes move along circular paths
of different radii.

Uniform B field

Mass Mass
238 M235 +

Figure E1.3.4.1 Isotope separation.

Ros3s _ Mg3sU235  Ma23s [MM23g  [1235
Rass M238V238 magg |\ M23s5 mM238

Thus Uranium 235 can be obtained in a collector with a smaller radius.
— END OF EXAMPLE 1.3.4 —
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ExaMpPLE 1.3.5
The two rods attract each other when their currents are in the same
direction and are repulsive when their currents are in the opposite directions.

14k

— - - —
F F F F

Figure E1.3.5.1 Attractive and repulsive forces.

— END oF EXAMPLE 1.3.5 —

ExaMpPLE 1.3.6 Linear motor.

In Fig. E1.3.6.1, we show a sliding bar with length [ moving perpendic-
ular to a DC magnetic field B = 2By in the Z direction. According to the
Lorentz force law, a force

F,, =9Il x 2By = 2I1By
is produced that moves the sliding bar in the & direction.

sliding bar

e D

Figure E1.3.6.1 Linear motor.

If a force is applied to move the sliding bar with velocity v = —%, an
induced voltage V = vlBy will be generated across the resistor.
— END OF EXAMPLE 1.3.6 —
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EXAMPLE 1.3.7 Magnetic moment and magnetic torque.

A rectangular loop [Figure E1.3.7.1] carrying a static current I is placed
in a static magnetic field B = @By . The magnetic moment of the current
loop is M = mM . Its direction m follows from the right-hand rule: with the
fingers pointing in the direction of the current, the thumb of the right hand is
pointing in the direction of m . Its magnitude M is equal to the area of the
loop A times the current I, M = AI . If the rectangular loop has lengths
l; and [, the area of the loop is A = [ [, .

2>

|
|

§
|

\Q

~

S

F

Figure E1.3.7.1 Torque on a loop.

The loop is on the z-y plane with two sides aligned with the z-axis and
two sides aligned with the y-axis. Since the static magnetic field is in the &
direction, there is no force acting on the two sides with length [, aligned with
the x-axis. The forces acting on the two sides with length I, aligned with the
y axis are in the positive and negative ¢ directions. Thus the loop is rotating
around the y-axis following the right-hand rule; with the fingers pointing in
the direction of the rotation, the thumb of the right hand is pointing in the
9 direction.

The torque acting on the loop is calculated as

— 1 1
T = §ZI§C X (g x &Ily,By) — §Zw£ X (=g x &IlyBy) = I ABy

For the current configuration, M = 2IA and B = #B;. In general, the
magnetic torque is

T=MxB (E1.3.7.1)

Thus there is no torque acting on the component of M in the direction of
the magnetic field.

— END OoF EXAMPLE 1.3.7 —
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ExXAMPLE 1.3.8

A simple DC motor [Fig. E1.3.8.1] consists of a loop of area A with N
turns, called an armature, which is immersed in a uniform magnetic field,
either produced by a permanent magnet or an electromagnet. The armature
is connected to a commutator which is a divided slip ring. A DC current [ is
supplied through a pair of brushes resting against the commutator such that
the torque

T = NB,IAsina

produced by the current on the armature always acts in the same direction.

Brush— ~ Armature

Commutator

Figure E1.3.8.1a DC motor.

Figure E1.3.8.1b Side view of a DC motor.

— END OoF EXAMPLE 1.3.8 —
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Alessandro Volta (18 February 1745 — 5 March 1827)

Alessandro Volta was appointed to the chair of physics at the University
of Pavia in 1775. In 1800, Volta built the first electric battery, consisting of
alternating zinc and silver disks separated by layers of paper or cloth soaked
in a solution of either sodium hydroxide or brine, called the ‘voltaic pile’.

Hans Christian Oersted (14 August 1777 — 9 March 1851)

Oersted became a professor at the University of Copenhagen in 1806. In
April 1820, during an evening lecture to a few advanced students, he discov-
ered that a wire connecting the ends of a voltaic battery deflected a magnet
in its vicinity. This discovery was published on 21 July 1820.

ExaMPLE 1.3.9

In October of 1821, Faraday demonstrated the principle of electric motor
with a dish of mercury. When he connected a battery to form a circuit with
the mercury pool, using a fixed wire carrying current and a dangling magnet
with one end fixed and the other end moving around the surface of the pool
of mercury. Let the magnet be designated as a magnetic moment M placed
in a magnetic field B. The torque acting on the magnet is T' = M x B.
Show that the magnet rotates around the wire in a circular trajectory.

SOLUTION: o

To find the magnetic field H at the position of the loop due to the
straight wire carrying current Iy in the Z direction, we use the integral form
of Ampere’s law,

2T
fﬁ-di:/ H¢dd¢:27rdH¢:/7-ds:Io
C 0 s

which gives the magnetic field B at the loop’s position

which means that the current loop will move about the z-axis in a counter-

clockwise direction.
— END OoF EXAMPLE 1.3.9 —
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B. Lenz’ Law and Electromotive Force (EMF)

We apply Stokes theorem to Faraday’s law and define the line integral
of E as the electromotive force (EMF):

- %y (1.3.2)

W:/Adﬁ-ﬁ (1.3.3)

is the magnetic flux linking a loop with area A bounded by a closed
contour C' [Fig. 1.3.1]. Equation (1.3.2) states that the EMF is equal to
the negative time derivative of the magnetic flux linking the loop. Thus
the EMF always produces a flux in the loop to oppose the direction
of change of the flux linking the loop; if W is increasing, the EMF
decreases the flux, and vice versa. This is known as Lenz’ law.

where

Figure 1.3.1 Flux linking a loop.

Heinrich Lenz (12 February 1804 — 10 February 1865)

Heinrich Lenz was scientific assistant at the St. Petersburg Academy of
Science, becoming full Academician in 1834. From 1835 to 1841, he served as
lecturer in physics at the Naval Military School. He was dean of mathematics
and physics (1840-1863) at the University of St. Petersburg. He began his
investigation of electromagnetism in 1831 and in 1833 discovered Lenz’ law,
which is fundamental to electrical machinery.
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Notice that the EMF has unit of voltage (Volt) and not unit of force.
The voltage drop across the loop V is equal to the negative of the

induced EMF. p
V = —-EMF = E\I/ (1.3.4)

Thus in the presence of a time varying magnetic field linking a loop, a
voltage is generated to oppose the time change of the magnetic field.
The voltage generated across the loop V is equal to the negative of
the induced EMF.

LeChatelier’s Principle (Henri Louis Le Chatelier, 8 October 1850 — 17
September 1936) is the chemist’s version of Lenz’ law, which states that when
an external stress (pressure, concentration, or temperature change) is applied
to a chemical system that is in a state of equilibrium, the system will auto-
matically respond so as to undo the stress applied externally.

In Physics, this same phenomenon is embodied in the Third Law of
Motion, that is, for every action there is an equal and opposite reaction. In
biology, a condition in an organism known as homeostasis means that when a
stress is applied to an organism, the organism’s bodily functions automatically
respond so as to remove the stress.

ExAMPLE 1.3.10 Linear generator.

If a force is applied to move the sliding bar with velocity v = —dz/dt
as shown in Fig. E1.3.10.1, the total magnetic field ¥ = xlB, linking the
loop will be decreasing at the rate of viBy . According to Lenz’ law, a current
in the bar must be produced to oppose the decreasing of the magnetic flux.
Thus an induced voltage V = vlBy is generated across the resistor.

ﬂsliding bar sliding bar

AR )

D

+

D
y Y

Figure E1.3.10.1 Linear generator.

— END oF EXAMPLE 1.3.10 —
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ExampLE 1.3.11 AC generator.

An AC generator can be made of the DC motor by replacing the DC
current source with a load resistance R and providing an external rotatory
force on the armature. Applying a torque that makes the loop turn in the
direction as shown in Fig. E1.3.11.1, a motional EMF

V/dZ~E/dZ-F/q/dZ-EwaABsina

slip rings

Figure E1.3.11.1 AC generator.

is produced. For the armature rotating with an angular frequency w , we have
U X B=IlwBAsina and o = wt.
The same result can be derived by using Lenz’ law

EMF = —dV /dt

where

\I!// dS-B = —ABcosa (E1.3.11.1)
A

We find the generated AC voltage
V=—-EMF = wABsinwt

— END oF EXAaMPLE 1.3.11 —
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C. Poynting’s Theorem and Poynting Vector

Energy conservation immediately follows from the Maxwell equations.
Dot-multiply Faraday’s law (1.1.2) by H, Ampere’s law (1.1.1) by E
and subtract. By making use of the vector identity V - (E x H) =
H-V xE—FE -V x H, we obtain Poynting’s theorem

— — — 0B — 0D — -
The Poynting vector
S=ExH (1.3.6)

is interpreted as the power flow density with the dimension watts/ m? ,
and H - (0B/0t) + E - (0D/0t) represents the time rate of change of
the stored electric and magnetic energy density. On the right-hand side
of (1.3.5), —E - J is the power supplied by the current .J .

John Henry Poynting (9 September 1852 — 30 March 1914)

John Henry Poynting was educated at Liverpool and Cambridge and
was one of Maxwell’s students. He was professor of physics at Mason Science
College (later the University of Birmingham) from 1880 until his death. In
1884-1885, he established Poynting’s theorem.

ExXAMPLE 1.3.12
Consider the simple wave solution
E = #Eycos(kz — wt) (E1.3.12.1a)
H = §jHy cos(kz — wt) (E1.3.12.1b)

where Ho = Ey/n, and 1, = 1/ 1to/€, is called the characteristic impedance
of free space. Substituting (E1.3.12.1) in (1.3.5) we see that Poynting’s theo-
rem is satisfied.

The Poynting vector is calculated to be Poynting’s vector

S=ExH=%, /;—"Eg cos?(kz — wt) (E1.3.12.2)
In free space, we find

- E Wm
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and
— 0, = Jr11l = = 0
E-—(e6,F)= = |z, F-E| ==W,
a1 P = 5 {26 } ot
In the source-free region we also have J = 0. Poynting’s theorem becomes
S — 0
V- (ExH)+ E(We + W) =0 (E1.3.12.3)
where
1 =2 1 9 9
We = 3 o ‘E} = §EOEO cos”(kz — wt) (E1.3.12.4)
is the stored electric energy density and
1 — 1
Win = 5 Ho 7|” = SHoHG cos® (kz — wt) (E1.3.12.5)

is the stored magnetic energy density. It is seen that the stored electric energy
is equal to the stored magnetic energy, W, =W, .
— END oF EXAMPLE 1.3.12 —

James Watt (19 January 1736 — 25 August 1819)

James Watt was a Scottish engineer who played an important part in
the development of the steam engine as a practical power source and a key
stimulus to the Industrial Revolution. Watt is the unit of power.

James Prescott Joule (24 December 1818 — 11 October 1889)

Joule attended the University of Manchester in 1835 and in 1840 he
published his paper On the Production of Heat by Voltaic Electricity. He
experimentally verified the law of conservation of energy in his study of the
transfer of mechanical energy into heat energy. Joule is the unit of energy.

William Thomson (Lord Kelvin) (26 June 1824 — 17 December 1907)

At age 22, William Thomson became professor of physics at the Univer-
sity of Glasgow where he remained for 53 years until his retirement in 1899.
He first defined the absolute temperature scale in 1847. In 1851 he published
the paper, ‘On the Dynamical Theory of Heat.” In 1866 he was Knighted by
Queen Victoria. In 1892 he became Lord Kelvin of Largs. Kelvin is the unit
of absolute temperature.
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ExampLE 1.3.13 Power, energy, force, and radiation pressure.
The time-average Poynting vector power density is given by

S B N - S |
<G> T/o 'S = 2277(1 = 25moHY = 2P (E1.3.13.1)
where
E?2 1
= 2 9 = _nng
Mo 2

is the power density of the wave with unit of Watts/m?. The total time-
average electromagnetic energy density (with unit J/m?) is equal to the sum
of the electric energy density and the magnetic energy density,

1
e Ea = §MOH§ (E1.3.13.2)

1

W =<W,> 4+ <W,, >= 5

We may define an energy velocity v, equal to the ratio of power density to
energy density. We find P/W = v, = 1/,/lio€, which is the velocity of light.

Radiation pressure is force per unit area F = P/v, (with unit N/m?).
Thus the radiation pressure of the wave is

1 1
F=Plv.=W = §€OES = §Mng (E1.3.13.3)

which is equal to the time-average total energy density in the wave and acts
in the direction of propagation of the wave. The radiation pressure, although
generally very small, can lead to large scale effects. For example, comet tails
are forced to point away from the Sun due to the radiation pressure from the

Sun.
— END OF EXAMPLE 1.3.13 —

Applying the divergence theorem to Poynting’s theorem (1.3.5),
we write

s Zemo Logre bow) - [l avE 7
{5 7i=-2 ] av (Yoot Lpot?) - [[[ avE 7
(1.3.7)

The left-hand side represents power flow out of the surface enclosing
the volume V. The first term on the right-hand side represents the
depletion of the electric energy and the magnetic energy inside the
volume in order to supply the outflow of the Poynting power. The last
term represents the power generated by the source J inside the volume
V.
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Momentum Conservation Theorem

Substituting the Maxwell equations for p and .J in the Lorentz force
law

f=pE+JxB (1.3.8)
we find that
_ o — 1 — - =
f:_E(DXB)_V. 5(D.EJFB-H)I—DE—BH (1.3.9)

where T is a unit dyad with diagonal elements equal to 1 and all
off-diagonal elements equal to zero.
The interpretation of the terms is

Ql
I
S

x B = momentum density vector (1.3.10)

1 =
§(D~E+B-H)I—DE—BH
= Maxwell stress tensor (1.3.11)

Sl
I

Thus we have the theorem

oG —
o5 =7 (1.3.12)

el
+

AVAR

which expresses conservation of momentum. This is in a form similar to
Poynting’s theorem in (1.3.5) except that it is now a vector equation.
In fact, (1.3.5) and (1.3.12) combine to become a four-dimensional
conservation theorem in relativity.

Problems

P1.3.1

According to the classical model of an atom as proposed by Niels Bohr
(1885-1962), electrons revolve around the nucleus in quantized orbits with
radii R = nh/mv where n is an integer, m is the electron mass and v is the
electron velocity. Letting the nucleus be a positive charge of Ze, calculate R
by equating the centrifugal force with the Lorentz force. Estimate the radius
for a hydrogen atom with Z =1.

P1.3.2
The Earth receives over all frequency bands about 1.5kW/m? of power
from the Sun.
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(a) The Earth-Sun distance is 150x10° m . How long does it take the sunlight
to reach the Earth?

(b) The Earth radius is 6400 km. What is the total power received by the
Earth?

(c) The Sun radiates 1072° Wm~2Hz ! at 3GHz. Assuming constant
power level over 1GHz bandwidth, what is the Poynting power den-
sity and the corresponding electric field amplitude?

P1.3.3

For an electromagnetic wave with electric field with Ep = 3 x 10° V/m
(which is the breakdown electric field strength for air), find the power density
and radiation pressure. What is the area required in order to supply the
electric power of 2.4 x 101 W for use by a nation?

P1.3.4
In cylindrical coordinate system, p = pp = Tz + gy is the radial vector.
Show that the force acting on the charge in Example 1.3.2 is
2
— v
F=—-pm—
PR

which is equal to the negative of the centrifugal force pointing in the p di-
rection, whose magnitude is equal to the Lorentz force pquB, .

P1.3.5
x €T BO
z J
o
Yy Yy
I r \_1/
a) b)

Figure P1.3.5.1

(a) Consider an infinitely long wire with current I, flowing along the —2
direction as shown in Fig. P1.3.5.1a. Find the B field at y = d generated
by the current.

(b) Consider a slab of semiconductor with positive charge carriers of density
N so that there is a uniform current density of J = 2Nqv flowing in the
+2 direction as shown in Figure P1.3.5.1b. Calculate the force density
F acting on the charges if a static magnetic field B = 2B, is applied.

P1.3.6
For a charged particle ¢ moving with velocity v in a constant mag-
netic field By, the trajectory is a circle. Set the Lorentz force equal to the
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centrifugal force and derive the cyclotron frequency and the radius of the
circle.

P1.3.7

The solar wind is a high-conductivity plasma which is emitted radially
from the surface of the Sun. Let us calculate the flux of electromagnetic energy
in the solar wind at the orbit of the Earth.

In the plane of the Earth’s orbit, the magnetic field of the Sun is approxi-
mately radial, pointing outward in certain regions and inwards in others. This
field is “frozen” in the high-conductivity plasma. Since the Sun rotates (with
a period of 27 days), and the plasma has a radial velocity, the lines of B are
in fact Archimedes spirals (r = af in polar coordinates) and, at the Earth,
they form an angle of about 45° with the Sun-Earth direction. This is the
so-called garden hose effect.

At the orbit of the Earth the solar wind has a density of about 107
proton-masses/m?® and a velocity of about 4 x 10° m/sec , while the magnetic

field of the Sun is about 5 x 10~2(webers/m?).

(a) First show that, in an electrically neutral (p = 0) and nonmagnetic fluid
of conductivity o and velocity v, the Maxwell equations become

V-D=0 V-B=0 VXE:—%—f
VXFZMO{U(E+E><§)+6088—f}

the polarization currents being negligibly small compared to the conduc-
tion currents. Note that, for an infinite conductivity,

E=-95xB

This is a satisfactory approximation for the solar wind.

(b) Show that the component of ¥ which is normal to B is U, = gz B x
(v x B), and that the Poynting vector of the solar wind is

_ B2
S=—1,
Ho

Numerically it is approximately equal to 4x10~° times the average value
of the Poynting vector of the solar radiation, which is about 1.4 kW /m?.
The Poynting vector of the solar wind is normal to the local B and it
points at an angle of 45° away from the Sun-Earth direction.

(c) Compare the relative magnitudes of the kinetic, electric, and magnetic
energy densities. Which is the largest?
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P1.3.8
Particles excited by an electromagnetic wave may be modeled as har-
monic oscillators with a characteristic frequency and damping. For electrons,

Pz 0 . qE
W‘F(SE—FLUO.%—FE—O

which is just an expression for momentum conservation (F = MA).

(a) Assume 0 = 0. Show that for w > wp (w is defined as the frequency
of the E-field), the electrons vibrate in phase with the E-field while for
w < wyp , they are 180° out of phase. Can you explain opacity of certain
substances in terms of this effect? (see Scientific American, Sept. 1968,
p. 60 ff.)

(b) Derive a Poynting theorem and show that

S+ 4 p, =
VS+at+D0

S=FExH (Electromagnetic power density)

Determine W and Pp.

P1.3.9

Consider two infinite parallel metal plates separated by a distance d
along the # direction. Initially the system is at rest, and the top plate has
a uniform surface charge density of o while the bottom plate has a uniform
surface charge density of —o . At time ¢ = 0 a uniformly decaying magnetic
field is applied parallel to the plane of the plates, that is,

B(t) = §Boe "

(a) Calculate the Poynting vector, S, for the system and the momentum
density vector, gy, of the field for ¢ > 0 using the relation,

g; = Ho€oS

(b) As the magnetic field begins to decay, it will induce an electric field.
By the Lorentz force law, this induced field exerts a force on the two
charged metal plates. Determine the strength and direction of this in-
duced electric field and the resulting force density vector exerted on the
two plates.

(c¢) From mechanics, the force and momentum vectors are related by

— d
F=—7
at ?
Using this relation, calculate the mechanical momentum density vector
that results from the induced electric field.
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(d) As the magnetic field decays, the momentum of the field is transferred to
the plate in the form of mechanical momentum. Using the results of parts
(a) and (c), show that for ¢ > 0, the total momentum of the system is
conserved.

P1.3.10
The magnetic moment of a particle with charge ¢ at position 7 with
velocity v is defined as

— 1

Show that the magnetic moment of a plane loop with area A carrying current
I is

M =mIA

where 7 is the normal to the plane loop following the right-hand rule: with
the fingers following the direction of the current, the thumb of the right hand
is pointing in the direction of 7.

P1.3.11

In mechanics, the classical equations of motion are T' = dL/dt, where L
is the angular momentum. The magnetic moment M is analogous to the ex-
pression for the mechanical angular momentum L in terms of the velocity of
mass distributions instead of the charge distributions. The magnetic moment
of a particle with charge ¢ at position 7 with velocity v is defined as

— 1
M = —qr xv
2 q
If the charged particle has mass m , the mechanical angular momentum is
L=mrxv

We set M = ~yL and called 7 the gyromagnetic ratio. From (E1.3.7.1), we
see that applying to the magnetic moment, we have dM/dt = vdL/dt =
AT =~vM x B.

(a) Determine the gyromagnetic ratio v for the charged particle.

(b) Consider a nucleus with magnetic moment M placed in a dc magnetic
field in the Z-direction, B = ZBy . The nucleus is precessing about the 2
axis. Determine the frequency of precession, which is called the Larmor
frequency.

(c) Place the magnetic moment M of a nucleus precesses in a static mag-
netic field B = Zz + 2B, . Show that B, = By — z to satisfy Maxwell
equations.
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(d) When the nucleus is placed on the z axis where » = 0, B = 2B, .
Determine the Larmor frequency of precession and show that it is a
function of z.

(e) An induced voltage with the angular frequency w due to M can be
picked up from an RF (radio frequency) coil placed on the z-z plane.
Assume that the magnetic dipoles are spinning protons of water at room
temperature, with v = 2.7 x 108 T~ !'s~!. Let there be two protons pre-
cessing on the z axis with a separation of ¢, . Calculate the difference
of Larmor frequency in kHz of the pick-up coil if §, = 1 mm.

P1.3.12

Consider a loop carrying a current of I; with normal 7 = & — g is
placed a distance d above a straight wire, which is carrying a current of
Iy . Calculate the magnetic moment of the current loop and the magnetic
field generated by straight wire at the loop’s position. Using these two values,
calculate the torque vector, T', of loop. In what direction does the loop move
due to the torque?

P1.3.13

Joule’s law, P; = J - E, determines power dissipation per volume due
to Ohmic loss. Derive Joule’s law by using the Lorentz force law, f = pE ,
and assuming an average constant drifting velocity v due to collision of the
conduction electrons.

P1.3.14
Consider the simple wave solution

= T Eycos(kz — wt) (P1.3.14.1a)
= §Hy cos(kz — wt) (P1.3.14.1b)

=l =

where Hyg = Ey/n, and 1, = 1/ /€, is the characteristic impedance of free
space. Substituting (P1.3.14.1) in (1.3.5) to show that Poynting’s theorem is
satisfied. Derive the associated Lorentz force.

P1.3.15 _
Use Maxwell’s equations to show that for J =0 and p=0,

S(DxB)+v- (WI-DE-BH) =0
where the total stored energy density W = (E E+B- F) /2. Cousider

D=¢,E and B= uoﬁ and use index notation.
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1.4 Hertzian Waves
A. Hertzian Dipole

A Hertzian dipole is made of two opposite charges ¢ separated by an infinitesimally
small distance ¢. The dipole moment p = ¢¢ has an angular frequency w such that
each point charge changes from +q to —¢ and vice versa in a period of 27/w.
Mathematically, p is defined as the product of £ — 0 and ¢ — oo such that p is a
constant. Assume that the two charges are situated at z = ££/2 on the zaxis [Fig.
1.4.1]. Hertz solved for all the electromagnetic fields with the use of a potential
function known as the Hertzian potential 11

= 9 os(hr —
H_47rr cos(kr — wt) (1.4.1)
z
T
£ >y
—q

T
Figure 1.4.1 Hertzian dipole.
The solution to the wave equation for II that Hertz studied for his Hertzian

dipole assumes spherical symmetry. Substituting the Hertian potential IT (1.4.1)
into the wave equation in spherical coordinate system, we find

1 62 02
7 g2 (11D = oco g T =10

and obtain the dispersion relation k2 = w2poeo.

Heinrich Rudolf Hertz (22 February 1857 — 1 January 1894)

Heinrich Rudolf Hertz attended Dresden Polytechnic (1876), University of
Munich (1877), and Berlin Academy (1878-80). He studied under Professors
Hermann von Helmholtz and Gustav Kirchhoff, and his doctoral thesis was on
Electromagnetic Induction in Rotating Conductors. He was employed as an
Assistant to Helmholtz (1880-83) at the Berlin Academy, Privatdozent at the
University of Kiel (1883-85), Professor of Physics at the Karlsruhe Technische
Hochschule (1885-89), and University of Bonn (1889-94).
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To derive the electromagnetic fields E and H, we write IT = 2II and define a
vector potential A and a scalar potential ® such that

— o1l
A=y, 1.4.2
Ho (1.4.2)
o— Ly i (1.4.3)
€o
In terms of ® and A, the magnetic field H and the electric field E are
H—Ltvxi (1.4.4)
fho
— 0A
EFE=——-V® 1.4.
o~V (1.45)

Notice that (1.4.4) satisfies Gauss’ law of V-B = 0 and (1.4.5) follows from Faraday’s
law.
It is seen from (1.4.2) and (1.4.3) that

— 0P
V-A+ poto—— =0 (1.4.6)

ot
which is known as the Lorenz gauge condition relating the scalar and vector
potentials. Making use of (1.4.4), (1.4.5), and (1.4.6), we can derive from Ampére’s
law and Gauss’ law of V- D = p the following inhomogeneous Helmholtz equations:

2

VA - uoeo%z = — o (1.4.7)
62

Vio — Moeow‘b = —p/éo (1.4.8)

The Hertzian potential provides a solution to the above equations.

Ludvig Valentin Lorenz (18 January 1829 — 9 June 1891)

Ludvig Lorenz graduated from the Technical University of Denmark and
taught at the Danish Military Academy. The Lorenz gauge condition and the
retarded potentials were contained in the article ‘On the Identity of the Vibrations
of Light with Electrical Currents’, published in the Philosophical Magazine and
Journal of Science in July-December 1867. In 1869, Lorenz arrived at the result of
a dielectric mixing formula, which was also obtained by H. A. Lorentz in 1878, now
known as the ‘Lorenz-Lorentz’ formula.
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ExampLE 1.4.1
In spherical coordinates, the unit vectors are [Fig. E1.4.1.1]

Zsinf cos ¢ + gsinf sin ¢ + Z cos

,":.

0 Zcosfcosp+ ycosfsing — Zsin b

—Zsin ¢ + g cos @

-
Il

Feosf — Osind

z

>
>
N

,,2
7o
: e
S~
0
0 T
- -y
6

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure E1.4.1.1 Unit vectors in spherical coordinates.

The vector del operators in spherical coordinate system are

o 100 - 1 d
SR JPE SPIEE.

Ir 00 rsin98_¢
- 19, , 1 9, . 9
VA= G A+ a0 + G as e
7 rd rsin@dA)
Vxd= 1|2 0 0
x ~ r2ginf | Or 00 ¢
A, 1Ay rsinfAy
1 82 ) L 1 0%
29 1 O —— Zlsin0 | — o
V=l [7" ] r2sin 0 90 [E’m ae] r2sin” 0 0¢?

— END OoF EXAMPLE 1.4.1 —
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B. Electric and Magnetic Fields
The magnetic field H is obtained from (1.4.7) with

— oIl oml

—— = (fcosf — Osin )

5 whtoql
A = —_— =
Ho ot ZHo ot

wr

# 78 rsin OqAb

sin(kr — wt)

A-lyxa-_1 |2 2 0
T Lo A= por2sing | Or 06 0o
A, 1Ay 0
~ 170 0
= QSMOT [5(7'14_9) — %Ar:|
_ ~wkqgl . 1 .
7¢47rr sm&[kr sin(kr — wt) — cos(kr wt)} (1.4.9)

To obtain the electric field E from (1.4.8), noticing that Or/0z =
z/r = cos@. We find

1 o011 1
P = __(2_ = f qt cos 6 [k‘_ cos(kr — wt) + sin(kr — wt)]
€, Oz TELT r
— 0A
E=-22_vo
ot v
, 2110q! d 109
= (7 cosf — fsin 6)w4,t:rrq cos(kr —wt) — {f“g—T + 9; g—e}
k2ql

A 1. 1
{7‘2 cos @ [H sin(kr — wt) + 2,2 cos(kr — wt)}

" dwe,r
+fsing [—1 sin(kr — wt) + (—1 — 1) cos(kr — wt)} }
kr k272
(1.4.10)

Consider the following special cases:

Case A) When kr > 1, we are in the far field as r > \/27; or at
a fixed r, the frequency w = ck > ¢/r. We only keep terms of the
order of 1/r. The field vectors are

— n k2q€ .
E = _9471'607“ sin 0 cos(kr — wt) (1.4.11)
— ~wkqgl .
H=—¢ sin @ cos(kr — wt) (1.4.12)

4rr
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It is seen that both H and E are tangent to the surface of a large
sphere with radius r . The field vectors H and E are perpendicular to
each other. As a function of 6, the magnitudes of both the electric and
magnetic fields are proportional to sinf. We plot the radiation field
pattern in Fig. 1.4.2. The length E is proportional to the magnitude
of the electric field in the direction 6.

Figure 1.4.2 Radiation field pattern.

Case B) For static fields when w =0, k =w/c =0, we find

(72 cos O + Osin6), H=0 (1.4.13)

There is only electric field for a static dipole.

Case C) In the immediate neighborhood of the dipole, kr — 0. Keep-
ing terms of the orders 1/r?, the magnetic field vector is

wql ~d(gcoswt) £

H= _¢47rr2 sinfsinwt = ¢ i 12

i ~ 1l
sinf = ¢47r1"2 sin 6
(1.4.14)
This corresponds to the field produced by an element of length ¢ car-
rying current I along the z axis, and is known as the Biot-Savart

law.

Jean-Baptiste Biot (21 April 1774 — 3 February 1862), professor of math-
ematical physics at the College de France since 1800, reported experiments
with his assistant Felix Savart (30 June 1791 — 16 March 1841) following
Orsted’s discovery in April 1820 to the Académie des Sciences in October
1820 which led to the Bior-Savart law. Savart became Professor at the College
de France in 1836.
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EXAMPLE 1.4.2

Apply the Biot-Savart law (1.4.14) to determine the magnetic field of an
infinitely long wire at a distance p from the wire. We place the observation
point at (p,z), let £ =dz’, and integrate (1.4.14) to obtain [Fig. E1.4.2.1]

“+oo .
- Isinf
=¢— (. E1.4.2.1
dr | “r p? ( )

The integration can be carried out with the substitution 2z’ = —pcotf. We
find dz’ = pdf/sin®6, 2> + p*> = p?/sin? 6, and (E1.4.2.1) becomes

F:Ai dGIst:dA)L
i J, p 2mp

— 0>

\ .
| Observation
Point

r=1/2"?%4p?

Figure E1.4.2.1 Integration of current elements in an infinitely long wire.

The above result can also be obtained by applying Stokes’ theorem to
Ampere’s law V x H = J.

ﬁdi~ﬁ://d§-7:l

The integration path for the line integral is a circle of radius p around the
line source whose area integral gives rise to the current /. The result is
2mpHy = 1.

— END OF EXAMPLE 1.4.2 —
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C. Electric Field Pattern

To study and sketch the electric and magnetic field lines, Hertz intro-
duced a parameter () in terms of a radial distance p = rsinf in the
cylindrical coordinate system. We have

=, _ oron
o, ~Popor

. 0 qf
2
= 7rsin 0_7“ [—r cos(kr — wt)]

kgt . o : 1
=, sin 0 [ sin(kr — wt) . cos(kr wt)]
0Q  ~10Q
VO=rg t0 %
Ak2q€ . 9 1 .
=7 —sin 0 [E sin(kr — wt) + (W — 1) cos(kr — wt)]

R 1
+ 9% sin 0 cos 0 [ sin(kr — wt) — . cos(kr — wt)]

which is the product of two factors, one depends only on 6, and the
other on r and ¢. From (1.4.9) and (1.4.10), we find

wkqt

4rr

H

¢

1
sin 0 [k:_ sin(kr — wt) — cos(kr — wt)] (1.4.15)
T

— kgl 1 1
E = 47reqor {f“2 cos @ [H sin(kr — wt) + 2,2 cos(kr — wt)]

" 1. 1
+ 0sinf {E sin(kr — wt) + (W — 1) cos(kr — wt)} }(1.4.16)

Thus in terms of @,

— ~10

7

E= LgAbx vQ
€op

The electric field lines on any p-z plane are seen to follow the
intersection of () = constant surfaces with the p-z plane. In Fig. 1.4.3,
we plot the electric field lines at different times.
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EXAMPLE 1.4.3
Consider the radiation field zone when kr > 1 and

kqt
Q= f% sin? @ sin(kr — wt)
Construct three constant @ surfaces at wt = —7/2 (or 37/2) and indicate

the electric field line directions.

ANSWER: Consider
sin? @ cos(kr) = ¢

We sketch the three cases of ¢ =0, %, 1 in Fig. E1.4.3.1.
For ¢=0, kr=2mm+t73
For c¢= %, kr =2mm for 0 = £7%
kr=2mr+ % forf =73
For c¢=1, 0=75 and kr=2mn.

2mm —w/2  2mm  2mw+7/2

Figure E1.4.3.1 Radiation field plot.

— END OF EXAMPLE 1.4.3 —
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ExamMpLE 1.4.4
In the radiation far field of a Hertzian dipole with kr > 1, the electric
and magnetic fields are

. wgkt

E= fanj‘jw sin @ cos(kr — wt) (E1.4.4.1)
L wqkt

H= m“i‘jw sin @ cos(kr — wt) (E1.4.4.2)

It is seen that both H and E are tangent to the surface of a large sphere
with radius r. The field vectors H and E are perpendicular to each other
and their magnitudes are related by 7 = (po/€,)"/?.

To investigate the power and energy issues, Hertz invoked Poynting’s
theorem. Poynting’s power density vector S for fields for kr > 1 is

— — wqkl

2
S=ExH=1n <%> sin? @ cos?(kr — wt)
T

which is seen to be pointing in the #-direction away from the large sphere.
We now calculate the time-average power density

1 [ wakt\
<S>=— d(wt)ExF:fﬂ PIE) sin2g
21 o 2\ 4nr

The radiation pattern is shown in Fig. E1.4.4.1. The length P is proportional
to the magnitude of the radiated power in the direction 6.

z

Figure E1.4.4.1 Radiation power pattern.

Integrating the 7 directed power over the surface of a sphere of radius r
gives

3 47

Notice that the total time-average power leaving the dipole source can be
calculated with a spherical surface of any radius 7, and yields the same
result.

2
— 4
P :ﬂ dS 7 <§>= -1 (M) - %(quﬁ)Q = 10(wqk()? (E1.4.4.3)
s

— END OF EXAMPLE 1.4.4 —
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Poynting’s Power Vector for Hertzian Waves
For a Hertzian dipole, the magnetic field H and the electric field
E are

T_ gbwkqﬂ

: 1.
- sin 0 [H sin(kr — wt) — cos(kr — wt)] (1.4.17)

= wkql (. 1 . 1
E=n - {r2 cos 6 [H sin(kr — wt) + 2,2 cos(kr — wt)]

. . 1
+ 0sind [k_ sin(kr — wt) + (W — 1) cos(kr — wt)] } (1.4.18)

r

The Poynting vector power density is

S=ExH
wkg \% [ . . 1 1.1,
=1 <47T607“> {—9 sin 26 {(W - H)Q sin 2(kr — wt)
~ 72,3 C08 2(kr —wt)]
1 2.1
+ 7 sin? 6 [(W - H)§ sin 2(kr — wt)

1
~ 72,3 Co8 2(kr — wt) + cos? (kr — wt)] } (1.4.19)
,

We now calculate the time-average of S . Notice that the time average
of sin2(kr —wt) and 2cos(kr — wt) is zero, and the time average of
either sin?(kr — wt) or cos?(kr —wt) is 1/2. The above expression,
after integration, is equal to the time-average power density at any
point 7.

— 1 (% — KO\
<S>:%/O d(wt)ExH:?Q<jq )sin29

2 r

Integrating the 7 directed power over the surface of a sphere of radius
r gives [Fig. 1.4.4]

27 T 2
P :ﬂdw- <§>=/ d¢>/ df r2sin 6 [ﬁ (“’W> sin20]
0 0 2 477'7"

T 3 2 2
4
= / d 27r? sin® 0 (;k v = wakt = L(quf)Q
0 €0 \ 4mr 3 4r 127
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2712 sin 0d6

rdf

x

Figure 1.4.4 Integration geometry for time-average power density.

where 27r2sinf is the ribbon-like surface element to be integrated
from # =0 to 8 = w. Notice that the total time-average power leaving
the dipole source obtained by calculating with a spherical surface with
any radius r is the same.

EXAMPLE 1.4.5 o _
For a Hertzian dipole, the time average of E-J is, with J=2wql sinwtd(T)

and as r — 0,

nk (wgl)?

Bgs="
< - 2 dnr

1 1
{20052 0 {—H cos kr + w22 sin kr]
. 9 1 1 . _
—sin” 6 [_H coskr + (W -1 smkr} 5(7)

"_k(wff)Q{cosze[%(lk2r2+...)+( ) 1)(kr@+-~)]

k 2 k2r2 6

1 k22 1 k33 _
_ [_H(l_ 5 +"')+(k2r2 —1)(kr—T+...)} }6(r)
(

_nk (wgl)? [ | 2kr . m Py
=T {[T] }5(r) = g (wakl)*s(7)

where we have Talor expanded sinkr and coskr around r =0.

— END OoF EXAMPLE 1.4.5 —
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EXAMPLE 1.4.6 _
For a dipole moment p = ¢/, the magnetic and electric fields are

—  wk _ |1 .

H= E@ X T) [E sin(kr — wt) — cos(kr — wt)} (E1.4.6.1)

E= L Lipx#) x#+2 - 5) [ costhr —wt) + - sin(ir — )|
= Trey | P X)X P20 D)) | 15 5 cos(hr —w oy sin(kr —w

—[(@ x 7) x 7] cos(kr — wt)} (E1.4.6.2)

Applying the Biot-Savart law to derive the magnetic field of an infinitely
long wire, we first make use of the first term in (E1.4.6.1) with the same
approximation as for (1.4.14) to obtain

—  wk ., .1 . 1 d(geoswt)- . 1 -
H~—(px r)—r sin(—wt) = o [ o X T = e (10 x7)
where T is the current and ¢ denotes the direction and length of the current
element. The vector T = pp + 2z’ points from the source element to the
observation point.

— END OoF EXAMPLE 1.4.6 —

ExaMPLE 1.4.7

Consider the scattering of electromagnetic waves by particles of size much
smaller than a wavelength, such as sunlight by air molecules. Model the parti-
cle as a small sphere of radius a with an induced dipole moment proportional
to a and the intensity of the illuminating electric field,

€q — €
| = e, (£ ) B
q T€ol pprd R

where ¢, is the dielectric constant of the air molecule and Ej is the incident
electric field intensity. The total power Ps re-radiated by the particle acting
as a Hertzian dipole is, by virtue of (E1.4.4.3)

n 2 47T<6a_fo)2462
P,=—(wgkt)* = — | ——— | k"a’E
m (wake) 3n \eq + 2¢, @ 5o
The scattering cross-section is defined as
P 8T [ €q — €6 )2 4 6
s = = — k
7 E2/2n 3 <6a + 2¢, @

This is known as the result of Rayleigh scattering, which has been used to
explain why the sky is blue.

— END OoF EXAMPLE 1.4.7 —
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John William Strutt (Lord Rayleigh) (12 November 1842 — 30 June 1919)
entered Trinity College, Cambridge, in 1861, and graduated in 1865. His first
paper in 1865 was on Maxwell’s electromagnetic theory. His theory of scatter-
ing (1871) provided the explanation of why the sky is blue. From 1879-1884 he
succeeded Maxwell as the second Cavendish professor of experimental physics
at Cambridge.

Problems

P1.4.1
The magnetic field H and electric field E of a Hertzian dipole at very
large distances (kr > 1) are

H= _éwkqf sin 0 cos(kr — wt)
4dr
2
E=-0 Rt sin 6 cos(kr — wt)

dme,r

(a) Find the Poynting’s power density vector S as a function of time. What
is the time-averaged power density vector <§> ?

(b) By integrating the Poynting vector over the surface of a sphere of radius
r, find the time-averaged power P radiated by the Hertzian dipole.

(c¢) The amplitude of the current in the Hertzian dipole is I, = wq . By using
P= %I 2Ryad , find the radiation resistance R,.q of the Hertzian dipole.

(d) A radio station is 15 km away from a city. The transmitting antenna
tower may be modeled as a Hertzian dipole antenna of dipole moment
g¢ . To maintain the FCC standard of 25 mV /m field strength in the city,

how much radiation power P must be provided?

P1.4.2
Determine the static electric field for a Hertzian dipole oriented in a
general direction p = &p; + yp, + Zp. , with dipole moment p = ¢f.

P1.4.3

Sun navigation was first observed in 1911. It was found that some species
of ants, horseshoe crabs, honeybees, etc., are sensitive to polarized light. These
creatures can navigate as long as there is a small patch of blue sky. The sky
polarization depends upon the angle ¢ between the sun’s rays to a partic-
ular point in the sky and an observer’s line of sight to the same point. The
sunlight, which is unpolarized, or randomly polarized, excites air molecules
which behave like small dipole antennas when irradiated by the incident elec-
tric fields of the sunlight. The scattered electric field E; for each excited
dipole antenna is linearly polarized in planes perpendicular to the sunlight
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path; and looking along the sun ray path the scattered wave is unpolarized,
or randomly polarized.

At sunset, if an ant looks directly at the sun (¢ = 0), what is the
polarization? What is the polarization if the ant looks at the zenith (¢ = 90°)
perpendicular to the sun ray path? Show that the sky light appears to be
partially linearly polarized when it looks at other parts of the sky [Scientific
American, July 1955].

P1.4.4

(a) For the electromagnetic field solution of a Hertzian dipole with dipole
moment p = gl, let k& — 0 and show that H = 0. Determine the
electric field E of a static dipole with £ =10.

(b) Counsider the Rayleigh scattering of electromagnetic waves by particles of
size much smaller than a wavelength, such as sunlight by air molecules.
Model the particle when illuminated with a light wave as an induced
Hertzian dipole with dipole moment p, which is proportional to the
incident field amplitude E,, and can be expressed as p = p,F, . Find
the total power Ps re-radiated by the particle. Find the scattering cross-
section defined by 2nP/EZ . The above result is usually used to explain
why the sky is blue.

P1.4.5
Why is sky blue (but why isn’t it purple?) ?

P1.4.6

(a) Consider an optical fiber with cross section area A . The electromagnetic
wave guided inside the fiber is scattered by the atoms and the molecules
making up the fiber. Since the sizes of the scattering particles are much
smaller than the guided light wavelength, the process can again be de-
scribed by Rayleigh scattering. Assume e = 2¢, , show that the scattered
power from each particle is ﬁk‘laGEE .

(b) Assume the guided light has intensity FEy, wavelength 1076 m, and
particle radius @ = 107! m . Find the guided power flow in watts and
the total scattered power of a fiber with a length of 1 km in terms of
the density of the particles inside the fiber V. Calculate the ratio of the
scattered power to the guided power.

(c) Assume the particle density is approximately 3/4ma® per m?, estimate,
with the numbers given above, the fiber loss per kilometer (in dB/km)
due to the Rayleigh scattering.

P1.4.7
Two Hertzian dipole antennas are located at (0,0,0) and (0,d,0) with
dipole moments p; = ¢1] and ps = ¢l current densities:

J1 = 2015(x)6(y)d(2) and Jo = #1,6(2)d(y — d)d(2)

as shown in Figure P1.4.7.1. The two in phase dipoles are oriented in z and
x directions respectively.
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Figure P1.4.7.1

(a) For the z-oriented dipole, the far field (> 1) expression of E on the
yz-plane is:

Kzt cos(k\/x2 + (y—d)? + 22 — wt)
4mrey

Show that as d < \/x2 +y2+22 =7
— k2qot
B,=2 q2
4mreg
(b) Find the total far field E on the yz-plane. -
(¢) Let ¢1 and g2 be real and positive. On the yz-plane, if the far field E
for 6 = 45° is circularly polarized,
(i) Find the minimum d in terms of .
(ii) What is the ratio of ¢1/q2 7
(iii) Specify the handness of the circularly polarized field.

Ey=12

cos(kr — kdsin 6 — wt)

P1.4.8

The Biot-Savart law states that the magnetic field at (r, 6, ¢) produced
by an element of length ¢ at the origin carrying current I along the z axis
is

B=¢

poll .

12 Sin 0

Consider a wire with infinite length carrying current I in the direction of
z . Use the Biot-Savart law to show that the magnetic field produced by the
wire is

pol

2wp

where p is the distance from the wire. Apply Stokes’ theorem to Ampere’s
law without the displacement term, find B and confirm the above result.

For a high-voltage transmission line carrying current I = 1kA, find the
magnetic field strength 10 meters away from the wire, and compare with the
earth magnetic field strength which is approximately 5 x 10~° Tesla.

B=¢
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1.5 Constitutive Relations

Maxwell’s equations govern the behavior of electric field vectors D
and F , magnetic field vectors B and H , and source fields J and p.

0 _

VxH=2D+J (1.5.1)
_ o

VXxE=-=B (1.5.2)

V-D=p (1.5.3)

V-B=0 (1.5.4)
— 0

Vel=—2p (1.5.5)

Equation (1.5.3) can be derived by taking the divergence of (1.5.1) and
introducing (1.5.5). Similarly, Eq. (1.5.4) is derivable from divergence
of (1.5.2). Giving sources J and p satisfying (1.5.5), we have a total
of six independent scalar equations, three from (1.5.1) and three from
(1.5.2), to determine 12 components of the field vectors D, E, H,
and B. Thus we need six more scalar equations.These are the con-
stitutive relations, which provide a mathematical description of the
electromagnetic properties of all media.

I proposed that we call them bianisotropic media [Kong, 1968]
when material media are characterized by the following constitutive
relations:

+&H (1.5.6)
E+pn-H (1.5.7)

&

E:
B=

NI A

where € 7, &, and ¢ are all 3 x 3 matrices. Their elements are
called constitutive parameters. In its most general form, a constitutive
parameter can be cast in the form of integro-differential operators. In
this section, we discuss special cases of the constitutive relations.

The bianisotropic description of material has fundamental impor-
tance from the point of view of relativity. The principle of relativ-
ity requires that all physical laws of nature must be characterized by
mathematical equations that are form-invariant from one observer to
the other. Although the numerical values of the field quantities may
vary from one observer to another, the forms of the Maxwell equations
in (1.5.1) to (1.5.5) are invariant, and so are the bianisotropic form as
expressed in (1.5.6) and (1.5.7) for the constitutive relations.
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A. Isotropic Media

For isotropic media, E = E =0,and 71 = /i with T denoting the 3x 3
identity matrix. The constitutive relations for an isotropic medium can
be written simply as

D=¢E where € = permittivity (1.5.8)
B=uH where p = permeability (1.5.9)
By isotropy we mean that the field vector E is parallel to D and
the field vector H is parallel to B. In free space void of any matter,
= o and € = €,
o = 4w x 1077 henry /meter
€0~ 8.85 x 10712 farad /meter
Inside a material medium, the permittivity e is determined by the

electrical properties of the medium and the permeability p by the
magnetic properties of the medium.

ExampPLE 1.5.1

A dielectric material can be described by a free-space part and a part
that is due to the material alone. The material part can be characterized by
a polarization vector P such that

D=¢cE=¢,E+P (E1.5.1.1)

The polarization P symbolizes the electric dipole moment per unit volume
of the dielectric material. In the presence of an external electric field, the
polarization vector may be caused by induced dipole moments, alignment of
the permanent dipole moments of the medium, or migration of ionic charges.

A magnetic material can also be described by a free-space part and a

part characterized by a magnetization vector M such that
B = puH = uoH + uoM (E1.5.1.2)

A medium is diamagnetic if u < u, and paramagnetic if u > u,. Diamag-
netism is caused by induced magnetic moments that tend to oppose the exter-
nally applied magnetic field. Paramagnetism is due to alignment of magnetic
moments. When placed in an inhomogeneous magnetic field, a diamagnetic
material tends to move toward regions of weaker magnetic field, and a para-
magnetic material toward regions of stronger magnetic field. Ferromagnetism
and antiferromagnetism are highly nonlinear effects.

— END OF EXAMPLE 1.5.1 —
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B. Anisotropic Media

For anisotropic media, E = E = 0, and the constitutive relations are
usually written as

D=¢- where € = permittivity tensor (1.5.10)

E
B=pn-H where I = permeability tensor (1.5.11)

The field vector E is no longer parallel to D, and the field vector
H is no longer parallel to B. A medium is electrically anisotropic if
it is described by the permittivity tensor € and a scalar permeability
u, and magnetically anisotropic if it is described by the permeability
tensor i and a scalar permittivity e. Note that a medium can be both
electrically and magnetically anisotropic as described by both € and
7 in (1.5.10) and (1.5.11).

Crystals are described in general by symmetric permittivity ten-
sors. There always exists a coordinate transformation that transforms
a symmetric matrix into a diagonal matrix. In this coordinate system,
called the principal system,

ez 0 O
e=10 €y, 0 (1.5.12)
0 0 e,

The three coordinate axes are referred to as the principal axes of the
crystal. For cubic crystals, ¢, = €, = €, and they are isotropic. In
tetragonal, hexagonal, and rhombohedral crystals, two of the three
parameters are equal. Such crystals are uniazial. Here there is a two-
dimensional degeneracy; the principal axis that exhibits this anisotropy
is called the optic azis. For a uniaxial crystal with
0

0 (1.5.13)

|
Il
OO ™
O O

€z

the z axis is the optic axis. The crystal is positive uniazial if €, > €;
it is negative uniazial if €, < e. In orthorhombic, monoclinic, and
triclinic crystals, all three crystallographic axes are unequal. We have
€z 7 €y 7# €, and the medium is biazial.
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C. Bianisotropic Media

For isotropic or anisotropic media, the constitutive relations relate the
two electric field vectors and the two magnetic field vectors by either
a scalar or a tensor. Such media become polarized when placed in an
electric field and become magnetized when placed in a magnetic field. A
bianisotropic medium provides the cross-coupling between the electric
and magnetic fields. When placed in an electric or a magnetic field,
a bianisotropic medium becomes both polarized and magnetized. The
constitutive relations for a bianisotropic medium take the form

&=

H (1.5.14a)

H (1.5.14b)

&l S
I

= ¥l

+
B+

I
I A

where D depends on both E and H, and so does B.

Magnetoelectric Media

Magnetoelectric materials, theoretically predicted by Dzyaloshin-
skii, and Landau and Lifshitz [1960], were observed experimentally in
1960 by Astrov [1960] in antiferromagnetic chromium oxide. The con-
stitutive relations that Dzyaloshinskii proposed for chromium oxide
have the following form:

e 0 0 €0 0

D=0 ¢ O|-E+|0 & 0| -H (1.5.15a)
(0 0 e 0 0 &
[¢ 0 0] [ 0 0

B=|0 ¢ 0|-E+|0 u 0| -H (1.5.15b)
0 0 & 0 0 p

It was then shown by Indenbom [1960] and by Birss [1963] that 58
magnetic crystal classes can exhibit the magnetoelectric effect. Rado
[1964] proved that the effect is not restricted to antiferromagnetics;
ferromagnetic gallium iron oxide is also magnetoelectric.

Mowving Media

Media in motion were the first bianisotropic media to receive at-
tention in electromagnetic theory. In 1888, Wilhelm Roéentgen (1845
1923) discovered that a moving dielectric becomes magnetized when it
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is placed in an electric field. In 1905, H. A. Wilson showed that a mov-
ing dielectric in a uniform magnetic field becomes electrically polarized.
Almost any medium becomes bianisotropic when it is in motion.

D. Biisotropic Media

Tellegen Media

In 1948, the gyrator was introduced by B. D. H. Tellegen as a new
element, in addition to the resistor, the capacitor, the inductor, and
the ideal transformer, for describing a network. To realize his new net-
work element, Tellegen conceived of a medium possessing constitutive
relations of the form

D=¢E+1H (1.5.16a)
B=71E+uH (1.5.160)

where 72/pe is nearly equal to 1. Tellegen considered that the model
of the medium had elements possessing permanent electric and mag-
netic dipoles parallel or antiparallel to each other, so that an applied
electric field that aligns the electric dipoles simultaneously aligns the
magnetic dipoles; and a magnetic field that aligns the magnetic dipoles
simultaneously aligns the electric dipoles. Tellegen also wrote general
constitutive relations (1.5.14) and examined the symmetry properties
by energy conservation.

Chiral Media

Chiral media, which include many classes of sugar solutions, amino
acids, DNA, and natural substances have the following constitutive
relations

— = oH

D=¢cF —_— 1.5.1
eE+x 5 (1.5.17a)

S — E

B :uH—X%—t (1.5.17b)

where x is the chiral parameter. Media characterized by the constitu-
tive relations (1.5.16) and (1.5.17) are biisotropic media.
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E. Constitutive Matrices

Constitutive relations in the most general form can be written as

"E+L-cB (1.5.18q)
M-E+Q-cB (1.5.18b)

= Ol
Il
S

where ¢ = 3 x 10% m/s is the velocity of light in vacuum, and P, Q, L,

and M are all 3x3 matrices. Their elements are called constitutive pa-
rameters. In the definition of the constitutive relations, the constitutive

matrices L and M relate electric and magnetic fields. When L and
M are not identically zero, the medium is bianisotropic. When there
is no coupling between electric and magnetic fields, L = H =0 and
the medium is anisotropic. For an anisotropic medium, if P = cel and

(l/c,u)I with T denoting the 3 x 3 unit matrix, the medium is
zsotropzc. The reason that we write constitutive relations in the present
form is based on relativistic considerations. First, the fields E and c¢B
form a single tensor in four-dimensional space, and so do ¢D and H.
Second, constitutive relations written in the form (1.5.18) are Lorentz-
covariant. These aspects will be discussed in Chapter 8.

Equation (1.5.18) can be rewritten in the form

[Cﬁﬁ] _7. [CEE] (1.5.19a)

and E is a 6 X 6 constitutive matrix:

QII
il

F
1.5.19b
[M Q} ( )
which has the dimension of admittance.
The constitutive matrix C' may be a function of space-time coordi-

nates, thermodynamical and continuum-mechanical variables, or elec-
tromagnetic field strengths. According to the functional dependence

of C, we can classify the various media as (i) inhomogeneous if C is
a function of space coordinates, (ii) nonstationary if C is a function
of time, (iii) time-dispersive if C contains time derivatives, (iv) spa-
tially dispersive if C contains spatial derivatives, (v) nonlinear if C
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depends on the electromagnetic field, and so forth. In the general case

C may be a function of integro-differential operators and coupled to
fundamental equations of other physical disciplines.

We have defined constitutive relations by expressing D and H in
terms of F and B. We may also express constitutive relations in the
form of D and B as a function of E and H :

[g] — T [g] (1.5.20a)

where in view of (1.5.14) and (1.5.18),

EEH:[

Here EEH is thg Constit_utive matrix ugder EE representation.
To express F and H in terms of B and D, we write

[g] T [g} (1.5.21a)

—1

P oy
M- P Q-M-P -L

Lo

In terms of parameters in EH representation, we find

S s
X=—F-&H
p=[F-CE! ?]_1
7=-v-C

Here EDB is the constitutive matrix undgr DB _representatio& The
other possible construction for expressing F and B in terms of H and
D is not shown because it will not be needed in later developments.
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Problems

P1.5.1

For each of the following constitutive relations, state whether the given
medium is

(1) Isotropic/anisotropic/bianisotropic,

(2) Linear/nonlinear,

(3) Spatially/temporally dispersive,

(4) Homogeneous/inhomogeneous.

(a) Cholesteric liquid crystals can be modeled by a spiral structure with
constitutive relations given by

o €(1+0cosKz) edsin K z 0 B
D= edsin K z €(l—0dcosKz) 0| -E
0 0 €,
where the spiral direction is along the z axis.

(b) In view of the optical activities in quartz crystals, the constitutive rela-
tion for a quartz crystal is phenomenologically described as

1 0

Ej = I{ijDi + RGijaBi
1 1 0

Hj e —Bj — —GZj_DZ
Ho Mo€o ot

(c) When a magnetic field By is applied to a conductor carrying a current,
an electric field E is developed. This is called the Hall effect, discovered
by Edwin Herbert Hall in 1879 while he was a graduate student at the
Johns Hopkins University. Assuming the conduction carrier drifts with
a mean velocity v proportional to RoF, the constitutive relation that
takes care of the Hall effect is given by

J =0 (E+ RoE x Bo)

where o is the conductivity and R is the Hall coefficient. For copper,
o~ 6.7 x 10"mho/m and R~ —5.5 x 10~ m?/coul .

(d) The phenomenon of natural optical activity can be explained with the
use of the constitutive relation

OF;
D; =¢€;E; + ik gy
where €;; and 1,5, are functions of frequency and ;5 = —7Vjik-

(e) The phenomenon of pyroelectricity in a crystal is observed when it is
heated. The constitutive relation for a pyroelectric material can be writ-
ten as

B

ol

E:Eo—F
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where a spontaneous term Dy exists even in the absence of an external
field.

The phenomenon in which dipole moments are induced in a crystal by
mechanical stress is called piezoelectricity. A piezoelectric material is
characterized by a piezoelectric tensor ;i = 7, such that

D; = Do; + €. Ex + Vi k15w

where sy; is the stress tensor to second order in electric fields. All pyro-
electric media are also piezoelectric.

An isotropic dielectric can exhibit the Kerr effect when placed in an
electric field. In this case the permittivity can be written as

€ij = 6(5@' + O‘EiEj

where € is the unperturbed permittivity. The principal axis of €;; coin-
cides with the electric field.

In an electrooptical material that exhibits Pockel’s effect, the constitutive
relation can be written as

Di = GijEj —+ UijkEjEk

where o4, = 0, is a third-rank tensor symmetrical in ¢ and j, and
therefore has 18 independent elements.

P1.5.2

Similar to the expression of the constitutive relation D =¢FE =¢,E+P,

the constitutive relation B = i - H can also be represented in terms of a
“free-space” part pu,H and a magnetization vector M such that

B= uoﬁ—l— MOM

Notice that while P has the same dimension as D, M has the same dimen-

sion as H .

In the case of media possessing permanent moments, the polarization P

and the magnetization M are given classically by the Langevin equation
1
L(z) = cotha — —
x

For a paramagnetic material with magnetic moments Nm,

mH
M =NmL | —

where k = 1.38 x 1072 joule/kelvin is Boltzmann’s constant, and T is the

absolute temperature in kelvins. Show that in the low-field limit, since mH
kT , the medium is linear.

<
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1.6 Boundary Conditions
A. Continuity of Electric and Magnetic Field Components

Assume that there is a plane boundary surface at z = 0 separating Regions 1 and 2,
we can derive the boundary condition for H by using a small pill-box [Fig. 1.6.1] and
letting Az go to zero. As across the boundary, field amplitudes may be discontinuous
while on the z-y plane they are not varying much. We thus ignore partial derivatives
with respect to = and y, and keep only partial derivatives with respect to z. We
find that

— o (. —
VXH—&{ZXH}

A — A
:Al.lzIEOA_z{ { mo,yo,ZOJr?Z) H(xo,yo,ZO*—z)}}

s Lo o)) oy

where F(xo,yo,zo + %) H, is in region 2, and H(xo,yo,zo — AT) H; is in
region 1.

Region 1

1A Y /Zy Region 2
2™ Fe—

Figure 1.6.1 Small pill-box volume.

From Ampere’s law, letting the surface normal #n = 2, we find

x (Hy — Hs) = dim Az{%—[t) + J} (1.6.2)
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Assume that the time derivative of D, % and the vector current

density J are both finite, we obtain from (1.6.2) Hi, = Hay; Hiz =
Hs, or that

i x (Hy— Hs) =0 (1.6.3)

Thus the tangential components of the magnetic field H are continu-
ous across the boundary surface.

Similar derivations apply to the electric field components. From
Faraday’s law across the boundary, we conclude that

fx (B —FEy) =0 (1.6.4)

Thus the tangential components of the electric field E are continuous
across the boundary surface.

Letting Az go to zero by using the small pill-box in [Fig. 1.6.1],
we find from Gauss’ law

— ) 1 Az Az
V-D= Al}go ~ D (xo,y0, 20 + 7) — D, (0, 0,20 — 7)
) 1 . = =
= AI,IZIEO N [2- (D1 — Dy)] (1.6.5)

where D, (xo, yo, 20 + %) = D;, and D,(xo, 0,20 — %) =Dy, . We
find

fi- (D1 — Dg) = Alirgop Az (1.6.6)

Assume that the charge density is finite across the boundary, we find

A+ (D1 —D3)=0 (1.6.7)

Thus the normal components of the electric field D are continuous
across the boundary surface. o
Similarly from Gauss’ law V- B =0, we find

f- (B — B2) =0 (1.6.8)

The normal component of the magnetic field B is continuous across
the boundary surface. The magnetic field H is continuous.
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B. Surface Charge and Current Densities

It is often convenient, in particular mathematically, to define re-
gions where the electric and magnetic fields are zero. The media occu-
pying such regions are called perfect conductors, which are idealizations
of media where the fields inside are vanishingly small. We assume that
all fields in Region 2 are zero, FEy=Hy=By=Dy=0.

Electric charges and currents are located primarily in a very thin
layer on the surface of perfect conductors. Thus on the surface of per-
fect conductors, we assume p is infinite contained in a zero thickness.
We may define a surface charge density

pu= dim, o
which is finite and has dimension coulombs/m?. The concept of sur-
face charge density will have very practical usefulness. As Dy = 0,
Equation (1.6.6) becomes

ps =1 - D (1.6.9)

Thus the difference between the D field components normal to the
boundary surface is equal to the surface charge density at the boundary
surface.

On the right hand side of (1.6.2), the time derivatives 9D, /0t
and 0D, /0t are finite but we may assume J, and J, to be infinite
to create a surface current density J, when Az — 0:

Js= lim J Az (1.6.10)

Az—0
J—o0

We obtain from (1.6.1), as Hy =0,

Js =0 x Hy (1.6.11)

Thus the discontinuity in the tangential components of H is equal to
the surface current at the boundary surface.
The boundary conditions (1.6.8) and (1.6.4) remain unchanged,

=0
=0

n X

%

A

n .

the normal component of the magnetic field B and the tangential
components of the electric field E are continuous.
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C. Boundary Conditions

The Maxwell equations have been written in differential form. They
must be supplemented with boundary conditions and initial conditions
wherever derivatives do not exist. The boundary conditions can be
derived from either the differential form or the integral form of the
Maxwell equations. The field vectors E, B, D, and H are assumed
to be finite but may be discontinuous across the boundary. The volume
current and charge densities J and p, however, may be infinite, such
as on the surface of a perfect conductor, where we can define the surface
current density Js = dJ in the limit as § — 0 and J — oo,

Js = lim Jé (1.6.12)

7—>OO

and the surface charge density ps = dp in the limit as § — 0 and
p—

Ps = (%irr(l) po (1.6.13)

oo
The surface current density has dimension amp/m and the surface
charge density has dimension coul/ m?.
For a stationary boundary separating regions 1 and 2, we let the

surface normal 7 point from region 2 to region 1. The boundary con-
ditions are as follows:

Ax (E1—E9) =0 (1.6.14)
x (Hy— Hy) = Js (1.6.15)
fi- (By — Bs) =0 (1.6.16)
f- (D1 — D3) = ps (1.6.17)

where subscripts 1 and 2 denote fields in regions 1 and 2, respectively.
Essentially the boundary conditions state that the tangential compo-
nents of E and the normal components of B are continuous across
the boundary; the discontinuity of the tangential components of H is

equal to the surface current density J,; and the discontinuity of the
normal components of D is equal to the surface charge density ps .
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EXAMPLE 1.6.1 Derivation of boundary conditions.

We now derive the boundary conditions by using integral formulas. First
we consider the integration of a vector field A over a volume V' enclosed by
a surface S with surface normal §. The following formulas are useful:

///dvv-zﬂdsg.z (E1.6.1.1a)
///dVV xzzﬁdsg x A (E1.6.1.1b)

where (E1.6.1.1a) is the familiar Gauss’ theorem which relates integration
of the divergence of the vector field A over the volume V to the integra-
tion of the field over the surface S enclosing V. Equation (E1.6.1.1b) is
derived from (E1.6.1.1a) by noting that V- (C x A) = —C -V x A where

C' is a constant vector independent of position. Applying the Gauss’ theorem
(E1.6.1.1a) to V- (C x A), we obtain

_6.///dvvxzzﬂdsg.axz:_aﬂdsgxz

This is seen to be (E1.6.1.1b) dot-multiplied by C on both sides. Letting C
be an arbitrary vector, the result is then (E1.6.1.1b).

region 1

region 2
Figure E1.6.1.1 Pillbox for derivation of boundary conditions.
Now consider an interface separating regions 1 and 2 [Fig. E1.6.1.1]. As-

sume a small pillbox volume across the interface. Integrating Maxwell equa-
tions over the volume and applying (E1.6.1.1), we obtain
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flassxz——[[[av 5 (E16.1.2)
ﬂdé‘s x H = ///dV D+///dV7 (B1.6.1.3)
ﬂd =0 (E1.6.1.4)
ffass o= [[[avs (E16.15)

These are the Maxwell equations in integral form, which will be used to derive
boundary conditions for both stationary and moving boundaries.

If we assume that the boundary surface is not in motion, then for the
terms involving partial derivatives with time, 9/0t can be moved to the
outside of the integral. Since the integration is over the volume, the result is
a function of time only, and the partial derivatives become total derivatives.
Therefore, for stationary boundary surfaces, the Maxwell equations in integral

form become
ﬁdsg x E = —%///dvﬁ (E1.6.1.6)
ﬂdSéxF %///dvﬁ+///dv7 (E1.6.1.7)
ﬂdSé-FzO (E1.6.1.8)
ﬂdSéﬁ:///dvp (E1.6.1.9)

Now we let the volume of the pillbox approach zero in such a manner
that the thickness of the ribbon side, d, goes to zero before the top and
bottom areas a shrink to a point. We dispose of terms of the order of § .

We see that the terms involving time derivatives in (E1.6.1.6) and
(E1.6.1.7) drop out because they are proportional to ¢ . We then consider the

right-hand sides of (E1.6.1.7) and (E1.6.1.9) which become da.J and édap,

respectively. If J and p are finite, both terms will be zero because they are
proportional to §. When there are surface charges and currents at the bound-
ary, the right-hand sides of (E1.6.1.7) and (E1.6.1.9) become aJs and ap; .
We then see that the surface integral terms involving cross and dot products
will be dropped except when § is in the directions 1 or —n . After canceling
a on both sides of the equations, we obtain from (E1.6.1.6)—(E1.6.1.9) the
boundary conditions (1.6.14)—(1.6.17).

— END oF EXAMPLE 1.6.1 —
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ExXAMPLE 1.6.2
Consider an electromagnetic wave with

= & Fycos(kz — wt) (E1.6.2.1a)
= §Hycos(kz — wt) (E1.6.2.1b)

=

= o

impinging upon the surface of a perfectly conducting surface [Fig. E1.6.2.1].
The boundary condition at the surface of the boundary requires that

nx (E;—Es)=0 (E1.6.2.2a)
A x (Hy — Ho) = Jg (E1.6.2.2b)
where 7 = —2 is the normal to the surface. A perfect conductor is defined

to have fields zero inside, thus Eo = Ho = 0.

I, ,

—>
B ~ z2>0
incident reflected E E=H=0
.

Perfect conductor

Figure E1.6.2.1 Reflection by a perfect conductor.

The reflected wave that satisfies the boundary conditions (E1.6.2.2) is

E, = —2Ejcos(kz + wt) (E1.6.2.3a)
H, = §Hycos(kz + wt) (E1.6.2.3b)

which is propagating in the —2 direction. The surface current J, at z =10
is found to be

Js=nx[(H; + H,) - 0],=0 = $2Hg cos wt

The magnetic field at z = 0 is B = u,(H; + H,) = §2p,Ho coswt . From

the Lorentz force law, the force density acting on J, is

S
F= §Js x B = 22u,HE cos® wt
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The factor 1/2 is due to the fact that there is magnetic field only on one side
of the current sheet. The time-average value is thus

F= Nng

which is twice the value of the incident radiation pressure in Example 1.3.13.
This is because the reflected wave is in the —Z direction, and it exerts a

recoil force on the conductor when it launches the reflected wave.
— END OF EXAMPLE 1.6.2 —

Problems

P1.6.1
Derive boundary conditions for E and H by applying Stokes’ theorem
to [P1.6.1.1].

region 1

region 2

Figure P1.6.1.1 Derivation of boundary condition with Stokes’ theorem.

P1.6.2

Derive the boundary conditions for H by applying the curl theorem
to a small pill-box volume on the z-y plane which has an area A and an
infinitesimal thickness Az .

P1.6.3

Applying the divergence theorem (1.1.19) and integrating over the pillbox
volume in Fig. E1.6.1.1 with area a and circumferential length [ to find
boundary condition for D .
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1.7 Reflection and Guidance

A. Wave Vector k

The electric field E(7,t) is governed by the Helmholtz wave equa-
tion.

9? _
<v2 — ,uew> E(F,t) =0 (1.7.1)
with

9 9% 92

2_ 9 O T
v _8x2+8y2+8z2

(1.7.2)
as the Laplacian operator V? in rectangular coordinate system.
Consider the solution

E(T,t) = E cos (kyx + kyy + k,z — wt) (1.7.3)

where E is a constant vector. The electric field vector in (1.7.3) rep-
resents a linearly polarized wave. Since a general polarization can be
expressed as a combination of two linear polarizations, the following
analysis applies to all polarizations.

Substituting (1.7.3) into (1.7.1), we obtain the dispersion relation

k2 + k; + k2 = wipe = k? (1.7.4)

We define a vector 3
k = 2k, + gk, + Zk. (1.7.5)

The vector k is called the wave vector, the propagation vector, or
simply the k vector. By virtue of the dispersion relation (1.7.4), we
see that the magnitude of the k vector is equal to w(ue)/?.

The scalar product of the wave vector k = &k, + 9k, + 2k, and
the position vector 7 = Zx + gy + 2z gives

k-7=kex+kyy+k.z

A constant phase front is determined by k-7 = constant , which indi-
cates that the front is a plane perpendicular to the k vector [Fig. 1.7.1].
The phase front is a plane and the amplitude of the electric field on
the plane is a constant. We call the solution in (1.7.3) a uniform plane
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Figure 1.7.1 Constant phase fronts of a plane wave.

wave. A plane wave is non-uniform if its phase front is a plane but the
amplitudes of the field are not constant. Since the constant phase front

must be perpendicular to & at all times, we conclude that this phase
front propagates in the direction of k.

B. Reflection and Transmission of TE Waves

Consider a plane wave incident from a medium with permittivity eqg
and permeability pg upon a dielectric medium with permittivity e;
and permeability pg. The boundary surface of the two media is situ-
ated at © = 0. Let the incident plane wave be linearly polarized with
the electric field vector in the y direction [Fig. 1.7.2].

We call the x-z plane the plane of incidence, which is formally
defined as the plane formed by the normal to the boundary surface
and the incident wave vector k. The incident electric field vector E;
is perpendicular to the plane of incidence and the magnetic field vector
H,; is parallel to the plane of incidence. We call the incident wave a
transverse electric (TE) wave. The TE wave is also called perpendic-
ularly polarized, horizontally polarized, or simply the F wave or s
wave.

An incident wave of general polarization can be decomposed into
two linearly polarized waves; one with the electric field vector perpen-
dicular to the plane of incidence which is the TE wave, and one with
the electric field vector parallel to the plane of incidence which is called
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Figure 1.7.2 Reflection and transmission of TE waves at a plane boundary
separating Regions 0 and t.

the transverse magnetic (TM) wave. The TM wave will have the mag-
netic field vector perpendicular to the plane of incidence and is also
called parallelly polarized, vertically polarized, or simply the H wave
or p wave. We shall first study the case of TE wave incidence.

The incident electric field vector is assumed to have unit amplitude
and is written as

Ei(r,t) =1
= ycos(kgx + k2 — wt) (1.7.6a)

with the wave vector

The magnetic field vector
Hi(F ) = wim(—:z«kz +3ky) cos(hpt + koz —wt)  (1.7.6b)
The Poynting vector power density for the incident plane wave is
Si(7,t) = E;(7,t) x Hy(T,t)

— 1
= k— cos®(kyx + k,z — wt) (1.7.6¢)
WHo
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which is in the direction of the wave vector k.
The reflected fields for the incident TE wave are

By = —ikys + 2k, (1.7.74)
E.(7,t) = JRcos(—kppx + k2 — wt) (1.7.70)
— 1
H,.(7,t) = —J(i‘k’m + Zkyg) R cos(kyx + krz — wt) (1.7.7¢)

0

The Poynting vector power density for the reflected plane wave is

2
S, (F,t) = ETR— co8?(kpp @ + kypz — wt) (1.7.7d)
WHo

where R is the reflection coefficient for the electric field component.
The incident wave vector k = Tk, + 2k, and the reflected wave

vector k, = —Zkyy + k., are governed by the dispersion relations
k2 4 k? = wugeg = K* (1.7.8)
k2, + k2, = w’uoeo = k2 (1.7.9)

This is seen by substituting (1.7.6a) and (1.7.7a) in the Helmholtz wave
equations for FEj, and E,,.

In Region t, we write the transmitted TE wave solution in the
following form

ki = Tk + 2k, (1.7.10a)

Et(F, t) = @T COS(ktxl‘ + ktzz - wt) (1710b)

T
H(7,t) = —WM (—Zkty + 2kiy) cos(kizx + k2 — wt) (1.7.7¢)
t
_ _ T2
Si(7,t) = kt—— cos®(kpx + ko2 — wt) (1.7.7d)
Wt

where T is the transmission coefficient, and the dispersion relation
k2, 4 k2 = W = kP (1.7.11)

governs the magnitude k; for the transmitted wave vector ky = ik +
Zkygs .
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Let the boundary surface be at = 0 where the tangential com-
ponents of £ and H are continuous for all z and ¢. We obtain

cos(kyz — wt) + Rcos(kyzz —wt) = T cos(kz —wt)  (1.7.12)

kiﬂ kaE k’ X
22 cos(ksz — wt) — 2 Rcos(krsz — wt) = ~2T cos(kynz — wt)
Ho Ho Mt

(1.7.13)

Since (1.7.12) and (1.7.13) must hold for all z and ¢, it follows that

’ kz = krz = ktz

(1.7.14)

This is called the phase matching condition.
From the dispersion relations (1.7.8) and (1.7.9), we find k,z = ks .
Equations (1.7.12) and (1.7.13) then reduce to

1+R=T (1.7.15)
:U'Okt:c

1-R= T 1.7.16
Mth ( )

Note that the boundary conditions of normal D and normal B com-
ponents continuous at & = 0 are satisfied since the condition of con-
tinuous normal B yields the same equation as (1.7.15) and there is no
normal D component.

The reflection and transmission coefficients R and T are deter-
mined from (1.7.15) and (1.7.16), giving

R RIF— L-po (1.7.17)
0t 1+pg*tE .
2
T=TLF=__~__ 1.7.18
0t 1_'_pg“tE ( )
where )
TE HoKtx
=== 1.7.19
pOt Mth ( )

With plF for the TE waves defined in (1.7.19), RLEF in (1.7.17) is
called the Fresnel reflection coefficient for a TE wave incident from
Region 0 and reflected at the boundary separating Regions 0 and
t.In (1.7.18), TLE is the transmission coefficient from Region 0 to
Region t.
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Augustin Jean Fresnel (10 May 1788 — 14 July 1827)

Augustin Fresnel was educated at the Ecole Polytechnique and served as
an engineer in various departments of France. With his mathematical analy-
sis, he removed a number of objections to the wave theory, and used the wave
theory to calculate diffraction patterns that agreed with experimental obser-
vations. He developed a system of lenses which has revolutionized lighthouse
illumination throughout the world.

Equation (1.7.14), the phase matching condition, is a very im-
portant formula arising from the boundary conditions. In terms of the
angle of incidence 6; , the angle of reflection 6, , and the angle of trans-
mission 6;, and the relation k, = k as seen from (1.7.8) and (1.7.9),
the phase matching condition (1.7.14) gives

ksin@; = k,sinf, = k; sin 0;

Thus the angle of reflection is equal to the angle of incidence 6, = 6;,
and

sin 6; _k Voo _ no (1.7.20)

sinf; ke N
where ng = c\/o€p is called the refractive index for Region 0 and
ng = ¢\/p€; is the refractive index for Region ¢. Equation (1.7.20) is
known as Snell’s law.

Willebrord van Roijen Snell (1580 — 1626) studied at the University of
Leiden and received his degree in 1607. In 1613 he succeeded his father as
professor of mathematics at the University of Leiden. Snell’s law for the re-
fraction of light between two media was experimentally discovered in 1621.

Power Conservation

The time-average Poynting vectors for the incident, the reflected,
and the transmitted waves are calculated to be

— 1 1

i> = k= Tk + 2k, 1.7.21
<S> Sorio 2orio (Tky + 2k) (1.7.21)
= IR*>—~  |R?, . R
S, >=—k, = —(—2k, k. 1.7.22
<S,> Yoo 2wuo( Thy + 2k.) ( )
_ T|? - T|?

Qwpe 2wy
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Siz Stz

Figure 1.7.3 Power conservation at a plane boundary.

Power conservation is observed by considering a control volume across
the boundary surface [Fig. 1.7.3]. We must prove that the x com-
ponents of all the Poynting vectors entering and exiting the control
volume are equal. We define the power reflection coefficient or the re-
flectivity to be

—3- <S>
5”77":|R,2

—— (1.7.24)
xZ- <Si >

and the power transmission coefficient or the transmissivity to be

>

L<S>

t: — =
- <S>

pot T (1.7.25)

>

By virtue of (1.7.17)—(1.7.18), we see that
r+t=1

This demonstrates power conservation for reflection and transmission
at a plane boundary surface.

EXERCISE 1.7.1 Notice that

<Siz> — <S> =< S >
<Sip>— <S> AL, >

— END OF EXERCISE 1.7.1 —
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C. Reflection and Transmission of TM Waves

The reflection and transmission of TM waves [Fig. 1.7.4] by a plane
boundary can be carried out in a manner similar to the treatment of
TE waves. The incident magnetic field vector H; = yH;, is assumed
to have unit amplitude and the magnetic and electric field components
are written as

Hiy = cos(kyx + k2 — wt) (1.7.26a)
k
Eiy = — cos(kyx + k.2 — wt) (1.7.26b)
WwEeE
k
E;, = ——= cos(kyx + k.2 — wt) (1.7.26¢)
WEQ
z
B,
— H,
H, B g
k. -
ky L,
0, 0, N
Mo, €0 ¢ Mty €t
k
H;
Region 0 E; Region t

Figure 1.7.4 Reflection and transmission of TM waves.

The reflected field components for the incident TM wave are

Hyy = R™ cos(—kypa + kypz — wt) (1.7.27a)
k;’l"Z

Erp = = R™ cos(—kypox + kypz — wt) (1.7.27b)
WEQ
k;'I"I

E,, = 1f£Rp™ cos(—kppx + kyrz — wt) (1.7.27¢)

weg
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where R™™ is the reflection coefficient for the magnetic field compo-
nent Hj;, . In Region ¢, the transmitted TM field components are

Hyy, = 7™ cos(kzx + kizz — wt) (1.7.28a)
k.
E,, = —27TM cos(kigx + kirz — wt) (1.7.280)
WEg
Ktz
E,, = —JzpTM cos(kizx + kirz — wt) (1.7.28¢)
WEt

where TTM ig the transmission coefficient for the magnetic field com-

ponent Hj, . B
The incident wave vector k = zk, + 2k, , the reflected wave vector
k, = —Zk,, + 2k,, , and the transmitted wave vector satisfy the same

dispersion relations (1.7.8), (1.7.9), and (1.7.11) as for the TE wave
case. Matching the boundary conditions of tangential components of
E and H continuous at = = 0, we obtain the same phase matching

condition (1.7.14) and the reflection and transmission coefficients RTY
and TTM
RO — gy Lo po” (1.7.29)
0t 1+ p%;M .
and 5
e — (1.7.30)
0t 1 _’_pgﬁM
where k
TM _ €0Rtzx
= 1.7.31
Dot ek ( )

Note that the Fresnel reflection coefficient for TM waves is now repre-
senting the ratio of the reflected and incident magnetic fields.

EXERCISE 1.7.2 At the surface of a perfect conductor, we may calculate
the reflection coefficients by letting ¢, — oco. We find that for TE waves
ptf — oo and R}F — —1 while for TM waves pi — 0 and REM — 1.
Thus the tangential electric field vanishes at the boundary and the tangential
magnetic field doubles its strength in order to support the induced surface

currents.
— END OF EXERCISE 1.7.2 —
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D. Brewster Angle and Zero Reflection

The Brewster angle 6, is the incident angle 6; = 6, at which there
is no reflected power. Setting R =0 or pp; = 1 we find, from (1.7.19),
for TE waves ki, = k, or

k¢ cos 0y = k cos 0; (1.7.32)
To solve for the incident angle, we make use of Snell’s law
kysin@; = ksin 6; (1.7.33)

It follows from (1.7.32) and (1.7.33) that 6; = 6; and €; = ¢y . Thus
there is zero reflection since there is no boundary.
For TM waves, we obtain from (1.7.31), eoki, = €k, or

eoks cos 6 = €,k cos b; (1.7.34)
Since k = w,/np€ and k; = w\/lp€; , we obtain from (1.7.34)
k cos 0y = k; cos 0; (1.7.35)
Multiplying (1.7.33) and (1.7.35), we obtain
sin 26, = sin 26,

In addition to the trivial solution 6; = 8, , we also obtain
T

Oy + 0; = 3 (1.7.36)
z
Ho, €0 Mty €t
ky %
Oy 0,
x
Os
ki
Region 0 Region ¢

Figure 1.7.5 Incidence at the Brewster angle.
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Since the reflected direction is perpendicular to the transmitted direc-
tion, the reflected wave vector k, is perpendicular to the transmitted
wave vector k; [Fig. 1.7.5].

Physically we can explain this by visualizing the dielectric media
as consisting of dipoles that are excited by the transmitted wave and
radiating at the same frequency. Each individual dipole has a radiation
pattern that is maximum in a direction perpendicular to the dipole axis
and null along the dipole axis. For a TM wave excitation, all dipoles
oscillate parallel to the plane of incidence along the E-field lines. At
the Brewster angle of incidence, the reflected k, vector is in the same
direction as the dipole oscillation in the transmitted medium. Thus,
no TM wave is reflected.

Substituting (1.7.36) in (1.7.35), we obtain the Brewster angle

k
0, = tan~! = = tan~! \/ i (1.7.37)
k €0

éb Incident angle

Figure 1.7.6 Reflectivity of TE and TM waves.

In Fig. 1.7.6, we plot the reflectivities as functions of the incident angle.
In general, on a solid dielectric surface, the TE waves reflect more than
the TM waves. For an unpolarized incident wave, the reflected wave
becomes linearly polarized perpendicular to the plane of incidence.
Thus the Brewster angle is also referred to as the polarization angle.

David Brewster (11 December 1781 — 10 February 1868)

David Brewster entered the University of Edinburgh at the age of 11. He
was knighted in 1831, and his Treatise on Optics was also published in 1831.
He taught at St. Andrews and in 1838 was promoted to principal. In 1859,
he became principal of the University of Edinburgh.
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The reflection and transmission of TM waves by a plane boundary
has been carried out in a manner similar to the treatment of TE waves.
We can also invoke the principle of duality and write down the answers
directly. Making the replacements £ — H, H — —E, pg= ¢, and
the boundary conditions of continuous tangential H and E at z =0,
we find the dual of the TE problem [Fig. 1.7.2] to be precisely the
TM problem [Fig. 1.7.4]. We obtain the reflection and transmission
coefficients as in (1.7.29)-(1.7.30) with plF in (1.7.19) replaced by
pg;M = 60]’{31€x/€th .

ExXAMPLE 1.7.1
Consider an electromagnetic wave impinging normally upon a dielectric

half space (Region 2) with permittivity e; from a medium (Region 1) with

permittivity e .

(a) Let €1 =€, and ey = 4e, . What are the reflection coefficient R;3 and
the transmission coefficient Tjo ?

(b) What is the sum of Poynting power of the wave on either side of the
interface? Do they conserve?

(c) What is the sum of momentum density of the wave on either side of the
interface? Do they conserve?

(d) Find the radiation pressure exerted on both sides of the boundary. Do
they match?

(e) Will the half space move towards the incident wave or away from it?

SOLUTION:
(a)
or = toktz  powy/podeo 5
;= = =
piks How+/Ho€o
1-— 1-2 1
Ryy = Dot _i1-s_ 1
1+por 142 3
2 2
Tio =14+ Rys = ==
12 12 1 +p0t 3

(b) Computing the time averaged Poynting power of the incident, reflected,
and transmitted waves, we find

— E? E?
<S;i>=i—"2 =321
’ 2m 210
— R?,FE? R2,E? 1\ E?
<G> — _piiet0 _ oo 0:_£<_>_0
" 2 210 9/ 2no
— T2 E2 272 F? 8\ E2
< S >=z3-120 3 120:53(_>_0
! 2n; 2n9 9/ 2mo
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and since
F< S >=—3< 8, >+& <S5 >

we see that power is conserved. _
(¢) The momentum density of the field is given by g = peS', so that

<g,>=1 5 _ ;L
> = ZTupeg— =2
9; Ho 02770 277002
PN . (1) E2 . E2
=—-2|= = —T o€
Ir 9/ 2ngc? Hoco 18n0c?
8\ E? 16 E2
<G, > = a4 (—) N
gt Fuo(4eo) 9/ 2no x977002

The total momentum density of the field is not conserved which implies
there exists a mechanical momentum. Assuming that the plates are ini-
tially at rest, in order for total momentum to be conserved we need the
mechanical momentum,

_ _ _ _ 11E2
<9mech >=<G; > — <G, > — <G >=—T

977062

(d) The radiation pressure magnitude is given by |F| = \/ue [S|. The di-
rection in which the force is applied depends on whether the wave is
an impinging wave (force acts in same direction as S) or a launched
wave (force acts in opposite direction as S due to recoil effect). For the
incident, reflected, and transmitted fields we find,

_ _ E2
<F,>= Vo€ < S; >= i—o

27706
<F,> v/ <S8, >=7 53
r = - € r>=
Ho€o 1810c
— — _8E?
< Fy>=—1/uop(deg) < St >= —xg—
NocC
so that there is a net force of
— 13E2
< Fyop >= —3—
tot C5181]00

acting on the half space.
(e) Using the results of either part (c) or (d) we find that the half space will

move towards the incident wave.
— END oF EXAMPLE 1.7.1 —



1.7 Reflection and Guidance 111

E. Guidance by Conducting Parallel Plates

Consider the guidance of electromagnetic waves by a pair of perfectly
conducting plates at z =0 and x = d [Fig. 1.7.7]. For TM waves, the
Maxwell equations are

02 0? 0?
(W + @ — /“@)Hy =0 (1.7.38a)
E%Ex = —%Hy (1.7.380)
6%Ez = % y (1.7.38¢)

Figure 1.7.7 Parallel-plate waveguide.

In the parallel-plate waveguide, the wave is guided along the £z di-

rections. The two wave solutions with wave vectors k£ and k, in the
guided region are

H; = jjcos(kex + k.2 — wt) (1.7.39)
B, = [ih. — 2kx]i cos(kpt + oz — wt) (1.7.40)
H, =9 Rcos(—kzx + k;z — wt) (1.7.41)
E, = [&k, + fzkz]g cos(—kyz+k,z—wt) (1.7.42)
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The boundary conditions at the parallel plates require that the tan-
gential electric field be zero at x =0 and x =d.

—cos(kyz — wt) + Rcos(kyz — wt) =
—cos(kyd + kyz — wt) + Rcos(—kyd + kyz — wt) =

(1.7.43a)

0
0 (1.7.43b)

Solution to the above equations yields R =1 and

hipd = 2mm (1.7.44)

which is known as the guidance condition. It states that in the & di-
rection the bouncing waves must interfere constructively with 2k,d =
2mm7 in order for the wave to be guided [Fig. 1.7.8].

The dispersion relation is k2 + kz = k%. The set of discrete k,
values admissible inside the guide is

mT m
ky=— m ‘=" K,=kun 7.
oom ¥ (1.7.45)

where m is any integer. We name the guided waves TM,, modes.

kz

Figure 1.7.8 Interpretation of the guidance condition.

Thus as a result of the boundary condition at x =0 and x =d,
the spatial variation along the Z direction of a guided wave must be an
integer number in a distance of 2d. The magnetic and electric vector
fields are

H = jcoskyx cos(k,z — wt) (1.7.46)
k.

w

e
Il

k.
2—=cos kyw cos(k,z — wt) + 2——sin k,x sin(k,z —wt)  (1.7.47)
we

e
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mmx

H, = cos( o )
A
T™;

m=1

TM,
m=2

TM;

m=3

Figure 1.7.9 Field amplitudes for TM;, TMy, and TM3 modes.

In Fig. 1.7.9, we plot H, for m = 1,2,3. They are standing waves
in the transversal z direction and propagate in the z direction. We
see that there are more spatial variations in the waveguide with sep-
aration of d, when the x component of the spatial frequency, k, =
(m/2d) K, , is higher with larger m . The velocity of the TM,, mode
in the z direction is determined from the dispersion relation

k2 =k — k2, (1.7.48)
A K TE, TM,
TM,
TM; TE;
T T T > k:
kcl ka kc3

Figure 1.7.10 w-k, diagram.



114 1. Fundamentals

The phase and group velocities are, as w = ck and k,dk, = kdk

vp =w/k, = ck/k, (1.7.49)
vg = dw/dk, = cdk/dk, = ck./k (1.7.50)
\\
\
\
\
\
\
Upt N

Figure 1.7.11 Distances traveled with phase and group velocities.

where ¢ = 1/,/mte. The phase velocity v, is larger than c, as seen
from Fig. 1.7.11. Let sin6,, = ke /k = mn/kd = mA/2d . We see that
vp = ¢/sinb,, and vy = csinb,, , thus vypv, = c? . In Figure 1.7.12 we
show that for a propagating TM,, mode, as frequency increases, the
angle 6, increases, and the group velocity vy = cAk/Ak, increases.

A

A
A5

Figure 1.7.12 Guidance with increasing frequency.

Kz
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It is seen from (1.7.48) that as k < kem, , k2 = —(k2,—k?) = —k?;,
suggesting that the guided wave will attenuate in the z direction. The
fields satisfying the Maxwell equations and the boundary conditions
become

H = jjcos kyx e *1% cos wt (1.7.51)

— k k
E = 2-2Lcos kpx e %1% sinwt — 2-Zsin kya e 517 sin wt (1.7.52)
we we
The time-average power in the Z direction is zero, and the guided
modes for k < k., are evanescent.
The spatial frequency at which k, = 0 is called the cutoff spatial

frequency ke
m

kem = 24 K, (1.7.53)
corresponding to cutoff wavelength A, = 2d/m . In order for the mth
order TM mode to propagate, the spatial frequency k& must be larger
than k., or the wavelength must be smaller than \.,, . Notice that
if the TM,,, mode is propagating, then all TM; modes with | < m
can also propagate. Thus for a given spatial frequency k such that
kem <k < kegmg1) , there will be m +1 TM modes admissible inside
the waveguide. The lowest-order TM mode is TMy whose k. = 0.

The electric and magnetic fields for the TMy mode are, since
k,=0 and k, =k,

Hy = cos(kz — wt) (1.7.54a)
k

E, = ~ cos(kz — wt 1.7.54b
e cos(kz — wt) ( )

which is equivalent to a plane wave propagating in the z direction. The
TMy mode is also called the fundamental mode or the TEM mode in
the parallel-plate waveguide.

ExaMPLE 1.7.2 TE modes.
We write the solution for TE waves as

E, = (Acoskzx — Bsinkgx) sin(k,z — wt) (E1.7.2.1)

The boundary conditions at z = 0,d require E, = 0 which gives A = 0
and the same guidance condition (1.7.45). We thus obtain the electric and
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magnetic fields for TE modes
E = —j Bsink,z sin(k,z — wt) (E1.7.2.2)

ke oo .
=& —Bsink,z sin(k,z — wt)
wi

Ky
+ 2 —Becosk,x cos(k,z — wt) (E1.7.2.3)
wp
where
mT m
ke = - m 1= %4 Ko = kem (E1.7.2.4)

The above result can be interpreted in terms of plane waves reflecting from
the conducting plates in the same way as for the TM waves. One important
difference is that TEy does not exist and the lowest-order TE mode is TE; .

N

a
< .

Figure E1.7.2.1 Metallic rectangular waveguide.

Consider a metallic rectangular waveguide having dimensions a along the
x axis and b along the y axis [Fig. E1.7.2.1]. The TE wave fields inside
the guided region can be written as (E1.7.2.2) and (E1.7.2.3). The boundary
conditions at x = 0,a require Fy, = E, = 0 and at y = 0,b require
E, = E, =0 which give rise to the same guidance condition (E1.7.2.4) with
d replaced by a.

Surface charges are ps = FBsink,z sin(k,z —wt) at y = 0,b. Surface
currents are .J, = F2Bsin k,xsin(k,z—wt) at y = 0,b. Since there is no vari-
ation in the ¢ directions, the fields are for TE,,g modes. The fundamental
mode is TEjg and the lowest cutoff spatial frequency is k = k. = (1/2a) K,
corresponding to a cutoff wavelength of A,y = 2a.

— END OoF EXAMPLE 1.7.2 —
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Problems

P1.7.1

Consider an electromagnetic wave propagating in an isotropic medium
with permittivity e and permeability p. It has the following electric field
vector

E = (2E, + 9B, + 2E.) cos (kyx + k,z — wt)

where F,, F,,and E, are real constants.

(a) Determine the constraints on E,, E,, and E,,intermsof k, and k.,
such that the above electric field vector represents an electromagnetic
wave.

(b) Let k, =/3k/2, k, =k/2 and E, = E, = E,. What is the polariza-
tion of the wave?

(¢) Add another plane wave component to the wave shown above, so that
the total electric wave is left-hand circularly polarized.

P1.7.2

When the incident k£ vector is normal to a plane boundary, a TE wave
becomes a TEM wave; a TM wave also becomes a TEM wave. Compare the
reflection and transmission coefficients for TE and TM waves at normal in-
cidence. Do both TE and TM results reduce to the same numbers? If not,
why? Do the reflectivities and transmissivities for TE and TM waves at nor-
mal incidence reduce to the same result?

P1.7.3

The gas laser depicted in Fig. P1.7.3.1 uses “Brewster angle” quartz
windows on the gas discharge tube in order to minimize reflection losses.
Determine the angle 8 if the index of refraction for quartz at the wavelength
of interest is n = 1.46 . Because of these windows, the laser output is almost

completely linearly polarized. What is the direction of polarization, i.e., is F
parallel or perpendicular to the paper? Why?

Mirror Mirror

A
Y

FAo

Brewster window

Figure P1.7.3.1 A gas laser with Brewster windows.
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P1.7.4
Sun light glares caused by reflections from plane surfaces are partially
linearly polarized.

(a) Determine the Brewster angle for ¢; = 9¢,. The Brewster angle, 0p, is
also called the polarization angle because at 0p the reflected wave is
entirely TE polarized.

(b) Your polaroid glasses absorb one linear component of incident light. To
minimize sun glare, what component, TE or TM, reaches your eyes after
passing through the glasses? Explain why.

P1.7.5

Consider a plane wave incident on a planar boundary at x = 0 from
a dielectric medium with € = 9¢, upon another dielectric medium with g,
and ¢; . The right-hand circularly polarized incident electric field is

E, = Eo(\/gi‘ + 2) cos(kyx — ko2 — wt) + 2gsin(kyx — k.2 — wt)
where Ej is a real constant. The reflected field is
E,=E [2R"Pgsin(k,z + k.2 — wt)+ R™™ (=32 + 2) cos(kpx + koz—wt)]

(a) Show that the incident angle is 30° .

(b) For k, =1K,, find the frequency (Hz) and wavelength (m) in region 1.

(¢) Find the value of ¢ (0 < €/€, < o0) for which the reflected wave is
linearly polarized.

P1.7.6

A laser beam in free space with the polarization of electric field parallel
to the paper is incident normally upon a glass surface. There is 16% power
of the incident wave being reflected and the rest being transmitted. Neglect
the reflection on the bottom surface. The reflection coefficients of TE and TM
incident waves are given by, respectively,

RTE _ €08 0; — \/n% — sin 6;
cos0; + \/n2 —sin6;
RTM n?cos 0; — \/n? —sin” 6;

n2cosb; + v/ n2 — sin® 0,

where n = 4/¢/¢, is the refraction index and 6; is the incident angle.

(a) What is the amplitude of the reflected electric field E, in terms of the
amplitude of the incident electric field E; ?

(b) What is the refraction index (n = y/€/¢, ) of the glass?

(c) Let the surface of the glass rotate by 6 = sin™'(2/3) about an axis
perpendicular to the paper. How much of the incident power is reflected?
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(d) Let the surface of the glass rotate by 6 about an axis perpendicular to
the paper, so that the laser beam is totally transmitted without reflection.
What is the rotation angle 6 in radians?

P1.7.7
Find the cutoff wavelength A.,, and the cutoff angular frequency wem,
corresponding to the cutoff spatial frequency k., = (m/2d) K, .

P1.7.8

An AM radio in an automobile cannot receive any signal when the car is
inside a tunnel. Consider, for example, the Lincoln Tunnel under the Hudson
River, which was built in 1939. A cross-section of the tunnel is shown in
Figure P1.7.8.1. Ignore the air ducts; assume that they are closed. Model the
tunnel as a rectangular waveguide of dimension 6.55m x 4.19m .

exhaust air duct

4.19m

fresh air duct

Figure P1.7.8.1 Tunnel modeled as rectangular waveguide.

(a) Give the range of frequencies for which only the dominant mode, TEjy ,
may propagate.

(b) Explain why AM signals cannot be received.

(¢) Can FM signals be received? Above what frequencies?
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Answers
P1.1.1
A+B+C=0and A+B-C = -2C.
P1.1.2

AxB|? = (AxB)-(AxB) = A-(Bx (Ax B)) = 4-(AB>~B(4A.B)) =
A2B? — (4. B)?

P1.1.3

r=+8,0=n/4,¢p=n/4;and p=2,¢=7/4,z=2.
Pl.1.4

¢=20.6+20.8.
P1.1.5

Z~§= A;CBI. = ABJ ZABCOSHAB

P1.1.6

From B?sin?@4p = |A — B|?> — (A — Bcosfap)?, we find |A — B|? =
A%2 4+ B2 —2ABcosfp . It follows that ABcosfOap = %[A2 +B2-(A-B)-
(A-B)=A-B
P1.1.7

= A’B? — (A, B, + A B, + A,B,)?
= A’B? - (A-B)? = A’B*(1 — cos*0ap) = (ABsinf4p)*
P1.1.9
For ®(x) =22, V®(x) = 32z . For ®(z) = —23, V&(z) = —2322.

P1.1.10
Its gradient is V& = 22z + g4y .
For the ellipse with ® = 22 + 2y? equals a constant,
4 = 2zdx + dydy = (822 + §dy) - (idx + jdy) = VO - dF = 0

where dr is tangent to the ellipse. Thus the gradient V@ is normal to the
ellipse and pointing in the directions of an expanding ellipse.
P1.1.11

The gradient of the function is V& =z 4+ . For &3 =29+ 1y > ¢ =
1 +y1, V@ is pointing in the direction of increasing @ .
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Answers
P1.1.12
V- (ExH)=V-|E, E, E.
H, H, H.
a(EH EH)+3(EH—EH)+3(EH E,H,)
9 9 G, d G, G,
H, <8—yEz azEy) + H, <%Ey 6—yEm> + H, <$Em £Ez)
9 9 B, 9 d )
—E, <6—yHZ &Hy) ~E, (51{75 - a—xHZ> —E. (8—xHy 3_wa>
=H (VXE) -F (Vxﬁ)
z Y Z
V- (V xA) d/0x 0/0y 0/)dz | =
A, A, A,

V x (Vo) = [ 3/%33 8/y8y 8/Z82 ] =0
0¢/0x 9¢p/0y O¢P/0z

L Y
Vx(VXE)= d/0x 0/0y 00z
E, E, E.
T Y Z
_ 0/0x /0y 0/0z

( aEy> Ew aEz (% B aEw>
oy oz 92
0 E, Ew 0F, 0 0? 0?
L’)— <a— oz t 5 ) <ax2 ot a_> E}
0 Ez 8EZ 0? 02 o2 .
R E ) (58 5)al
+[ <8E+8E +8EZ)—<8—2+6—2 8—2>E2}z
0z \ Oy Oy 0z oy?  Oy? 022
=V (V-E)-V’E

To prove (1.1.9), we may also write

=

o 9
9z 9y 0s H, H, H, E, E, L,
V- ExH=|E B E|=|2 2 2|-|2 2 2
H, H, H.| |E. E, E.| |H, H, H.
H- (VxE)—-FE-(VxH)
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P1.1.13
We write (1.1.21) as V x H = limAVHOﬂ dSsx H/AV

Applying the above result to a large V' containing an infinite number of such
differential volumes, we find the curl theorem

/// dVVxF:ﬂ dSsx H
\% S

This is the curl theorem similar to the divergence theorem except that now
the result is in vector form.

P1.1.14

If the surface integral of V x H is carried out over a closed surface, there
will be no external contour enclosing the surface and the result will be zero.

ﬂd?- (VxH)=0 (A1.1.14.1)
S

This scalar equation should not be confused with Stokes theorem which is
obtained by integrating over an open surface or the curl theorem in P1.1.13
for which we integrated over a volume V' enclosed by a surface S, which is
a vector relation.

P1.1.15
V-A=3p+2, [[[dVV-A=6r [(3p* +2p) = 67(5> + 5%) = 9007

3
ﬂd@ﬁ: 107r/ dz 5% 4+ 6752 = 9007
S 0
P1.1.16

[ZX(V XE)}Z = eijkeklmAjale = (6il5jm_6im6jl)Aj3le:AmaiBm_
A0B; = A;0;B; — [(A-V)B;
P1.1.17

31(2 Z) = AJ&B] + BJ&A] = A]@Bz + BJE)]Al + AJ&BJ — A](?JBl +
BjaiAj — BJGJAZ = AJasz + (6il§jm — 5Z‘m5jl)Ajale + A]asz + (5il§jm —
0im0j1)BjO1Am = A;j0;Bi + B;j0jA; + €ijiAjerimOiAm + €ijpAjerimOiAn =
[(A-V)B+AX (VX B)+(B-V)A+Bx(VxA) -
P1.1.18

8,(Z : Z) = 2A361A] = 2A38]A2 + 2A381A] - 2Aj6in = 2AJ8]A1 +
2(6i16jm — 5im6jl)Aj8lAm = 2Aj8jA¢ + 26ijkAj€klmalAm = 2[(Z . V)Z + A x
(V x A);
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or [(A-V)A+Ax (VxA);=[A V)A]; +A;0,A; — [(A-V)A], .
P1.1.19
E=-Vo=

C R N . ¢ C
2P P RIS =T
in terms of the position vector 7 = Zx + gy + 2z, and the length of the
position vector r = \/m ,and 7 is pointing in the direction of 7
with unit length. Assuming that the electric field is due to a charged particle
q situated at the origin, we can integrate Gauss’ law over a small spherical
volume with radius r = ¢ surrounding the origin to obtain

T 27
q :ﬂ dS-D = / / df d¢ 6% sinf 6020 = 4me,C
S 0 0 o

Thus the constant C' = q/4me, and the static electric field

= o q
EF=r——
4dme,r?

P1.2.1

El and Eg, qualify as electromagnetic waves.
Ey and E4 violate Gauss’ law V- E = 0.

P1.2.2

E = #Eycos(kz + wt). As time t increases, z must decrease in order
for kz 4 wt = constant, thus the wave is propagating in the —Z direction.

P1.2.3

Wavelength A = 27 /ky = 0.01 m.

Frequency f = ¢/A = 30 GHz.

For A = 632.8nm, k= 1/\ = 1.58 x 105 K,,.

For f =24GHz, k= f/c=2.4x10Hz/3 x 105 m/s = 8K,.

P1.24

(a) (i) 60 Hz: A =c/f =5 x 105 (m)
(ii) AM radio (535-1605 kHz): A = 186.9 ~ 560.8 (m)
(iii) FM radio (88-108 MHz): A = 2.778 ~ 3.409 (m)
(iv) Visible light (~ 10 Hz): A =~ 3 x 1075 (m)
(v) X-rays (~ 10 Hz): A =~ 3 x 1071 (m)

(b) (i) 1km: f=c/\=23x10° (Hz)
(i) 1 m: f=3x 10%(Hz)
(iii) 1 mm: f =3 x 10 (Hz)
(iv) 1pm: f=3x 10" (Hz)
(v) 1A: f=3x10'8(Hy)

() (i) 1km: k=2r/A=K,/A=10"3K,



124 1. Fundamentals

lpm: hw=1.24¢eV

P1.2.6

(a) At z = 29, E, = —2sin(kzy — wt), and E, = %cos(k:zo — wt) —
% sin(kzp—wt) . Since Eﬁ/?—\/iExEy—ﬂEj =1, the wave is elliptically
polarized.

(b) E: 1 [& cos(kz—wt) + gsin(kz— wt)+3 [& cos(kz —wt)— g sin(kz — wt)]
(c) E

= Zcos(kz—wt+m/4)+7 cos(kz—wt—m/4) . This is the superposition
0

of two linearly polarized waves.

P1.2.7

The wave has wavelength 1cm, and is right-hand circularly polarized,
the helix is left-handed, and its pitch is 1 cm.
P1.2.8

For a right-handed circularly polarized wave « = w/4, then

Q = I cos(2m/4) cos(268) =0
U = Icos(2n/4)sin(26) =0
V =1Isin(2n/4) =1
For a left-handed circularly polarized wave a = —7n/4, then
Q = Icos(—2m/4) cos(28) =0
U = Icos(—2m/4)sin(26) =0
V =TIsin(—27/4) = -1

For linearly polarized wave a = 0, then
V=Isin0=0
P1.3.1

mv? /R = Ze?/4meR? = R = 4men®h?/Zme? ~ 0.52n2 x 107%m for
Z=1.
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P1.3.2

(a) T =150 x 10?/c = 500 sec = 8.33 min

(b) P.=15kW/m’ x 7 x (6.4 x 106)2m? = 1.93 x 10 kW

(c) S = P (power density per Hz) x W (bandwidth) = 10~ Wm ™2
E = /275 = 8.68 x 1075 volt/m

P1.3.3

The power density is P = 1.2 x 101 W/m? . The radiation pressure is
p=40N/m? . The area required is 20m?.

P1.3.5
(a) B = ilop,/2md
(b) F ={NquBy

P1.3.4
d2y

F= im% + gmSH# = —mw? (ix + jy) = —mpRw? = —pmv* /R

P1.3.6

The Lorentz force acting on the particle is guBy and the centrifugal force
acting on the particle is mv?/R , where R is the radius of the circle. We have
quBy = mv?/R . The time it takes the particle to complete one revolution is
27rR/v = 2wm/qBy . The cyclotron frequency is thus w. = v/R = ¢By/m,
and the radius is R = muv/qBy .

P1.3.7

(a) Because there is a magnetic field, the effective electric field that drives
conduction current is approximately

Ecpf 2E+0xB

B still remains finite, then

Hence 720(F+Ex§).W}En or—>oo,_E7 rel
E = —v x B. This is used in

we have to impose E +T x B =0 or
approximating solar wind fields. . .

(b) Let v = v, + v, where v, is normal to B and v is parallel to B.
Then E = —o x B = —,, x B . The Poynting vector

— 1— - 1 — = B2
S=ExH=—FExB=—-——(V,xB)xB=—T1,
Ho Ho Ho
5x 1079)2
(4 XX10)7 X 4 % 10° x cos45° ~ 5.6uW /m*
™

x (1800 x 9.1 x 10731 x 107) x

N[

(c) Kinetic energy density Wy, = 2p,,0% ~
(4 % 10%)2 = 1.31 x 102 joule/m” .
Electric energy density W, = SegE? ~ 5 x 8.85 x 10712 x (4 x 10° x 5 x
1079 x sin45°)2 = 8.85 x 10718 joule/m” .

W=
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Magnetic energy density W,, = ﬁBQ R g X (5 x 1079)? =

9.9 x 10_12j0ule/m3 Therefore Wy > W, > W, .
Kinetic energy density is the largest.

P1.3.8

a) For § = 0 our model becomes 227;” + Wiz + % = 0. Assuming that
driving and driven quantities have sinusoidal time dependency w, we
may write (w%—wQ)E = —% or x = m(w%—b:w?)' For w > wqy the
electrons are in phase with the FE-field, but for w < wg the electrons
are 180° out of phase. In terms of current (or radiation) the oscillation
is 180° out of phase for w > wy (for electrons or ions) thus tending
to cancel the exciting field (by radiating a competing field 180° out of
phase). This cancellation becomes complete if there are many particles
participating and if their amplitudes are large enough. Thus we want
w > wp (for opacity) but not so large as to render T too small and we
want a high density. This condition is in fact met by 0 < w? —w? < wf) as
is the case in many metals with w in optical regime and wy much smaller
and w, in the ultraviolet regime. Thus these metals appear opaque.

b) Poynting theorem —V-(Ex H) - L 2[H? -9 0p2_F.].

E= —% (‘g%f + (5% + w%f) . Assume a particle density n and velocity
v, 7:qnv:qng—f.ThuS

oz (0T Oz _
E-J=-mn—- <W +(5E —&-wgw)

o2 (N s (2N 2 (L)
- ot |2\ ot ot “oar \2”

H? ¢ E? oz’ 2
Ko € man ( * +m7;w0 z? (Energy desity)

2 2+2

ot

2
0
Pp = mné (_x) (Power density dissipated through collision)

ot
H2
K 02 = magnetic energy density
E2
OF _ electric energy density
2
mn [ Ox . o .
—— | — | = particle kinetic energy density
2 ot
mnr

5 = particle potential energy density
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P1.3.9

(a) Using Gauss’ law, the electric field between the two plates due to the
charges is given by E = & /¢ . The Poynting vector and the momentum
density vector are given by S =E x H = #Z x 2077t = 509 =t

— 0 Mo €O MO

and gy = €opoS = 2Bgoe™ .

(b) By Faraday’s law, the induced electric field will exist along the surface
of the plate. Accordingly,

— = [ — B
% E-dl = —g / B-dS = 2Eyl = ’YldBoe_ﬂyt = Fy= Me_'yt
c ot S

By symmetry, both the FE -field at the top and bottom will be equal in
magnitude, however opposite in direction. The total force density along
the top and bottom of the plate will be F' = 2 20Eg = 2 vdByoe™ "t

(¢) The mechanical momentum density vector, g,,, can then be found by
integrating the force density vector.

’ ’ t
T = 2/ yBooe " dt = 2 [730067% } = 2Byo(1 — e )
0
(d) Adding the field and mechanical momentum terms, we see that the total
momentum of the system is conserved, g =g, +9,, = 2 Boo .

P1.3.10

For the plane current loop, we let the line charge density be p amp/m.
The magnetic moment for the segment di is

1 1 1 _
dM = 5(pdl)F x ¥ = ZdiT x T = ZIT x dI

The total magnetic moment of the loop is thus M = fdﬁ = %If? x dl.
For the plane loop f? x dl = 2imA . In the case of a circle with radius R,
$7 x dl = 22nR%.

P1.3.11

(a) v = ¢q/2m. For a complicated structure of charged distributions, the
gyromagnetic ratio is v = gq/2m , where the g-factor g describes the
magnetic structure.

(b) Let M = &M, +gM, + M, , L — M x B gives

D =AM, By B =M, B, =0 which yield
M, = My cos(yBot + ¢o) M, = —Mgsin(yBot + ¢o) M, = My,
Thus the angular Larmor frequency of precession is w = vBy . .

(c) V-B=0 gives B, = By —

(d) The angular precession Larmor frequency is . w =~yB, = vy(By — 2) .




128 1. Fundamentals

(e) 6f =déw/2mr =~ x,/2r = 43kHz

P1.3.12

The magnetic field, H at the position of the loop due to the straight

wire carrying current Iy is H = qSQ{T—Od = i% .

= = _ = _ Achilopo
T=MxB=;,——
% “ 2mwd

which means that the current loop will move about the z-axis in a counter-
clockwise direction.

P1.3.13
The dissipated power per unit volume is Py = f -7 =pv-E=J-E.

P1.3.14

The Poynting vector is calculated to be

G=DxB=3/]% 2 EZ cos®(kz — wt)
V #o

The Maxwell stress tensor is

1 =
= — (o HE + €, E2) cos?(kz — wt)I — (22e,En + JiuoHE) cos? (kz — wt)

T
2
From (1.3.12) we find the force density
- = 080G . ) o
f=-v-T- i Zk(uoHy + €,Ej) sin(kz — wt) cos(kz — wt)
P1.3.15

For 0; = % , Maxwell’s equations can be written in index notation as
T

)

VxH ot < W :8ijkaij
— 0B dB;
V x ot e ot Ejkaj k
V~§:O < 8¢Bi:0
The i** component of the time derivative of D x B is
0, = = 0 JBy, oD,
—(D x B); = —(eijxD;Bi) = €ijpDj—— + cijn—2B
8t( x B) 8t(6jk iBr) = €ijuD; ot + €ijk ot Ok

= —Eijk{:‘quDj(aqu) + EkijsmnjBkamHn
= —(0ipdjq — 0ig0jp) Dj(OpEy) + (OkmOin — Okndim) Br(Om Hn)
= DjajEi - DjﬁiEj + BrOyH; — BrO; Hy, (A13151)



Answers 129

ir0js — 0is0j, . Identify the terms in

)

where we use the identity eijpersk = 046
the right hand side of equation (A1.3.15.1):

1 — — 1— —
Djal'Ej = GOEjaiEj = 8Z(§€0E . E) = 81(§D . E)

1 — — 1— —
Dj(’)jEi = DJ-@JEZ» + El@ij = GJ(DJE,) =V- (EEl)
ByOpH; = B,OpH; + H;OLB), = 8k(BkHl) =V (EHz)
we find 2(D x B); = —0;(3D-E+ 3B -H) + V - (DE; + BH;), which is

A N ot
identical to

%(BXEHV-(W?_W_W)ZO

P1.4.1
() (5) =745 (45)"sin0

T k[ ot ? drwk® [ qb ?
P: 2 26 d —_— sin? = _—
(b) /o df2mr* sin 6 [260 <47rr> sin” 0 3. \ 17
k3 2
%= (4€r)

(C) Rrad = ? T 3eow

2

(d) For 6 =7/2 E, = —ﬁrgr, gl = —Z%"E,. Notice that the radiation
field is only in the upper half space for the radio antenna, therefore

(Bor)? = 15 (25 % 1073 x 15 x 10%)” = 781.25(W)

_ 2
P= ﬁ =~ 180
P1.4.2
For the p, component, the electric field vector in the rectangular coor-
dinate system is
Eal ~ A Dz
E,. =[r2cosf + 0sind
p. = [F2cosf + Osin ]471'607'3
p. | .3 (:vz) .3 (yz) 3 (z)2 1
= ==+t (1S )+2=(-) —2—=
d7e, { r3 \r2 Y3 2 r3\r r3
The total electric field due to all three components is therefore
1 1

E = [3#(7 - p) — 7| Tres = P x 7)< i+ 28 B))

P1.4.3
Looking at ¢ = 0, the sky is unpolarized, looking at the zenith (¢ =

90°) the sky is linearly polarized, looking at other parts of the sky, it is
partially linearly polarized.

Pl.4.4
(a) E= 24 (ésin&—i—f?cos@)

4mer3
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(b) The total power scattered by a Hertzian dipole with dipole moment pgFEy

w 3 E 4 3 EN\? k2 E2
P:/d92wr251n9 k™ (PoFo ) 2 gl _ 4T (poFo ) _ K pp 0
o 2¢€, 47r 3¢, 47 127neg

Scattering cross section 2nP;/E? = % P2
0

P1.4.5

P, = g;; (:;_;26600)2 k*a®EZ . Sky is blue as blue light has a larger k and
thus scatters more. It is not violet because there is less violet light reaching
the lower atmosphere for scattering and the color receptors in our eyes are
stimulated differently. The red and green cones are stimulated about equally
and the blue cones are stimulated more strongly, resulting in perceiving a

pale sky blue color.

P1.4.6
2
(a‘) Pscatt = é_?qr |:5;p;26600} k/AaGEg = %nkAapEg
(b) The total power loss of a control-volume with area A and length dl is
1dP 2n 7kt x 10750
—Z _ EixNxA
Par ~ AE2 T 1y o X & X
_ mk* x 10760 N = 7(27 x 10%)* x 10760 N
6 6
N N
= %71’5 x 107 m™! = 8—775 x 10733 km ™!
which gives rise to a loss of (300.88 — 10log N) dB/km.
(c) L9 ~0.2km™" gives rise to a loss of 6.99 dB/km.

P dl
P1.4.7
\/xQ )2+ 22 = /22 +y2 + 22 — 2yd + d% ~ \/r2 — 2yd
1/1—2yd~r(1—%><2yd)—r——d—7"—dsm9
(b) Eior = 4mo [9qlcos(kr — wt) sin @ — Zgacos(kr — kdsin g — wt)}
()
(i) dsinf = % ; d= \/5%
(i) Lq = go; q1/q2 = V2
(iii) Eror = ere [Qcos(wt — kr) — ¢sin(wt — k:r)] = L.HC.P
P1.4.8
s _ 3T 5 e p _ .
Writing £=dz, r=+/p? + 22, Sln0f7\/m ,and z=ptana, yields
/2 .
B=¢ f s = ¢ [ se? adagtetds = gl

—m/2
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The magnetic field is B = qgg;;;

27 x10
P1.5.1

(a) This constitutive relation for cholesteric liquid crystals is
(1) Anisotropic
(2) Linear
(4) Inhomogeneous: € depends on position.
(b) This constitutive relation for the quartz crystals is
(1) Bianisotropic
(2) Linear
(3) Temporally dispersive
(4) Homogeneous
Another answer is

0 _
Ej = IﬂjDi + C2Gij EBl = IiijDi — C2G¢j(v X .E)Z
1 0 1 —
H; = %Bj — CQGijEDi = %Bj - 2Gi(V x H);

Express D and B in terms of E and H .

Dj = Kli_jl [Ez + C2Gki(v X E)k]
Bj = Lo [Hj + CQGij(V X F)l]

Then the constitutive relation is
(1) Anisotropic
(2) Linear
(3) Spatial dispersive
(4) Homogeneous
(c) We can write J ~ o(E + RoE x By), in matrix form

J o Ro*By, —Ro*By, | [E.
Jy | = | —Ro*By. o Ro*By, | | By
J. Ro*By, —Ro*By, o E.

V x H:—iWGOF+7
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= (ﬁw = $2 x 107 Tesla.

Ro? Ro?
€+ 1— Z—UB()Z —Z—UBOU
2 w Rw2
R — —
= —iw 71_0302 €0+ i— @‘_UBOI E=—iwe- FE
w
Ro? Ro?
’L—U Boy —i—a By € +1—
w

The constitutive relation is thus
(1) Anisotropic
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(2) Linear
(3) Temporally dispersive: Permittivity depends on w.
(4) Homogeneous
(d) Consider the following dispersion relation:
OE;
D; = e E; + %‘jkaTZ
A repeated index in a product implies summation over that index from 1
to 3 (e.g., A;B; = A1 By + A3Bs + A3Bs ). An equation or an inequality
holds for each of the unrepeated indices.
The constitutive relation is_
(1) Anisotropic: D and E are not related by a scalar factor.
(2) Linear
(3) Spatially dispersive: The constitutive relation involves space deriva-
tives of E .
(4) Homogeneous: €;; and 7,5, do not depend on 7.
(e) The constitutive relation for pyroelectricity is
(1) Anisotropic
(2) Linear: Variations of D and E are linearly related. D =¢€-JE.
(4) Homogeneous
(f) The constitutive relation for piezoelectricity is
(1) Anisotropic
(2) Linear: Variations of D and E are linearly related. D =¢€-JE.
(4) Homogeneous
Note: Si; is the mechanical stress tensor. The force acting on an imag-
inary surface S in a solid is

FkZ/dSSkgnl
S

The dimensions of Sg; are Force/Area.
(g) For the Kerr effect, the constitutive relation is
(1) Anisotropic
(2) Nonlinear
(4) Homogeneous
(h) For the Pockel’s effect, the constitutive relation is
(1) Anisotropic
(2) Nonlinear
(4) Homogeneous

P1.5.2
In the low-field limit, L(z) ~ £, and M ~ N;;;H, and the medium is
linear.

P1.6.1

Consider a ribbon-like surface as shown in Fig. P1.6.1.1. Integrating over
the surface of the ribbon area, Faraday’s law and Ampere’s law become
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Let the ribbon area approach zero in such a manner that § goes to zero first
and the terms involving 0 are discarded. To relate Fq,H; in region 1 to
E5, Hy in region 2, we proceed as follows.

The integral forms of Faraday’s law and Ampere’s law as applied to the
ribbon area in Fig. P1.6.1.1 yield, as § — 0,

d L5 _i L=
E//dS&B—O—dt//dSs D

because d(3 - B)/dt and d(5- D)/dt remain finite while the ribbon area
approaches zero. Therefore

dl-(Ey—F3) =0
dl-(Hy—Hy)=4-Jédl

The electric field _F in the dl _direction is tangential to the surface and can
be written as dl-F =dls-nx E =dlsxn-FE for all dls along the interface

and similarly for H . We thus have
n X (El — Eg) =0

n X (ﬁl —Hg) = ;1_{%7(5575

P1.6.2

We apply the curl theorem to a small pill-box volume on the z-y plane
[Fig. P1.7.8.1], which has an area A and an infinitesimal thickness Az . We
let Az — 0 faster than A — 0, such that terms involving Az can be

neglected:
///dVV T~ A5 x (Hang — H. o)

Such results are useful in the derivation of boundary conditions for the Max-
well equations. Integrating Ampere’s law V x H = 9D/dt + J over the
pill-box volume, we have A% x (H,~o — H.o) = AA20D/0t + AAzJ . The
first term on the right-hand side is neglected because physically D/t is
finite. However if j_is infinite in the pill-box then AzJ = J, is finite, where
Js =2%x (H,so0— H.<p). We call Jg surface current.
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P1.6.3
Using Gauss’ law of V-D = p, we find adp = 3(a +16) - (31 — 52) .In
the limit of 6 — 0, dp = ps, the last term vanishes, and we obtain (1.6.9).

P1.7.1

— Eyky + Eok. = 0
(a) V-E =0 gives { E, — arbitrary
(b) E= (a? +9-— 2\/3) E, cos (kyx + k,z — wt) is linearly polarized.

E
(c) Let Eqqq = (£E1 + §Ey + 2E3)sin (kyx + k.2 — wt) and we require

Es = —/3F,
(2B, + 9B, + 2E.) - (iEy + §Es + 2E3) = 0
GE, + §E, + 2E,| = |#Ey + §Ez + 3Es

Thus Boaa = (33 + 25 + 25 ) Bysin (ko + bz — wt)

P1.7.2
RT™E and TTE are for electric field vectors while RT™ and T™ are

for magnetic field vectors. They do not reduce to the same numbers.

RTE_lfn vy n—1

T 14n T n+1

As for reflectivity and transmissivity, the two cases yield identical results.

P1.7.3
g =tan"'n =tan"!1.46 = 55.59°, 6 =90° — Oy = 34.41°.

P1.7.4

(a) The Brewster angle for ¢, =9 is 05 = tan~! \/e; = tan~!1 /9 = 71.57°.

(b) The dominant portion of the sun glares is TE polarized wave. The po-
laroid glasses absorb the TE component of the incident light, thus the TM
component reaches the eyes after passing through the polaroid glasses.

P1.7.5

(a) E; - ki=0= V3ky —k, =0 = 0; = tan"'(k,/k.) = tan"'(1//3) =
30°.

(b) For k, = 1(K,), we get k, = 3k, = V3(K,). = k = \/k2 + k2
2(K,), and k = wy/p,9, = 3w/c. So f = w/2r = ck/(3 - 2m)
2 x 10® (Hz) and A = 27/k = 0.5 m.

(c) If the totally reflected wave is linearly polarized, the incident angle is the
Brewster angle, thus 6; = 30° = tan~! /¢;/9, = €; = 9¢,tan?30° =
3€,.

P1.7.6
(a) P.=0.16F;, so |Er

=016 |E;
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(b) R=(n—1)/(n+1)=0.4 so n="7/3.

(¢) This problem is the TM wave case, so P,./P; = ‘RTM ’2 = (11/38)*.

(d) The tilted angle is the Brewster angle, 65 = tan~!'n = tan=! (7/3).

P1.7.7
Aem = 2d/m and we,, = mm/d(ue)/? .

P1.7.8

() fao = %10 = £ () = %5 % gh = 29(MHy) < f < fuor =
= (%) = 210 x =5 = 35.8 (MHz)

(b) An AM radio operates in the range of 500 to 1600 (KHz) is below the
cutoff frequency of the fundamental mode TE;, . Therefore, AM signals
can not be received in the tunnel.

(¢) FM signals operating in the range of 88.1 to 107.9 (MHz) can be re-
ceived in the tunnel.
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2.1 Transmission Line Theory

A. Transmission Line Equations

Transmission line theory deals with coaxial cables, parallel-plate wave-
guides, open-wire transmission lines, microstrip lines, etc, and provides
a simplified model to study complicated transmission systems. Parallel-
plate waveguide is a canonical example in the study of transmission line
theory. In order to derive transmission line equations from the Max-
well equations, we consider two parallel plates [Fig. 2.1.1] separated
by a distance d. Both plates have the same width w. For w > d,
we can assume that all electromagnetic fields are confined in between
the plates and there are no fringing fields outside the plate regions.
An electromagnetic wave is guided along the z direction with the elec-
tric field E in the & direction and the magnetic field H in the §
direction. Since both E and H are perpendicular to the direction of
propagation, the guided wave is a transverse electromagnetic (TEM)
wave. We write

E = 2E,(2,1) (2.1.1a)

H = jHy(z,1) (2.1.1b)

N\

Figure 2.1.1 Parallel-plate transmission line.

For example,

E, (z,t) = Eycos(kz — wt) (2.1.2a)

Hy (z,t) = Hycos(kz — wt) (2.1.2b)
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where Eo/Hy = +/1/€.

_ On the plate at =0, the boundary conditions of zero tangential
E and zero normal B are satisfied. The boundary condition for the
normal D field gives rise to the surface charge density

ps =2 €E = eEy(2,t) = eEpcos(kz — wt)

The boundary condition for the tangential magnetic field gives rise to
the surface current density

Js =4 x H = 2Hy(2,t) = 2Hg cos(kz — wt)

z2=0 z=M\/2

Figure 2.1.2 Surface charge and current on parallel-plate waveguide.

It is seen that 9
V- js = —aﬂs
which guarantees conservation of charge. On the plate surface at x =
d, the surface charge and current densities are the negatives of those
on the plate surface at * = 0 as shown in Fig. 2.1.2 which is plotted
at t=0.

The Maxwell equations with the solutions in (2.1.1) reduce to the
following pair of equations

0 0
0 0
&Hy(z,t) = —GEEx(Z,t) (214)

A voltage V (z,t) is defined as V (z,t) = E,(z,t)d and a current I(z,t)
is defined as I(z,t) = Hy(z,t) w.
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For the parallel-plate waveguide, we further define the inductance
per unit length

d
L=p p (H/m) (2.1.5)
and capacitance per unit length
C=¢ % (F/m) (2.1.6)
From (2.1.3) and (2.1.4), we obtain the transmission equations
0 0
— =—-L—-1T 2.1.
V(a0 = ~L 2 (2,1 (21.7)
0 0
5 I(z,t) = -C ! V(z,t) (2.1.8)

These two equations in terms of V(z,¢) and I(z,t) and circuit pa-
rameters L and C' are known as the transmission line equations. Sim-
ilar transmission line equations for coaxial lines, two-wire transmission
lines, and microstrip lines can be derived for the TEM waves on such
lines.

ExaMPLE 2.1.1 Poynting’s theorem.

Multiplying (2.1.7) by I and (2.1.8) by V and adding, we obtain Poynt-
ing’s theorem for transmission lines
0 0 (1 1
—(VI)=—— (—L[2 —CVQ) E2.1.1.1
9z =5 (3H + 3 ( )
We identify VI as the power flow, W, = %LI 2 as the magnetic energy per
unit length, and W, = %C’V2 as the electric energy per unit length. Thus
Poynting’s theorem is a statement of power conservation at all points and all

times on the transmission line.
— END OoF EXAMPLE 2.1.1 —

ExampLE 2.1.2 Coaxial transmission lines.

A coaxial transmission line consists of an inner circular conducting cylin-
der with radius ¢ and an outer circular conducting sheath with radius b,
where a < b. The electric and magnetic field vectors are

E = pE,(z,t)/p (E2.1.2.1)
H = ¢Hy(z,t)/p (E2.1.2.2)
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Faraday’s law and Ampeére’s law reduce to the following pair of equations

0 0
—Ey(5t) = —p g (1)

13} 0
&Hd)(z, t) = —¢ aEp(z, t)

A voltage V(z,t) is defined as

(E2.1.2.3)

(E2.1.2.4)

b
V(z,t) = / dpE,(z,t)/p=1In <2> E,(z,t)

and a current I(z,t) is defined as

2m
I(z,t) = / dopHy(z,t)/p = 2mHy(2,t)
0

Notice that the surface current density on the inner conducting surface at
p=uais Jg=px ¢Hy(z,t)/a = 2Hy(z,t)/a and the surface current den-

sity on the outer conducting surface at p =b is J, = —p x $H¢(z,t)/b =
—%2Hy(z,t)/b. For the coaxial transmission line, we further define the induc-

tance per unit length

In(b/a)
L= H
gt /)
and the capacitance per unit length
2w
C=¢€¢ ——— F
ey /)

Egs. (E2.1.2.3) and (E2.1.2.4) then become

0 0
0 0

which are of the same form as (2.1.7) and (2.1.8).

(E2.1.2.5)

(E2.1.2.6)

(E2.1.2.7)

(E2.1.2.8)

— END OF EXAMPLE 2.1.2 —
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ExamMpLE 2.1.3
In the parallel-plate waveguide, the voltage is obtained as

V(z,t) =dE; (2,t) = dcos(kz — wt)
and the current I(z,t) is obtained as

I(z,t) = wHy (2,t) = wcos(kz — wt)

In a coaxial transmission line, the voltage and current are obtained as

V(z,t) =In (S) E,(z,t) =In (g) cos(kz —wt)/p

and the current I(z,t) is obtained as
I(z,t) = 2wHy(z,t) = 2m cos(kz — wt)/p

We see that the voltage at z = 0 is opposite to the voltage at z = \/2,
contrary to Kirchhoff’s voltage law (KVL), which requires the two voltages
to be equal. The surface current density at z = 0 and that at z = \/2 are
opposite in direction, also contrary to Kirchhoff’s current law (KCL) which
requires that current flowing into a node is equal to that flowing out.

— END OF EXAMPLE 2.1.3 —

Note: Transverse electromagnetic (TEM) waves guided by transmission
lines have the electric field £ perpendicular to the magnetic field H and both
E and H transverse to the direction of propagation along the transmission
line. A transmission line is composed of two conductors parallel to each other.
The cross-sections of the transmission line at any point on the propagation
path are of the same shape. A parallel-plate transmission line consists of
two parallel conducting plates separated by a constant distance; the space
in between the plates may be filled uniformly with dielectric material. A
microstrip line usually consists of a thin narrow metal strip fabricated on
top of a dielectric slab backed by a grounded conduction plane. A two-wire
transmission line consists of a pair of parallel conducting wires separated by
a uniform distance. A coaxial transmission line consists of an inner conductor
and a coaxial outer conducting sheath separated by a dielectric medium. In
addition to the TEM mode of propagation along the transmission lines, there
exist many other modes, which will not be covered by the transmission line
theory.
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B. Circuit Theory

The Kirchhoff voltage law (KVL) states that the voltage sum over a
closed loop must equal to zero. This is a static limit of Faraday’s law.
When there is no time varying field linking a closed loop, 0B/dt =0,
we have

VxE=0 (2.1.9)

Integrating the above equation over a closed loop, we obtain

]{dZ-E:ZVnzo (2.1.10)

where the voltage drops are defined by V,, = [ d/, - E .InFigure 2.1.3,
the sum of the voltage drops around the loop is equal to zero.

+

Figure 2.1.3 Kirchhoff voltage law (KVL).

The source voltage V; may be generated by the EMF due to a
time-varying magnetic field, governed by Faraday’s law.

_ 0 —
EFE=——B8B 2.1.11
V x T ( )
From Stokes theorem, we find

y{dz ‘E=) V,=EMF (2.1.12)

where

d

d S v
EMF—E//dS-B—E (2.1.13)

and ¥ = [[dS-B is magnetic flux linking the loop. The Kirch-
hoff’s voltage law (KVL) is thus modified with the addition of EMF in
(2.1.12).
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ExaMpLE 2.1.4

Consider the loop in Fig. E2.1.4.1 consisting of two resistors with resis-
tances Ry = 2.50hm and Ry = 7.5ohm. Let the magnetic flux linking the
loop be increasing at the rate of 10 Wb/s. According to (2.1.13), an EMF of
10V is induced to counter the increase. The direction of the induced current
is as shown so as to produce a magnetic field in the opposite direction of the
increasing magnetic field. The voltage across R; is Vi3 = 2.5V, which can be
obtained by taking the closed loop consisting of the voltmeter and R; yield-
ing 0 = 2.5 — V7, or by taking the loop consisting of the voltmeter and Ro
which includes the time varying magnetic field and yielding 10 = 7.5 + V.

Likewise, the voltage readings for the other two voltmeters are Vo = —7.5V
and V3 =25V.
- - - - - - - - - - - -- - - - -~ |
I . I :
y ! _ . e ‘ |+
@ 751/§F2 LR §2.5V@ @
- + NS = -
| . | :
I _ < 1
< [
|

Figure E2.1.4.1 EMF of the loop is 10 volts.

It is noted that although the voltmeters for V5 and V3 are connected to the
same two nodes, the two readings are drastically different, a clear violation
of Kirchhoff’s voltage law (KVL), which applies only when V x E=0.

Consider the electric circuit as shown in Fig. E2.1.4.2 where the induced
counter EMF is 20 V. Following the same analysis, we find V3 =5V, V5 =
—15V, Vs =—-5V, V, =10V, and V; =20V.

[
- > -0 |
‘ \7777@»7771 I |
| 1 t - 1 | |
I ! ' I
[ 1 : 1 [ :
+ 1 - ! G + +
@ w2 1 2v® ®
| +R2: T T :R1_ T |
! B S ! !
[ "j{_(_\‘ [ [
(I 2 < < R I [
[
[
[

Figure E2.1.4.2 EMF of the loop is 20 volts.

— END OF EXAMPLE 2.1.4 —
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Circuit Elements

The fundamental circuit elements are the resistor, the capacitor, and
the inductor. The voltage V across a loop of N turns is equal to the
negative of the induced EMF.

d dI
V = —EMF = —0 = [, — 92.1.14
dt 0 dt ( )

[

Figure 2.1.4 Inductance.

where W = [[, dS-B = Lol , and the loop can be viewed as an inductor
with inductance Ly such that the magnetic flux is proportional to the
current I flowing in the loop.

The Kirchhoff current law (KCL) states that the currents flowing
into a node must equal to those flowing out of the node. This is a
result of the continuity law. When there is no charge accumulation at
a point, dp/0t =0, we have

(2.1.15)

Figure 2.1.5 Kirchhoff current law (KCL).

Integrating the above equation over the surface enclosing the node, we

obtain
ﬂd?-?:Zlnzo (2.1.16)
S n

where the currents are defined by I, = [[d S, -J. In Figure 2.1.5,
the sum of the currents flowing out of the node is zero. Thus some o